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Motivation (I)

• What is the price elasticity of electricity demand? 
• Typically thought to be inelastic or rather small

• How can we learn about the dynamics of the demand response to 
prices? 

• Is electricity demand price-responsive at all?  Is it autocorrelated? Is there 
optimization across hours? 

• Instrumental variables (IV) can be used to overcome endogeneity
• Such as market equilibrium (Angrist et al., 2000)
• Some papers have used wind generation as an instrument 

• (i.e., Arnold, 2023; Hirth et al., 2023; Fabra et al., 2021)
• But autocorrelated instruments (i.e., wind-based time series) can introduce a 

new bias (Thams et al., 2022)
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Motivation (II)

• We argue that Directed  Acyclical Graphs (DAGs) can help us in 
both,

• find valid estimators (get the right elasticity) 
• and infer dynamics

• Because we are able to derive (several) valid estimators given 
model assumptions, to verify these assumptions

• Caveat: It is not trivial how one expresses equilibrium in a DAG
• (Imbens, 2020)
• Our solution in the appendix
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Our methodology

1. Propose a structural equation 
model (SEM)

• Explicitly state your 
assumptions
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Our methodology

1. Propose a structural equation 
model (SEM)

2. Solve for price 
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Our methodology 

1. Propose SEM
2. Solve for price

3. Create the DAG 
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Our methodology 

1. Propose SEM
2. Solve for price 
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Our methodology 

1. Propose SEM
2. Solve for price
3. Construct DAG
4. Derive (several) valid estimators

• Using the CIV criteria (D-
separation) (Pearl, 2009; Thams et 
al., 2022)

• Valid estimators block all 
(information) paths between 𝑃𝑡 and 
𝐷𝑡 except the red (our estimate)
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Deriving valid estimators

• Notation: CIV(instrument\estimated effect\conditioning set*)
* Typicall control variables (temperature, seasonalities, etc.) excluded

• Criteria: after conditioning, no open path remains between the dependent
and independent variables
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Deriving valid estimators

• Notation: CIV(instrument\estimated effect\conditioning set)

• 𝐶𝐼𝑉(𝑊𝑡|𝑃𝑡 → 𝐷𝑡|∅) 
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Deriving valid estimators

• Notation: CIV(instrument\estimated effect\conditioning set)

• 𝐶𝐼𝑉(𝑊𝑡|𝑃𝑡 → 𝐷𝑡|∅) → invalid
• 𝑊𝑡−1 is a confounder!
• A common cause of 𝑃𝑡 and 𝐷𝑡
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Deriving valid estimators

• Notation: CIV(instrument\estimated effect\conditioning set)

• 𝐶𝐼𝑉(𝑊𝑡|𝑃𝑡 → 𝐷𝑡|∅) → invalid
• 𝑊𝑡−1 is a confounder!
• A common cause of 𝑃𝑡 and 𝐷𝑡

• 𝐶𝐼𝑉(𝑊𝑡 𝑃𝑡 → 𝐷𝑡 𝑊𝑡−1) → valid
• The path through autocorrelation 
    is now closed
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… and with valid estimators

• Once you have a set of valid estimators, you can test the validity of 
your SEM

• If the model is true (i.e., the data was generated following this model), 
then all the estimators should lead to the same estimate

• If they lead to different estimates, we can reject the model

• If the model is false, they could still by chance lead to the same result
• We only “fail” to reject the model
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The three models in the paper
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Valid estimators by model
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Simulations
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• We verify our sets of proposed valid estimators with simulations
• Using one SEM to generate the data
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Simulations

• In this case, model A)
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From simulation to application

• We can then apply all our 
estimators to real world data 
(Germany 2017-2021)

• If the pattern of estimators is 
inconsistent with one model, we 
can reject it

• We also note in all three, two 
estimators are consistent

• (2) and (7)
• Particularly (2) we believe to be 

unbiased in many scenarios
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Application results (linear)
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Application results (log-log)
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Findings

• We can reject all three models for Germany
• A regular IV (estimator 1) is biased and underestimates elasticity

• We cannot reject any model under which only estimators (2) and 
(7) are valid

• This means the structure of the demand response must have all 
components: some elastic demand, some inelastic, with autocorrelation, 
and cross-price elasticities

• Since these are likely unbiased estimators, we believe that
• The short-term own-price slope of electricity demand in Germany                

is -200 MWh/€ or elasticity of -0.1 (log-log)
• Another interpretation: If there was a 1GW (unexpected) supply shock, 

up to 20% would be absorbed by demand response in the same hour
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Conclusion

- Every empirical analysis should state the assumptions about the 
dynamics (or structure) of the response 

- The estimators we use are not neutral, they need strong assumptions!
- The (further) formalization of these assumptions in DAG helps to 

- Defend the validity of the (IV-based) identification strategy 
- Develop a set of several valid estimators that help to verify our 

assumptions and thereby generate knowledge
- Regarding the price elasticity of electricity demand, 

- The price response is too complex to neglect its dynamics
- The existing response is underestimated under regular IV approach
- Interpreting the coefficients is nontrivial matter
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Appendix
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Summary of methodology

• Make assumptions about the structure of the electricity market
• Translate into structural equation model (SEM)
• Solve for the variable of interest (in this case, price)
• Express as a Directed Acyclical Graph (DAG)
• Derive valid estimators

• (verify validity in simulations)

• Check if we reject / fail to reject SEM with real data
• Repeat!
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DAGs (I)
• Problem (a):

• Arrows going from p to q and q to p do not
capture the market equilibrium dynamic

q p
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DAGs (I)
• Problem (a):

• Arrows going from p to q and q to p do not
capture the market equilibrium dynamic

• But rather (b):
• Supply and demand functions work as 

primitives (Imbens, 2020)
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DAGs (I)
• Problem (a):

• Arrows going from p to q and q to p do not
capture the market equilibrium dynamic

• But rather (b):
• Supply and demand functions work as 

primitives (Imbens 2020)

• Our proposed solution (c):
• “Solve for” price and
• Treat market equilibrium mechanism as 

an (unobserved) confounder
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