Identifying Elasticities in Autocorrelated Time Series Using Causal Graphs:

an Application to German Electricity Data

Silvana Tiedeman[†], <u>Jorge Sánchez Canales[†]</u>, Felix Schur[‡], Raffaele Sgarlato, Oliver Ruhnau[§], Lion Hirth[†], Jonas Peters[‡]

For ENERDAY, 12.04.2024

[†]Hertie School, Centre for Sustainability, [‡]ETH Zürich, [§]Energiewirtschaftliches Institut an der Universität zu Köln

*Presenting author: j.sanchez-canales@hertie-school.org

Motivation (I)

- What is the price elasticity of electricity demand?
 - Typically thought to be inelastic or rather small
- How can we learn about the dynamics of the demand response to prices?
 - Is electricity demand price-responsive at all? Is it autocorrelated? Is there optimization across hours?
- Instrumental variables (IV) can be used to overcome endogeneity
 - Such as market equilibrium (Angrist et al., 2000)
 - Some papers have used wind generation as an instrument
 - (i.e., Arnold, 2023; Hirth et al., 2023; Fabra et al., 2021)
 - But autocorrelated instruments (i.e., wind-based time series) can introduce a new bias (Thams et al., 2022)

Motivation (II)

- We argue that Directed Acyclical Graphs (DAGs) can help us in both,
 - find valid estimators (get the right elasticity)
 - and infer dynamics
- Because we are able to derive (several) valid estimators given model assumptions, to verify these assumptions
- Caveat: It is not trivial how one expresses equilibrium in a DAG
 - (Imbens, 2020)
 - Our solution in the appendix

- 1. Propose a structural equation model (SEM)
 - Explicitly state your assumptions

 $D_t \coloneqq D_0 + \beta^P P_t + \beta^{D_1} D_{t-1} + U_t^D$ $S_t \coloneqq S_0 + \gamma^P P_t + \gamma^W W_t + U_t^S$ $S_t = D_t.$

1. Propose a structural equation model (SEM)

$$D_t \coloneqq D_0 + \beta^P P_t + \beta^{D_1} D_{t-1} + U_t^D$$
$$S_t \coloneqq S_0 + \gamma^P P_t + \gamma^W W_t + U_t^S$$
$$S_t = D_t.$$

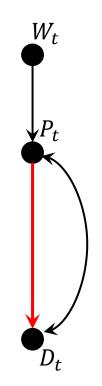
2. Solve for price

$$P_t = \frac{S_0 - D_0}{\beta^P - \gamma^P} + \frac{\gamma^W}{\beta^P - \gamma^P} W_t - \frac{\beta^{D1}}{\beta^P - \gamma^P} D_{t-1} + \frac{U_t^S - U_t^D}{\beta^P - \gamma^P}$$

