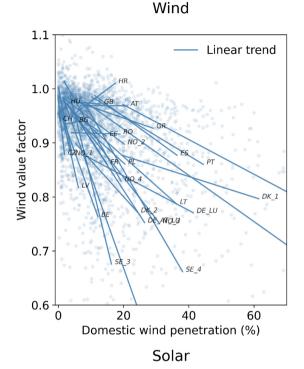
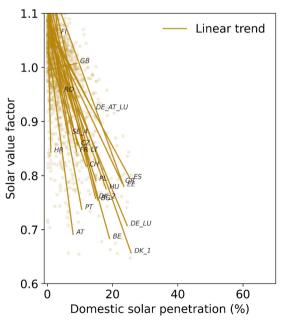
# Does Cross-Border Electricity Trade Stabilize the Market Value of Wind and Solar Energy? Insights from a European Panel Analysis

Clemens Stiewe, Alice Lixuan Xu, Lion Hirth, Anselm Eicke <u>stiewe@hertie-school.org</u>







Bundesministerium für Bildung und Forschung

**GEFÖRDERT VOM** 

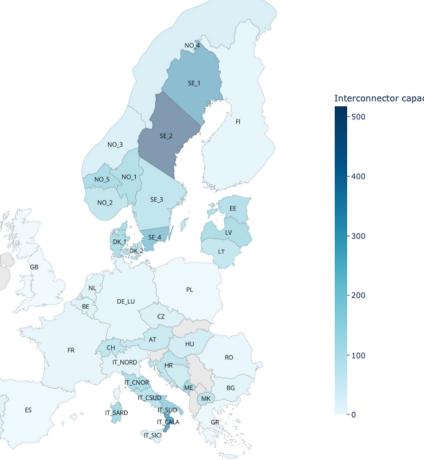
#### Motivation

- Negative effect of domestic wind & solar market penetration on market value is well-explored
- ...but cross-border effects receive less attention
- We estimate cross-border effects on renewable market value across 30 European bidding zones
  - Jointly estimate domestic and spatial effect of wind/solar market penetration
  - Estimate moderating effect of market connectedness
  - Control for market features that determine the value drop







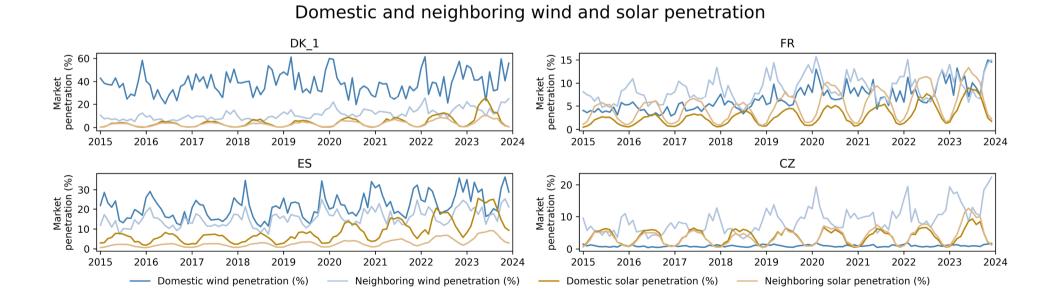

# Model variables and expected effects

|             | Variables                                              | Expected effects    |
|-------------|--------------------------------------------------------|---------------------|
| Dependent   | Value factor of wind (solar)                           |                     |
| Independent | Domestic wind (solar) penetration                      | Negative            |
|             | Neighboring wind (solar) penetration                   | Negative            |
|             | Interconnector capacity                                | Positive / negative |
|             | Controls                                               |                     |
|             | Reservoir hydro capacity                               | Positive            |
|             | Pumped hydro capacity                                  | Positive            |
|             | Coefficient of variation of wind (solar) generation    | Negative            |
|             | Correlation of wind (solar) generation and system load | Positive            |
|             | Clean gas-coal price ratio                             | Negative            |



#### Data

- We use electricity market data from 2015-2023 aggregated at the monthly level
- Data retrieved from ENTSO-E TP and national authorities








