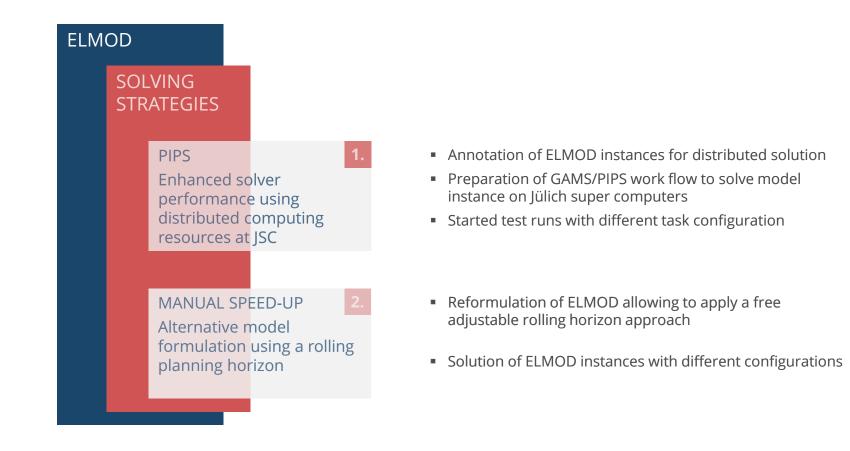


Hannes Hobbie, David Schönheit


Aachen, 24. Mai 2019

ELMOD is prepared to be solved with PIPS and applying a rolling horizon approach

ELMOD is a nodal pricing market model for the entire TECHNISCHE UNIVERSITÄT **European Union** DRESDEN

DE detailed ~ 588 nodes **CWE** detailed ~ 1,268 nodes EU detailed > 3294 nodes Voltage levels: 150kV to 750 kV plus HVDC

Dynamic adjustment of model scope

Exemplary model applications

AVERS: Security of Supply in South-Germany

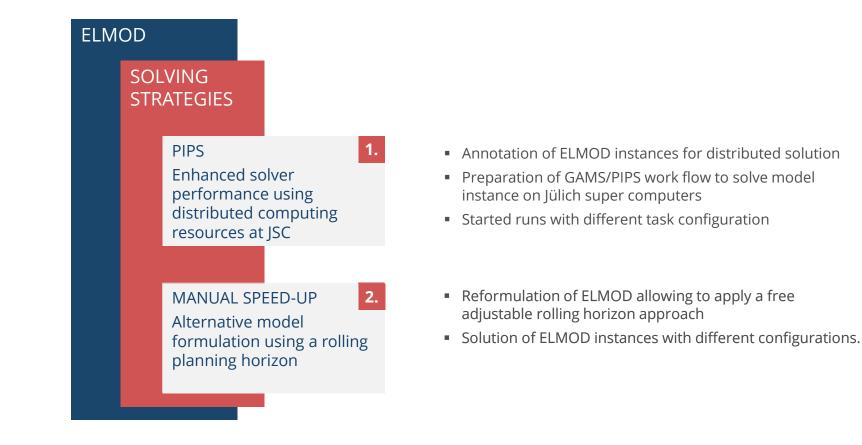
- Analysis of different market zone configurations
- Clustering of market zones based on н. nodal price information
- Implications for security of supply and necessary congestion management measures

ANALYSE SUDDEUTSCHLAND

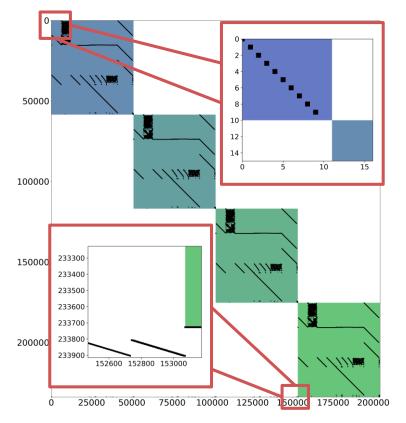
LKD-EU: Uncertainties in generation and transmission