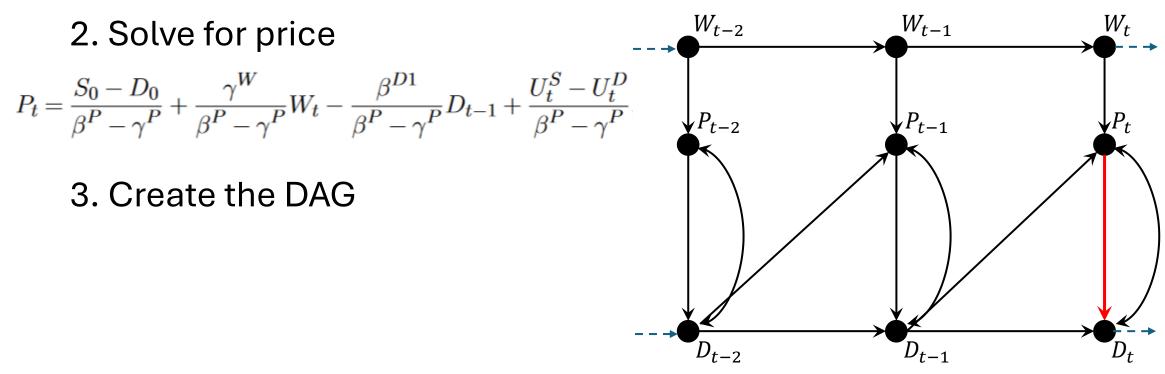
- 1. Propose SEM
- 2. Solve for price

$$P_t = \frac{S_0 - D_0}{\beta^P - \gamma^P} + \frac{\gamma^W}{\beta^P - \gamma^P} W_t - \frac{\beta^{D1}}{\beta^P - \gamma^P} D_{t-1} + \frac{U_t^S - U_t^D}{\beta^P - \gamma^P} D_{t-1} + \frac{U_t^S - U_t^D}{\beta^$$

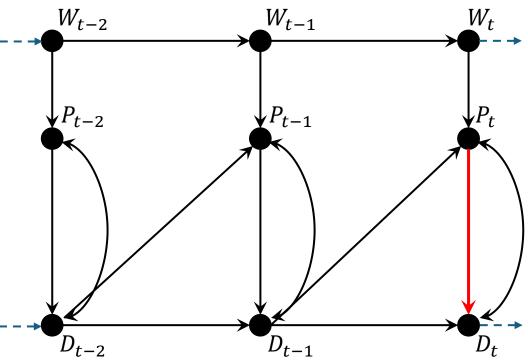
3. Create the DAG



1. Propose SEM

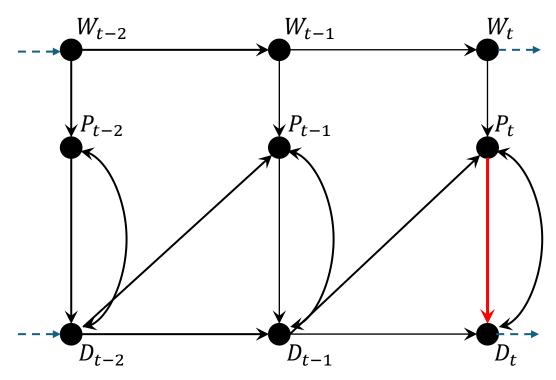


- 1. Propose SEM
- 2. Solve for price
- 3. Construct DAG
- 4. Derive (several) valid estimators
 - Using the CIV criteria (Dseparation) (Pearl, 2009; Thams et al., 2022)
 - Valid estimators block all (information) paths between P_t and -D_t except the red (our estimate)

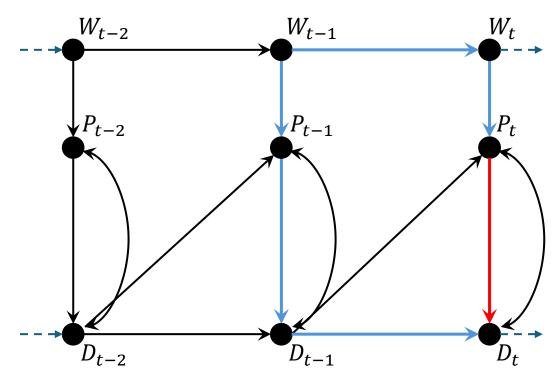


- Notation: *CIV(instrument\estimated effect\conditioning set*)* * Typicall control variables (temperature, seasonalities, etc.) excluded
- **Criteria:** after conditioning, no open path remains between the dependent and independent variables

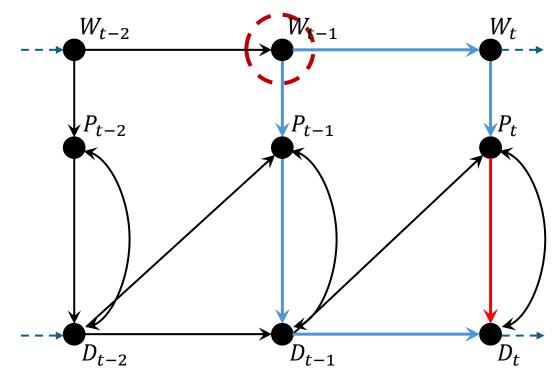
- **Notation:** *CIV(instrument\estimated effect\conditioning set)*
- $CIV(W_t|P_t \to D_t|\emptyset)$