#### Modelling spatial effects

- We model the effect of wind/solar market penetration across a bidding zone's direct neighbors on domestic market value (*spatial lag of X* approach)
- Wind/solar market penetration of bidding zone *i*'s neighbor *j* is weighted by normalized interconnector capacity between *i* and *j*



#### Cross-border trade and renewable market value

### Identification strategy

- Renewable generation is weather-driven but cross-border flows and hydro electricity generation are endogenous to prices
- We use capacities instead of flows/generation
  - Interconnector capacity
    - Approximated by annual 95% quantile of hourly bilateral commercial exchanges
  - Hydro pumped storage and reservoir capacity
  - All capacity data normalized by mean annual zonal load



# Model specification

- Fixed effects (FE) estimation eliminates the variation we are interested in
- *Random effects within-between model* (Mundlak, 1978, Bell & Jones, 2014)
- Idea: Split up variation in  $X_{i,t}$  into two parts:
  - Variation within entities:  $X_{i,t} \overline{X_i}$
  - Variation between entities:  $\overline{X_i}$
- Within effects  $\beta(X_{i,t} \overline{X_i})$  are equivalent to coefficients from a FE model
- Between effects  $\beta(\overline{X_i})$  explicitly model heterogeneity at the zone level

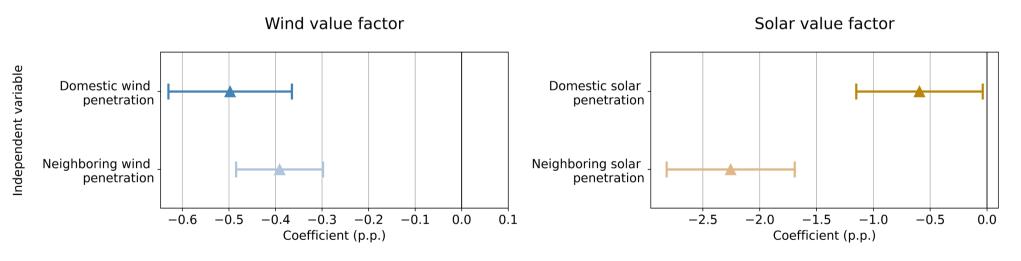


#### Model specification

$$\begin{aligned} VF_{i,t}^{w} &= \beta_{0} + \beta_{1}\ddot{P}_{i,t}^{w} + \beta_{2}\bar{P}_{i}^{w} + \beta_{3}\dot{P}_{sp}_{i,t}^{w} + \beta_{4}\overline{P_{sp}}_{i}^{w} \\ &+ \beta_{5}I_{i} + \beta_{6}\ddot{P}_{i,t}^{w} * I_{i} + \beta_{7}\dot{P}_{sp}_{i,t}^{w} * I_{i} + \beta_{8}\ddot{P}_{i,t}^{s} \\ &+ \beta_{9}\bar{P}_{i}^{s} + \beta_{10}\ddot{P}_{sp}_{i,t}^{s} + \beta_{11}\overline{P_{sp}}_{i}^{s} \\ &+ \beta'C + \beta'\dot{P}_{i,t}^{w} * \ddot{C} + \beta'\dot{P}_{i,t}^{w} * \bar{C} + \gamma'D_{t} + \varepsilon_{i,t} \end{aligned}$$

