Redesigning the balancing power market in Germany – a critical assessment

Christian Growitsch
Margarethe Rammerstorfer
Christoph Weber

Enerday 2008
Agenda

- Introduction
- Market Redesign
- Hypotheses
- Descriptive Statistics
- Structural Break Analysis
 - Event dummy
 - Breakpoint Test
- Market Integration
- Conclusion
Introduction

- TSOs main task is the maintenance of balance between supply and demand.

- Balancing management requires an efficient and appropriately designed balancing power market.

Market redesign in Germany

- In August 2006 a common tendering procedure was established.

- Since 1st December 2006 the TSOs operate a joint tendering procedure for tertiary reserves, based on a common platform.

Research issues:

- Analysis of redesign (structural change) on prices and volatility.

- Analysis of market efficiency before and after the structural change.
Market Redesign

- Major aims:
 - Facilitate market entry
 - Decrease price level

- Changes and key elements:
 - Reduction of minimum quantity
 - Increase of market transparency and supply:
 joint internet platform, common auction for minutes reserve
 - “Pay-as-bid” auction
 - Selection of suppliers by merit order of demand rate (kw)
 - Auction timing: bids submitted before opening of spot market
Hypotheses

• Reduction of minimum quantity and market transparency increase via common auction should facilitate competition.

Hypothesis I:

- Average prices decrease
- Price volatility increases

• Competition increases market efficiency. Efficient markets do not offer sustainable arbitrage potentials.

Hypothesis II:

- Balancing reserve prices and spot market prices become increasingly interdependent.
Descriptive Statistics

- Data: Daily spot prices for positive and negative minutes reserves for the timeperiod 01/01/06 to 08/13/07.
Descriptive Statistics

- Observable differences in prices and price volatility for pre- and post-market redesign periods.
Structural Break Analysis (I)

• Test for structural changes due to a certain event.

• Two different methods:
 - Eventdummy as additional explanatory variable in time series’ regression equation.
 - Chow Breakpoint test (Chow 1960).
Results - Event dummy with exponential decay

Dependent Variable: Positive minutes reserve (log)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAK_DUMMY</td>
<td>1.160674</td>
<td>0.182373</td>
<td>6.364279</td>
<td>0.0000</td>
</tr>
<tr>
<td>C</td>
<td>4.075091</td>
<td>0.549625</td>
<td>7.414311</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.982494</td>
<td>0.009703</td>
<td>101.2567</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.956423</td>
<td>Mean dependent var</td>
<td>4.819222</td>
<td></td>
</tr>
</tbody>
</table>

Dependent Variable: Negative minutes reserve (log)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BREAK_DUMMY</td>
<td>0.205638</td>
<td>0.110571</td>
<td>1.859785</td>
<td>0.0636</td>
</tr>
<tr>
<td>C</td>
<td>4.190208</td>
<td>0.165087</td>
<td>25.38178</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.962829</td>
<td>0.014378</td>
<td>66.96651</td>
<td>0.0000</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.915032</td>
<td>Mean dependent var</td>
<td>4.320332</td>
<td></td>
</tr>
</tbody>
</table>
Results – Breakpoint test

Positive minute reserves

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Probability</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>0.278786</td>
<td></td>
<td>0.756848</td>
</tr>
<tr>
<td>Log likelihood ratio</td>
<td>0.562729</td>
<td></td>
<td>0.754753</td>
</tr>
</tbody>
</table>

Negative minute reserves

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Probability</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>0.307770</td>
<td></td>
<td>0.735258</td>
</tr>
<tr>
<td>Log likelihood ratio</td>
<td>0.621188</td>
<td></td>
<td>0.733011</td>
</tr>
</tbody>
</table>

Chow Breakpoint test rejects the existence of a structural break for positive as well as negative minutes reserves prices.
Market Integration (I)

- An efficient market is characterized by its degree of integration to adjacent markets.
- For balancing power in Germany, the electricity spot market (EEX) represents such a market.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_P_PEAK</td>
<td>0.185708</td>
<td>0.025602</td>
<td>7.253550</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG_P_PEAK(-1)</td>
<td>0.157339</td>
<td>0.025616</td>
<td>6.142249</td>
<td>0.0000</td>
</tr>
<tr>
<td>C</td>
<td>3.431976</td>
<td>0.421189</td>
<td>8.148311</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.976891</td>
<td>0.010754</td>
<td>90.83851</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Dependent Variable: Positive minutes reserve (log), entire time series
Method: Least Squares
R-squared: 0.958702
Mean dependent var: 4.818876
Market Integration (II)

Positive minutes reserve (log)

- LOG_PHELIX PEAK
- LOG_PHELIX

Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste
Market Integration (III)

• EEX prices have an impact on positive and negative minutes reserve prices

• Arising question: Does the interdependence between spot market and tertiary control market change due to the establishment of a new tendering procedure?

• The explanatory power of the model increases from 95 % before to 98 % after the structural change → the introduction of the new auction design increased the dependence between positive minutes reserve and spot market.
Market Integration (IV)

Before market redesign

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_P_PEAK</td>
<td>0.239304</td>
<td>0.040036</td>
<td>5.977245</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG_P_PEAK(-1)</td>
<td>0.188745</td>
<td>0.040053</td>
<td>4.712361</td>
<td>0.0000</td>
</tr>
<tr>
<td>C</td>
<td>3.573333</td>
<td>1.253137</td>
<td>2.851511</td>
<td>0.0047</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.985296</td>
<td>0.017357</td>
<td>56.76639</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.947488

After market redesign

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG_P_PEAK</td>
<td>0.115812</td>
<td>0.026560</td>
<td>4.360406</td>
<td>0.0000</td>
</tr>
<tr>
<td>LOG_P_PEAK(-1)</td>
<td>0.124819</td>
<td>0.026550</td>
<td>4.701194</td>
<td>0.0000</td>
</tr>
<tr>
<td>C</td>
<td>3.557670</td>
<td>0.515199</td>
<td>6.905428</td>
<td>0.0000</td>
</tr>
<tr>
<td>AR(1)</td>
<td>0.975701</td>
<td>0.012082</td>
<td>80.75745</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

R-squared: 0.977184
Conclusions

• On December 1 2006, the market design of the German reserve power markets has changed.

• The new auction design implies a reduction of the minimum quantity bids and common auction platform.

• Analysis focused on the impact of the new auction design on prices and price volatility of the German market for tertiary reserves.

• Structural Break analysis shows that there is no persistent increase in prices or price volatility.

• The dependence between prices for positive minutes reserve and spot prices increased after the establishment of the new market design.
WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH
Postfach 2000
53588 Bad Honnef
Deutschland
Tel +49 (0) 2224-9225-0
Fax +49 (0) 2224-9225-68
eMail info@wik.org
www.wik.org