- Notation: *CIV(instrument\estimated effect\conditioning set)*
- $CIV(W_t | P_t \to D_t | \emptyset) \to \text{invalid}$
 - W_{t-1} is a confounder!
 - A common cause of P_t and D_t



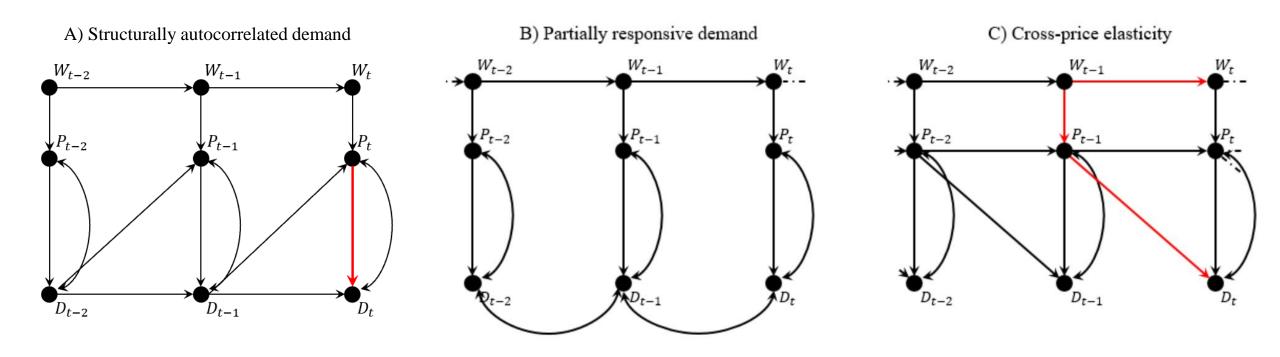
- Notation: *CIV(instrument\estimated effect\conditioning set)*
- $CIV(W_t|P_t \to D_t|\emptyset) \to \text{invalid}$
 - W_{t-1} is a confounder!
 - A common cause of P_t and D_t
- $CIV(W_t|P_t \rightarrow D_t|W_{t-1}) \rightarrow valid$
 - The path through autocorrelation is now closed



... and with valid estimators

- Once you have a set of valid estimators, you can test the validity of your SEM
 - If the model is true (i.e., the data was generated following this model), then all the estimators should lead to the same estimate
 - If they lead to different estimates, we can reject the model
 - If the model is false, they could still by chance lead to the same result
 - We only "fail" to reject the model