- Congestion management under uncertainty in RES generation
- Stochastic approaches for the unit commitment problem
- Intersectoral strategies for dealing н. with uncertainty

langfristige Planung und kurzfristige Optimierung des Elektrizitätssystems in Deutschland im europäischen Kontext



ELMOD is prepared to be solved with PIPS and applying a rolling horizon approach



Annotation applied using time as dimension: Illustration on an exemplary model instance 4_10

Plot of Jacobian matrix

^{• &}lt;u>4</u> blocks with <u>10</u> hours each

- Parallel processes (Stage 2-5):
 - Var./Eq.: generation, stored energy, line flows, curtailment, voltage angles, dump demand/generation
- <u>Stage 1</u>:
 - Var.: sum gen. reservoir, total costs
 - Eq.: restrictions on reservoir generation
- Stage 6:
- Weak-linking eq.: Ramping up, ramping down, PSP storage level
- Strong-linking eq.: total costs, sum generation reservoir

24. Mai 2019

Grid representation and model statistics of test instances

DE instance

Grid representation

DE: detailed

neighbor: aggreg. nodes

Model statistics

nz: 142.94 x 1e⁶

eq: 51.11 x 1e⁶

v: 44.59 x 1e⁶

Size JC: 4.52 GB

CWE instance

Grid representation

CWE: detailed

Model statistics

nz: 272.19 x 1e⁶

eq: 98.65 x 1e⁶

Size JC: 8.73 GB

v:

85.65 x 1e⁶

neighbor: aggreg. nodes

EU instance

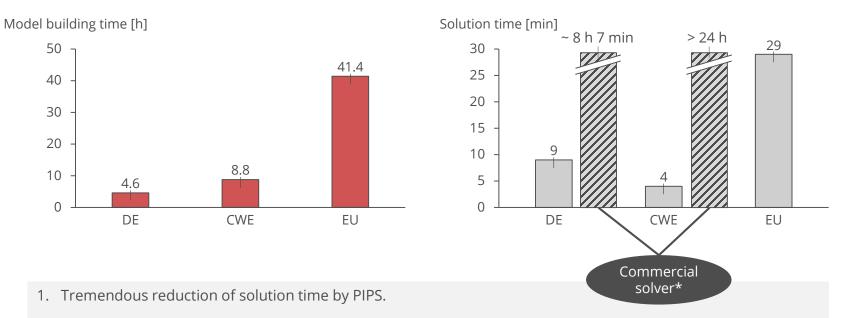
Grid representation

EU: detailed (almost) neighbor: aggreg. nodes

		Мос	le
		# nz:	
		# eq:	
		# v:	
		Size l	C:

Model statistics

nz: 712.45 x 1e⁶
eq: 254.30 x 1e⁶
v: 224.67 x 1e⁶
Size JC: 22.43 GB


Statistics taken from 8760 hour model scope configuration

Going large: Model building time turns out to be the bottle neck WNIVERSITÄT DRESDEN Going large: Model building time turns out to be the bottle neck

Model building time [hours] and solution time [min] consumed by PIPS for different grid configurations

GAMS/HPC WORKFLOW

PIPS

2. Time consumption for model building reaches limits. Noteworthy, that is partly in responsibility of the modeler and can be affected by the way of model formulation. We are working on it together with GAMS.

*Among others, CPLEX Barrier using up to 8 threads was tested and provided best results.

ВЕАМ-МЕ

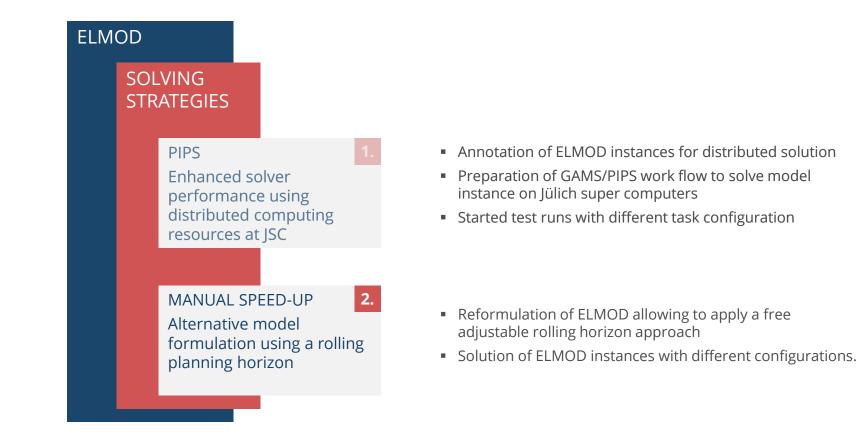
Time consumption for Jacobian creation and handling of extremely large file sizes challenging.

