Natural Gas Storage:
Competitive Storage vs. Strategic Behavior

Georg Zachmann and Anne Neumann

DIW Berlin and EE²

DRAFT! PLEASE DO NOT CITE, COMMENTS WELCOME!

Enerday
April 13, 2007
Agenda

1. The Issue

2. (Natural Gas) Storage – Theory and Literature

3. Case Study: Competitive vs. Strategic Behavior

4. Conclusion
Continental Europe: Heterogeneous Regulation and Little Transparency in Natural Gas Storage Markets

- Article 19 of 2003/55/EC: Third party access (TPA) to facilitate downstream competition

→ 3 countries regulate (BG, IT, E), others mainly negotiated TPA

- Article 22: exemption under the condition that “the investment must enhance competition in gas supply and enhance security of supply”

→ Lack of compliance to guidelines

→ Poor transparency on capacity excluded from TPA

→ Limited development of secondary markets

⇒ In a liberalizing gas market, storage is an essential element to provide flexibility and promote competition
Agenda

1. The Issue

2. (Natural Gas) Storage – Theory and Literature

3. Case Study: Competitive vs. Strategic Behavior

4. Conclusion
Types of Natural Gas Storage
(seasonal storage vs. peak storage)

A – Salt Caverns B – Aquifers C – Depleted Reservoirs
Natural Gas Storage

<table>
<thead>
<tr>
<th>Fee</th>
<th>Salt Cavern</th>
<th>Depleted Gas Fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Fees (based on MMBtu of capacity reserved):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual Demand Charge, $ MMBtu</td>
<td>1,00</td>
<td>0,40</td>
</tr>
<tr>
<td>Variable Costs (based on volume of throughput):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection Fee, $/MMBtu</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Withdrawal Fee, $/MMBtu</td>
<td>0,02</td>
<td>0,02</td>
</tr>
<tr>
<td>Fuel Expense, %</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Injection Days To Fill</td>
<td>20</td>
<td>180</td>
</tr>
<tr>
<td>Withdrawal Days To Deplete</td>
<td>10</td>
<td>120</td>
</tr>
<tr>
<td>Typical Number of Cycles Per Year</td>
<td>4 to 5</td>
<td>1 to 1.5</td>
</tr>
</tbody>
</table>

→ **Salt Caverns exhibit more flexibility albeit at higher costs**

Source: Simmons (2005, 8)
Convenience Yield and Theory of Storage

- Difference of spot and forward prices of a commodity at a level given by storage and interest costs
- Formal derivation of optimal storage levels and the resulting impact on prices and quantities
- Variations in spot prices directly related to benefit of holding inventory and inversely related to the correlation between spot and forward prices
- “Store until the expected gain on the last unit put into store just matches the current loss from buying – or not selling it – now” (Williams and Wright, 1991, p.25)
- Arbitraging potential in functioning markets
- Production and storage performed by competitive profit-maximizers is favorable for consumers
- Natural gas storage is limited by technical factors influencing operability of facilities induced by geological characteristics, and strong seasonality
Empirical Evidence in Natural Gas Markets

Uria and Williams (2005)
→ Injection in Californian facilities increases slightly with a strengthening intertemporal spread on NYMEX

Serletis and Shahmoradi (2006)
→ High inventory: large inventory responses to shocks imply roughly equal changes in spot and futures prices;
→ Low inventory: smaller inventory responses to shocks imply larger changes in spot prices than in futures prices

Chaton, Creti, and Villeneuve (2006)
→ Modeling the impact of policies on prices and quantities consumed or stored (including demand and supply shocks), taking into account seasonality of natural gas markets
Agenda

1. The Issue
2. (Natural Gas) Storage – Theory and Literature
3. Case Study: Competitive vs. Strategic Behavior
4. Conclusion
Depleted Gas Field – Storage in Europe

<table>
<thead>
<tr>
<th></th>
<th>Dötlingen</th>
<th>Rough</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner</td>
<td>BEB</td>
<td>Centrica</td>
</tr>
<tr>
<td>Max. working capacity in GWh</td>
<td>8.847 (17.899)</td>
<td>17.735 (29.638)</td>
</tr>
<tr>
<td>Max. injection rate in GWh/day</td>
<td>109 (217)</td>
<td>678 (445)</td>
</tr>
<tr>
<td>Max withdrawal in GWh/day</td>
<td>135 (855)</td>
<td>496 (445)</td>
</tr>
<tr>
<td>Available data</td>
<td>Daily aggregated injections and withdrawals</td>
<td>Daily closing stock levels</td>
</tr>
</tbody>
</table>

Note: Numbers in brackets provide technical maxima
The Model

Determine optimal storage strategy \(X_t \) with \(t = (1, \ldots, T) \) (injection if \(X_t < 0 \) and withdrawal if \(X_t > 0 \))

\[
\max_x (\Pi) = \max_x \left(\sum_{t=1}^{T} (X_t P_t) \right)
\]

s.t. \(WR_{\text{max}} \leq X_t \leq IR_{\text{max}}, \forall t \)

\(0 \leq \sum_{t=0}^{k} X_t \leq \text{CAP}, \forall k \)

\(X_0 = S_0 \quad \sum_{t=0}^{T} X_t = S_T \)

\(WR_{\text{max}} \): maximum withdrawal rate

\(IR_{\text{max}} \): maximum injection rate

\(\text{CAP} \): maximum storage capacity

\(S_0 \): initial storage level

\(S_T \): final observed storage level
Results (1): With observed restrictions

Rough (UK)

Dötlingen (GER)

Real Profit: 157,680
Max Profit: 272,759

Real Profit: 592,686
Max Profit: 1,519,544

Real Profit: 786,259
Estimated Profit: 1,155,198
Results (2): With given technical restrictions

Rough (UK)

Dötlingen (GER)

Real Profit: 592,686
Estimated Profit: 1,360,104

Real Profit: 157,680
Estimated Profit: 347,008
Agenda

1. The Issue
2. (Natural Gas) Storage – Theory and Literature
3. Case Study: Competitive vs. Strategic Behavior
4. Conclusion
Conclusions

- Natural gas storage in Europe in need for harmonization and transparency

- Arbitraging potential should favor the emergence of commercial storage operators

- Storage facilities are used differently in European countries

- Observed storage usage for Rough (UK) and Dötlingen (GER) largely deviates from ex-post optimal strategy

- Storage activities are not purely carried out on a merchant basis
Selected References