The three models in the paper

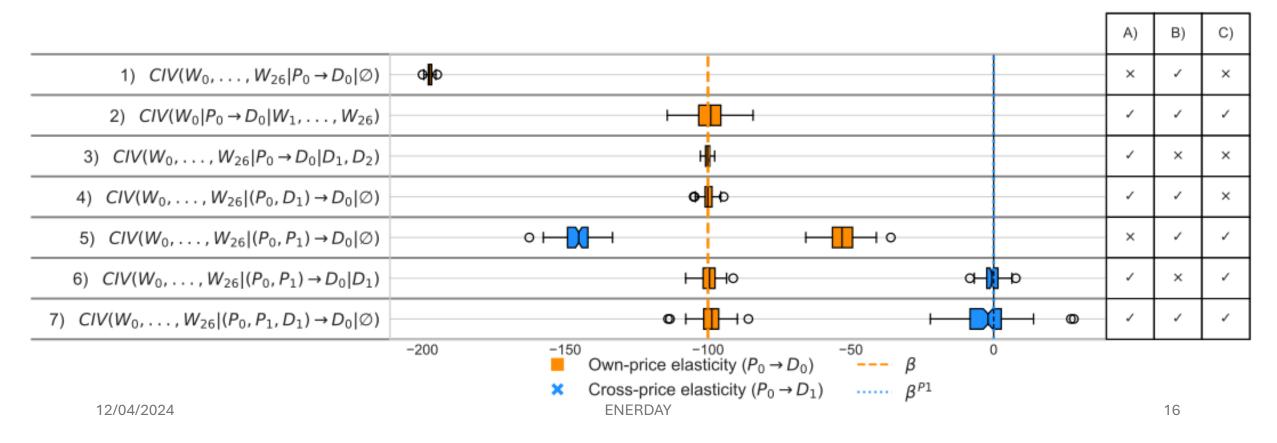


Valid estimators by model

	A)	B)	C)
1) $CIV(W_0, \ldots, W_{26} P_0 \rightarrow D_0 \emptyset)$	×	~	×
2) $CIV(W_0 P_0 \rightarrow D_0 W_1,, W_{26})$	~	~	~
3) $CIV(W_0,, W_{26} P_0 \rightarrow D_0 D_1, D_2)$	~	×	×
4) $CIV(W_0, \ldots, W_{26} (P_0, D_1) \rightarrow D_0 \emptyset)$	~	~	×
5) $CIV(W_0,\ldots,W_{26} (P_0,P_1)\rightarrow D_0 \oslash)$	×	~	~
6) $CIV(W_0,, W_{26} (P_0, P_1) \rightarrow D_0 D_1)$	~	×	~
7) $CIV(W_0,, W_{26} (P_0, P_1, D_1) \to D_0 \emptyset)$	~	~	~

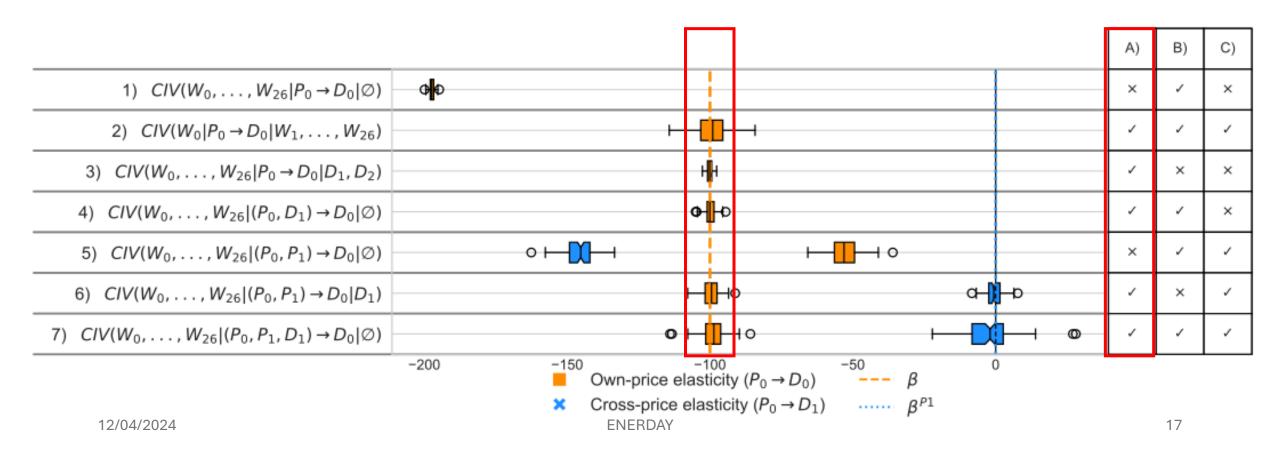
Simulations

- We verify our sets of proposed valid estimators with simulations
 - Using one SEM to generate the data



Simulations

• In this case, model A)



From simulation to application

- We can then apply all our estimators to real world data (Germany 2017-2021)
 - If the pattern of estimators is inconsistent with one model, we can reject it
- We also note in all three, two estimators are consistent
 - (2) and (7)
 - Particularly (2) we believe to be unbiased in many scenarios

