

Faculty of Business and Economics, Chair of Energy Economics, Prof. Dr. Möst

The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany's Day-Ahead Wind Energy Forecasts

Presentation at the 16th IAEE European Conference, Ljubljana 2019 Session 1E: Renewables I – Wind August 26, 2019

David Schönheit, Dominik Möst

1. Motivation

Why do we care about the effects of offshore wind capacity expansion?

- 2. Data description
- 3. Descriptive analysis of wind speed forecast errors

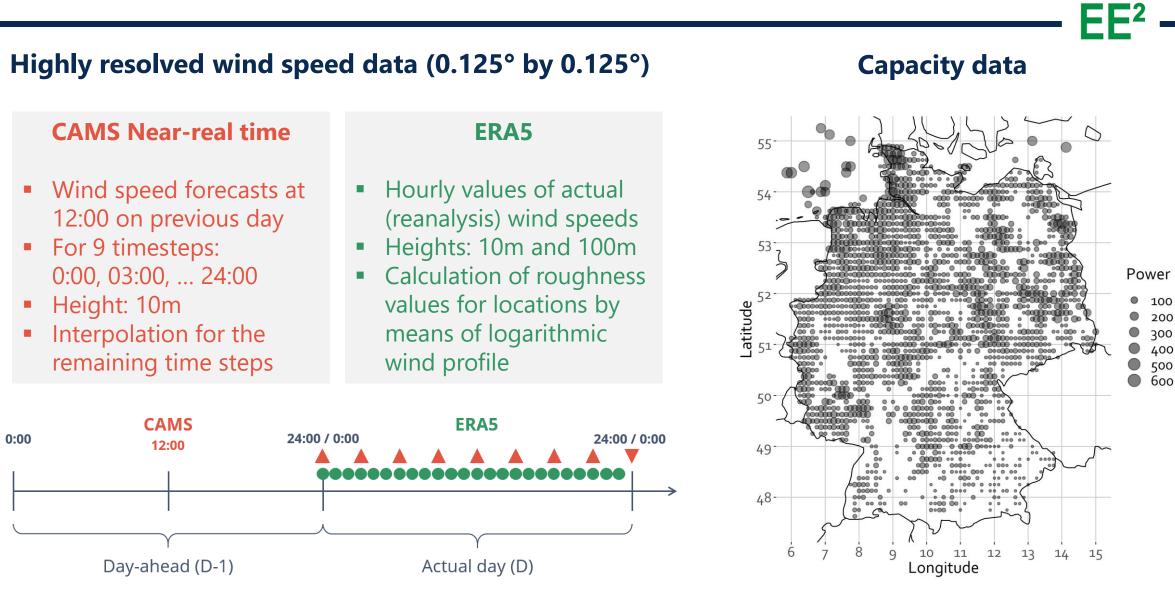
Are offshore and onshore locations exposed to different wind speed forecast errors?

4. Model-based evaluation of the effect of offshore capacity expansion

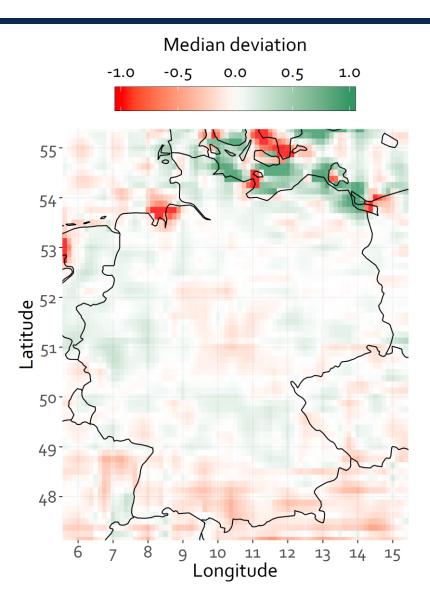
What are the effects of offshore wind capacity expansion on day-ahead wind energy uncertainties?

EE²

Background

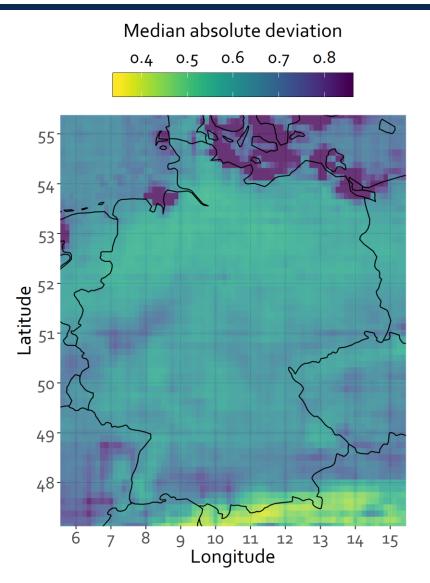

- Growing shares of wind energy capacities, not only in Germany but across Europe
- Substantial offshore wind energy capacities added since 2013
- Wind speed prediction errors affect day-ahead wind energy predictions, and thus day-ahead decisions (e.g. unit commitment) and energy system adjustments during all hours of the day