2. PIPS

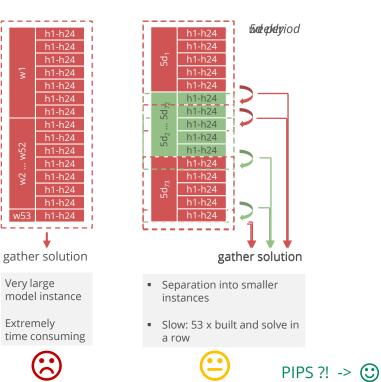
Tremendous time reduction for model solution. Promising insight for large scale applications of nodal pricing models.

3. END USER

Annotation and workflow implementation take some efforts, but end user suitability proved. Several test runs currently ongoing...


[Thanks to Daniel, Thomas and Fred for the excellent and immediate support when needed!]

ELMOD is prepared to be solved with PIPS and applying a rolling horizon approach



TECHNISCHE
UNIVERSITÄT
DRESDENELMOD can be solved using a simultaneous solve and rolling
horizon approach using dynamic configurations

Simplified illustration of rolling planning strategy

SIMULTANEOUS

ROLLING PLANNING

IMPLEMENTED HEURISTIC FOR ROLLING PLANNING

1. First instance is solved for one planning horizon plus 24 hours overlap to the next period

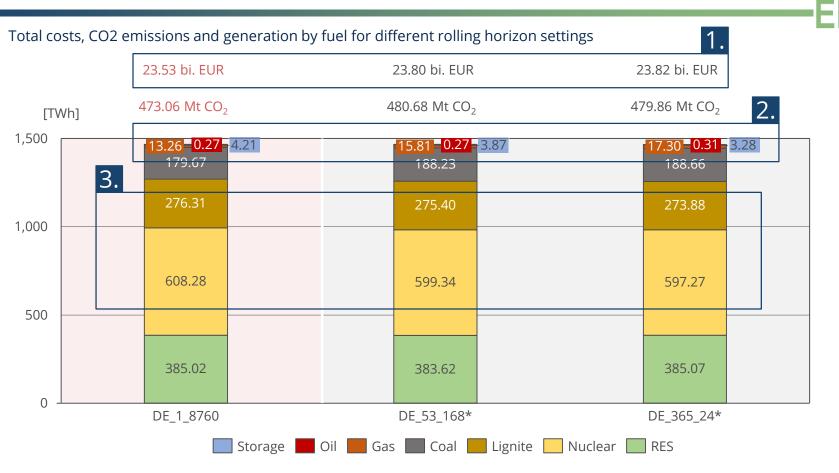
This ensures a natural short term storage behavior.

2. Retrieve and store model results from the current planning horizon

Make sure the objective value sums up only over the period's time steps without the overlap when saving the results!

3. Set start values for the next horizon using the level values of the last time step in the prior period

How does horizon length impact power plant dispatch?


 REGIONAL SCOPE: DE detailed, aggregated neighbors

TECHNISCHE

UNIVERSITÄT DRESDEN

Rolling horizon leads to higher overall costs and the dispatch of TECHNISCHE UNIVERSITÄT more flexible technologies

24 h overlap at rolling horizon runs.