	A)	B)	C)
1) $CIV(W_0, \ldots, W_{26} P_0 \rightarrow D_0 \emptyset)$	×	~	×
2) $CIV(W_0 P_0 \rightarrow D_0 W_1,, W_{26})$	~	~	~
3) $CIV(W_0,, W_{26} P_0 \rightarrow D_0 D_1, D_2)$	~	×	×
4) $CIV(W_0, \ldots, W_{26} (P_0, D_1) \rightarrow D_0 \emptyset)$	~	~	×
5) $CIV(W_0, \ldots, W_{26} (P_0, P_1) \rightarrow D_0 \emptyset)$	×	~	~
6) $CIV(W_0,, W_{26} (P_0, P_1) \rightarrow D_0 D_1)$	~	×	~
7) $CIV(W_0,, W_{26} (P_0, P_1, D_1) \to D_0 \emptyset)$	~	~	~

Application results (linear)

								A)	B)	C)
1) $C/V(W_t, \ldots, W_{t-50} P_t \rightarrow D_t \emptyset)$			H	H				×	~	×
2) $CIV(W_t P_t \rightarrow D_t W_{t-1},, W_{t-50})$		-	-					1	~	~
3) $CIV(W_t, \ldots, W_{t-50} P_t \rightarrow D_t D_{t-1})$				•				1	×	×
4) $CIV(W_t, \ldots, W_{t-50} (P_t, D_{t-1}) \rightarrow D_t \emptyset)$				•				1	~	×
5) $CIV(W_t, \ldots, W_{t-50} (P_t, P_{t-1}) \rightarrow D_t \emptyset)$	•					⊢ ▲		×	<	~
6) $CIV(W_t,, W_{t-50} (P_t, P_{t-1}) \rightarrow D_t D_{t-1})$			ŀ	н	H			1	×*	~
7) $CIV(W_t, \ldots, W_{t-50} (P_t, P_{t-1}, D_{t-1}) \rightarrow D_t \emptyset)$		H	H		⊢ ▲-			1	~	~
	-400		200 Ited slo	(ope of	the demand		00			

- \frown Own-price elasticity ($P_t \rightarrow D_t$)
- Cross-price elasticity $(P_{t-1} \rightarrow D_t)$

Application results (log-log)

				A)	B)	C)
1) $CIV(W_t, \ldots, W_{t-50} P_t \rightarrow D_t \emptyset)$				×	~	×
2) $CIV(W_t P_t \rightarrow D_t W_{t-1},, W_{t-50})$	 -			~	~	~
3) $CIV(W_t,, W_{t-50} P_t \rightarrow D_t D_{t-1})$				~	×	×
4) $CIV(W_t, \ldots, W_{t-50} (P_t, D_{t-1}) \rightarrow D_t \emptyset)$				~	~	×
5) $C/V(W_t, \ldots, W_{t-50} (P_t, P_{t-1}) \rightarrow D_t \emptyset)$				×	~	~
6) $CIV(W_t,, W_{t-50} (P_t, P_{t-1}) \rightarrow D_t D_{t-1})$	H	H al		~	×*	~
7) $CIV(W_t,, W_{t-50} (P_t, P_{t-1}, D_{t-1}) \rightarrow D_t \emptyset)$		⊢ ≜-		~	~	~
-0.2		.0 0.1 d elasticity	0.2			

Findings

- We can reject all three models for Germany
 - A regular IV (estimator 1) is biased and underestimates elasticity
- We cannot reject any model under which only estimators (2) and (7) are valid
 - This means the structure of the demand response must have all components: some elastic demand, some inelastic, with autocorrelation, and cross-price elasticities
- Since these are likely unbiased estimators, we believe that
 - The short-term own-price slope of electricity demand in Germany is -200 MWh/€ or elasticity of -0.1 (log-log)
 - Another interpretation: If there was a 1GW (unexpected) supply shock, up to 20% would be absorbed by demand response in the same hour