Offshore wind characteristics

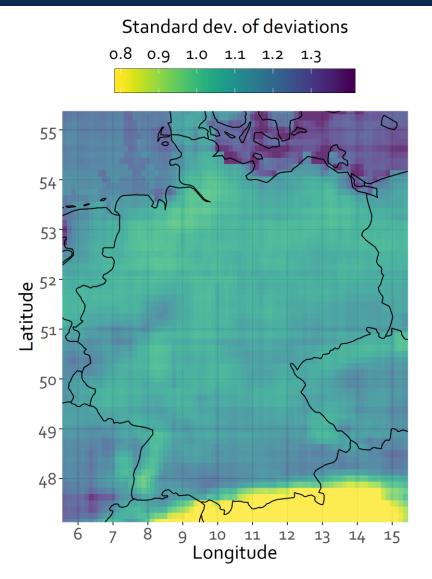

- 1. Geographically concentrated capacities → Simultaneously affected by prediction errors
- 2. Oceanic conditions and large hub heights \rightarrow Exposure to higher wind speeds
- 3. Cubic relationship $P \sim v^3 \rightarrow$ Greater effect of wind speed deviations at medium/high speeds

Does offshore wind capacity expansion lead to different day-ahead wind energy uncertainties?

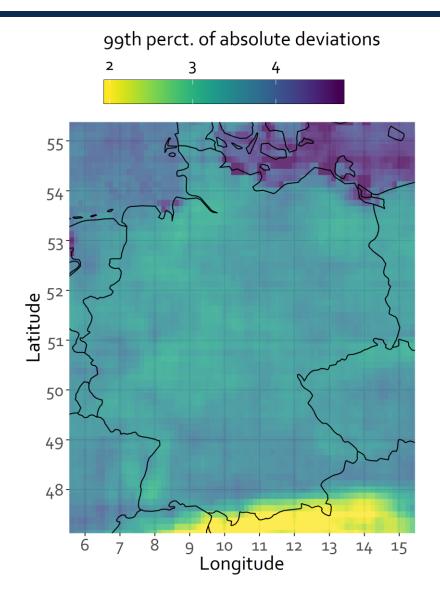
Data description: European Centre for Medium-Range Weather Forecasts (ECMWF)



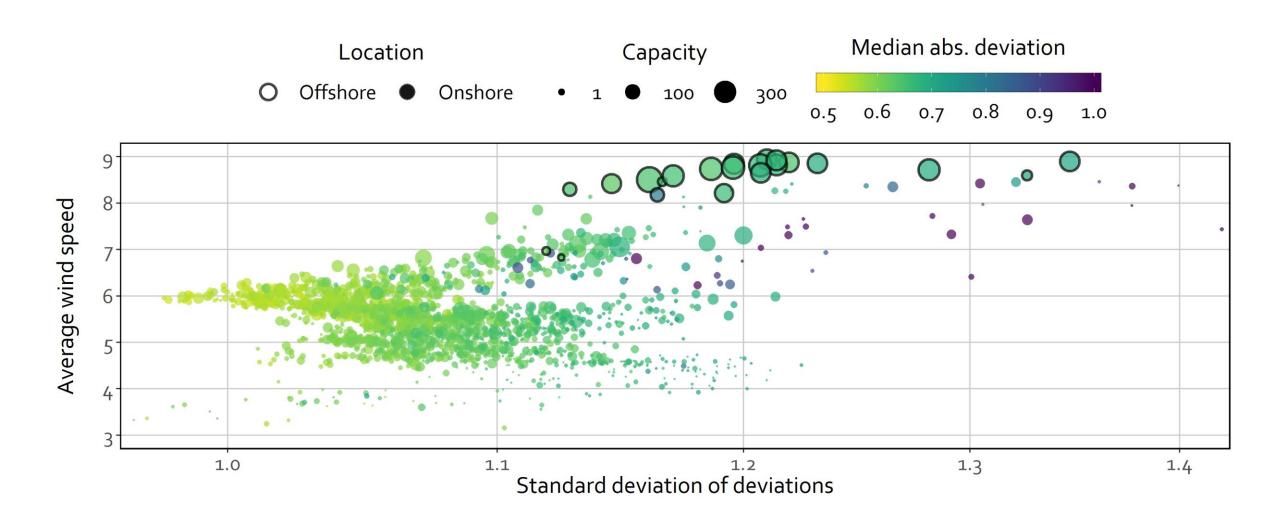
Descriptive analysis of local wind speed forecast errors (1)