•  $VF_{i,t}^{w}$ 

• 
$$\ddot{P}_{i,t}^{\{w,s\}} = P_{i,t}^{\{w,s\}} - \bar{P}_i^{\{w,s\}}$$

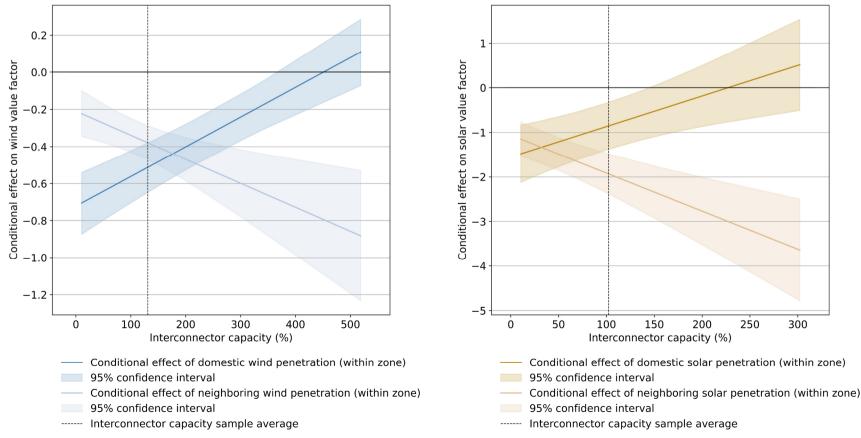

- $P_{sp_{i,t}}^{;\{w,s\}} = P_{sp_{i,t}}^{\{w,s\}} \overline{P_{sp}_{i}}^{\{w,s\}}$
- *I*<sub>i</sub>
- C
- *D*<sub>t</sub>
- $\mathcal{E}_{i,t}$

Value factor of wind

Domestic wind/solar market penetration (within zone) Neighboring wind/solar market penetration (within zone) Interconnector capacity Vector of controls Month and year dummies Error term

#### Results

- We find substantial domestic and cross-border effects of market penetration on market value
- Domestic effect of solar is stronger (because of simultaneity)
- Cross-border effect of solar is stronger (because of geographic smoothing of wind)

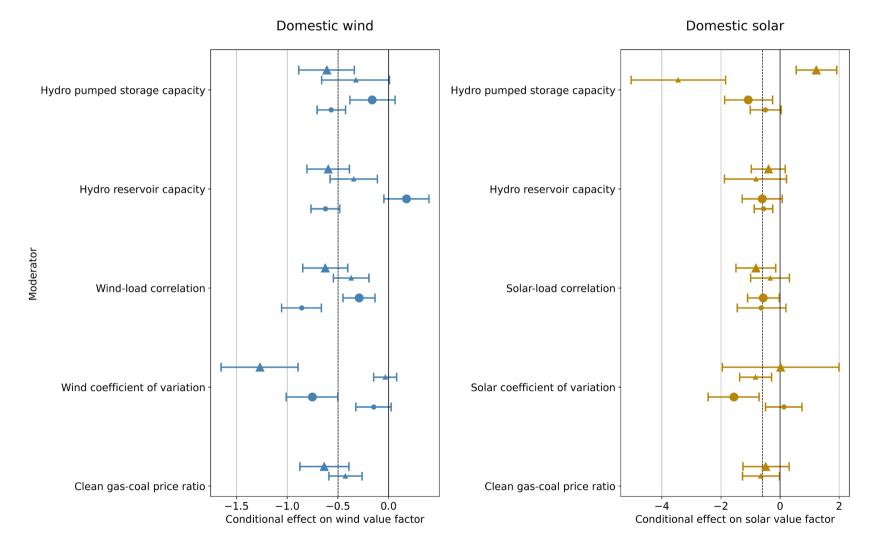



Marginal effect of market penetration (within zone)



# Results

- Connectedness mitigates domestic value drop (through exports)
- ...but exacerbates cross-border spillovers (through imports)




Conditional effects of domestic and neighboring wind/solar penetration

Cross-border trade and renewable market value

# Results

• We can identify more factors that mitigate the wind value drop



Effect at minimum moderator level (between zones)
Effect at maximum moderator level (between zones)

➡ Effect at minimum moderator level (within zone)➡ Effect at maximum moderator level (within zone)

----- Effect at mean moderator levels



#### Conclusion

- We confirm the negative effect of domestic wind/solar market penetration on market value
- In addition, we find substantial spatial effects which are stronger for solar
- Connectedness of price zones mitigates the domestic value drop but exacerbates spillover effects
- Hydro flexibility, load correlation and smoother generation profile can mitigate the value drop



# Thank you!