Conclusion

- Every empirical analysis should state the assumptions about the dynamics (or structure) of the response
 - The estimators we use are not neutral, they need strong assumptions!
- The (further) formalization of these assumptions in DAG helps to
 - Defend the validity of the (IV-based) identification strategy
 - Develop a set of several valid estimators that help to verify our assumptions and thereby generate knowledge
- Regarding the price elasticity of electricity demand,
 - The price response is too complex to neglect its dynamics
 - The existing response is <u>underestimated</u> under regular IV approach
 - Interpreting the coefficients is nontrivial matter

Appendix

Funding sources

The authors gratefully acknowledge financial support from the ARIADNE project, funded by the German Federal Ministry of Education and Research.

Bibliography

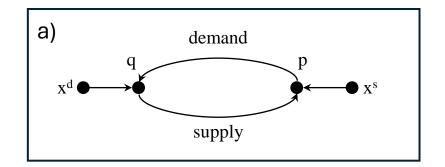
- ANGRIST, JOSHUA D. AND ALAN B. KRUEGER (2001): "Instrumental Variables and the Search for Identification: From Supply and Demand to Natural Experiments," 15 (4), 69–85.
- ARNOLD, FABIAN (2023): "On the functional form of short-term electricity demand response Insights from high-price years in Germany," EWI Working Paper, 23 (06).
- FABRA, NATALIA, DAVID RAPSON, MAR REGUANT, AND JINGYUAN WANG (2021): "Estimating the Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market," 111, 425–429.
- HIRTH, LION, TARUN KHANNA, AND OLIVER RUHNAU (2023): "How aggregate electricity demand responds to hourly wholesale price fluctuations,
- IMBENS, G. W. (2020): "Potential Outcome and Directed Acyclic Graph Approaches to Causality: Relevance for Empirical Practice in Economics," Journal of Economic Literature, 58 (4), 1129–79.
- PEARL, JUDEA (2009): Causality: Models, Reasoning, and Inference, Cambridge University Press, 2nd ed.
- PETERS, J., S. BAUER, AND N. PFISTER (2020): "Causal models for dynamical systems," ArXiv e-prints (2001.06208)
- THAMS, NIKOLAJ, RIKKE SØNDERGAARD, SEBASTIAN WEICHWALD, AND JONAS PETERS (2022): "Identifying Causal Effects using Instrumental Time Series: Nuisance IV and Correcting for the Past".

Summary of methodology

- Make assumptions about the structure of the electricity market
- Translate into structural equation model (SEM)
- Solve for the variable of interest (in this case, price)
- Express as a Directed Acyclical Graph (DAG)
- Derive valid estimators
 - (verify validity in simulations)
- Check if we reject / fail to reject SEM with real data
- Repeat!

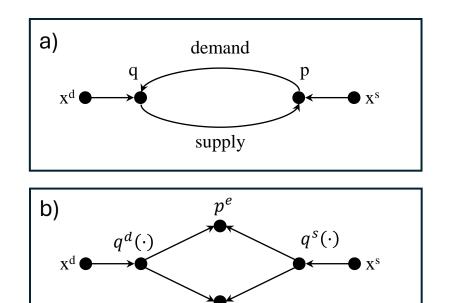
DAGs (I)

- Problem (a):
 - Arrows going from p to q and q to p do not capture the market equilibrium dynamic



DAGs (I)

- Problem (a):
 - Arrows going from p to q and q to p do not capture the market equilibrium dynamic
- But rather (b):
 - Supply and demand functions work as primitives (Imbens, 2020)



 q^e

DAGs (I)

- Problem (a):
 - Arrows going from p to q and q to p do not capture the market equilibrium dynamic
- But rather (b):
 - Supply and demand functions work as primitives (Imbens 2020)
- Our proposed solution (c):
 - "Solve for" price and
 - Treat market equilibrium mechanism as an (unobserved) confounder