DRESDEN

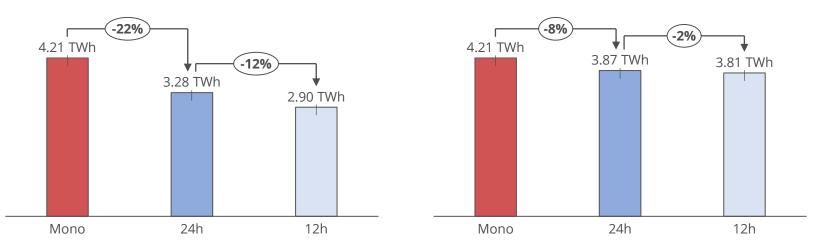
веам-ме

24h compared against 12h overlap period for DE instance

	RUN	JOB NAME	PERIODS	HORIZON	OVERLAP
Rolling Horizon	#1	DE_365_24	365	24 h	24 h
ROL HOR	#2	DE_365_24	365	24 h	12 h

LLING RIZON	#3	DE_53_168	53	168 h	24 h
ROL HOR	#4	DE_53_168	53	168h	12 h

RESDEN

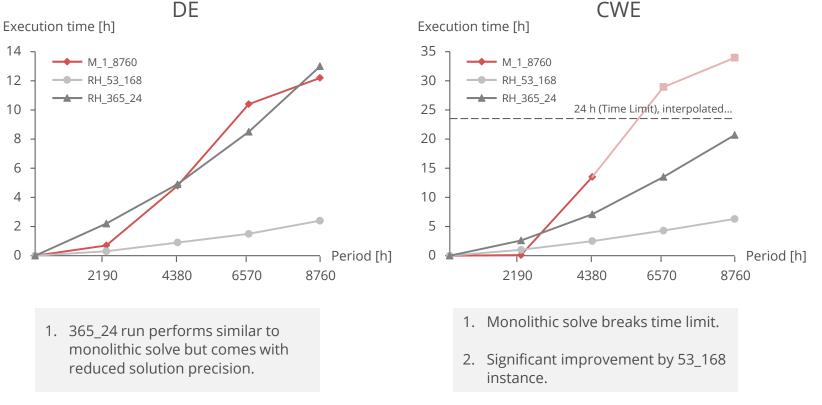

TECHNISCHE
UNIVERSITAT12h overlap period reduces storage operation significantly in
daily rolling horizon runs

Storage utilisation for daily and weekly rolling horizon of DE instance

DE_365_24

- 1. Reduction of overlap period to 12 hours significantly impacts storage operation.
- 2. Due to the higher number of adjacent planning horizons, limited foresight take effect strongest at the 365_24 instance.
- 3. Lower number of planning horizons reduces the deviations related to limited foresight.

Monolithic solve and different rolling horizon configurations compared for ¼, ½, ¾ and total year model scope


	RUN	JOB NAME	PERIODS	HORIZON
MO. LITHIC	#1	DE_X_1	2190, 4380, 6570, 8760	entire period
ROLLING HORIZON	#2	DE_X_24	91, 182, 273, 365	24 h
ROL	#3	DE_X_168	13, 26, 39, 53	168h

MO. LITHIC	#4	CWE_X_1	2190, 4380, 6570, 8760	entire period
ROLLING HORIZON	#5	CWE_X_24	91, 182, 273, 365	24 h
ROLI HORI	#6	CWE_X_168	13, 26, 39, 53	168h

24 h overlap at rolling horizon runs.

TECHNISCHE 53_168 instances perform best in both grid configurations UNIVERSITÄT

GAMS execution time of DE and CWE instance for different model time scopes

Instances solved on JUWELS applying Barrier using 4 threads.

RESDEN

1. HORIZON LENGTH

Rolling horizon leads to higher overall costs and the dispatch of more flexible technologies.

2. HORIZON OVERLAP

Strong deviations in storage operation when using only 12 h overlap. Deviations remain at a reasonable level at 24 h overlap compared to monolithic solve.

3. MODEL TIME SCOPE

Significant performance improvement at weekly horizon runs. CWE instance have not been solved in reasonable time (<24 hours) monolithically.

Dipl. Wirtsch.-Ing. Hannes Hobbie hannes.hobbie@tu-dresden.de +49 351 463 39894

M. Sc. David Schönheit david.schoenheit@tu-dresden.de +49 351 463 39766