(1) <u>Systematic</u> deviations only for offshore without capacities and near-shore locations

Descriptive analysis of local wind speed forecast errors (2)


- EE²
- (1) <u>Systematic</u> deviations only for offshore without capacities and near-shore locations
- (2) Slightly higher <u>average errors</u> for offshore locations with capacities and substantially higher for near-shore

Descriptive analysis of local wind speed forecast errors (3)


- EE²
- (1) <u>Systematic</u> deviations only for offshore without capacities and near-shore locations
- (2) Slightly higher <u>average errors</u> for offshore locations with capacities and substantially higher for near-shore
- (3) Higher <u>variance of deviations</u> offshore and near-shore

Descriptive analysis of local wind speed forecast errors (4)

- EE²
- (1) <u>Systematic</u> deviations only for offshore without capacities and near-shore locations
- (2) Slightly higher <u>average errors</u> for offshore locations with capacities and substantially higher for near-shore
- (3) Higher <u>variance of deviations</u> offshore and near-shore
- (4) Slightly higher <u>extreme error magnitude</u> for offshore locations with capacities and substantially higher for some near-shore locations

Offshore turbines are more concentrated, subject to higher wind speeds and greater and more variable wind speed forecast errors

Research question: How does offshore wind capacity expansion affect uncertainties in Germany's day-ahead wind energy forecasts?

Input

- Hourly (t) local wind speed time series at capacityweighted hub height of location i
- Wind energy capacities

Extremely Randomized Trees Model (Extra Trees)

- Transformation of input into aggregated wind energy, separately for
 - Forecast wind speeds
 - Actual wind speeds
- Trained using ENTSO-E data: Jan. – Sep. 2018
- Stratified sampling

Evaluation

→ Evaluation of deviations between wind energy forecasts and actual values

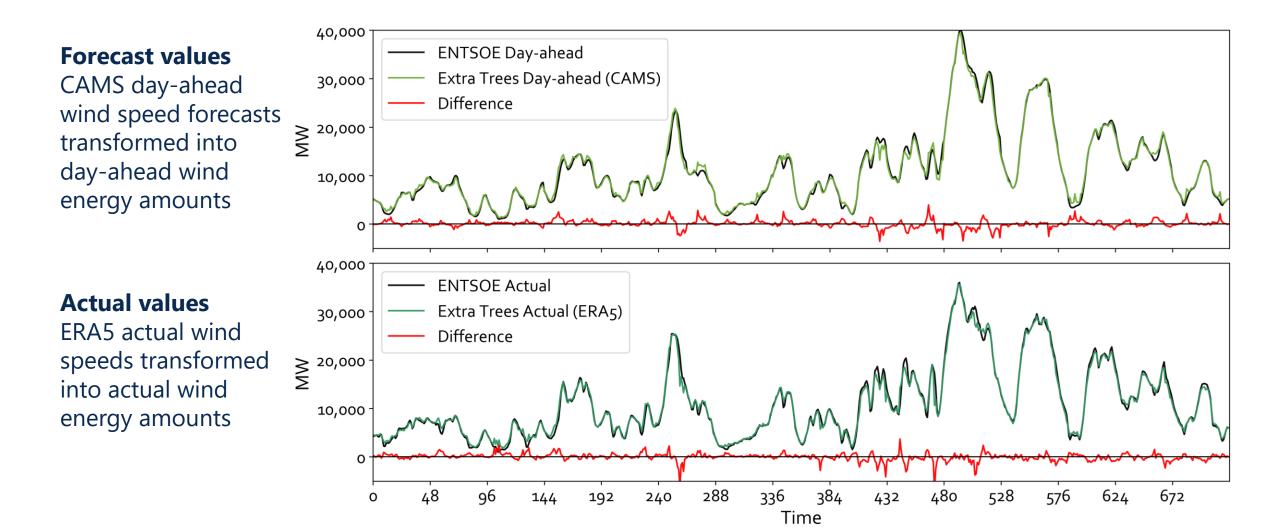
Three cases for wind capacities

- 1. Base case
- 2. Additional 5 GW offshore wind capacity
- 3. Additional 5 GW onshore wind capacity

$$P_{t} = \sum_{i} (\theta_{0,i} + \theta_{1,i} \cdot v_{i,t} + \theta_{2,i} \cdot v_{i,t}^{2}) \cdot C_{i}$$

Variables *resemble* a binomial, parametric model of power curves

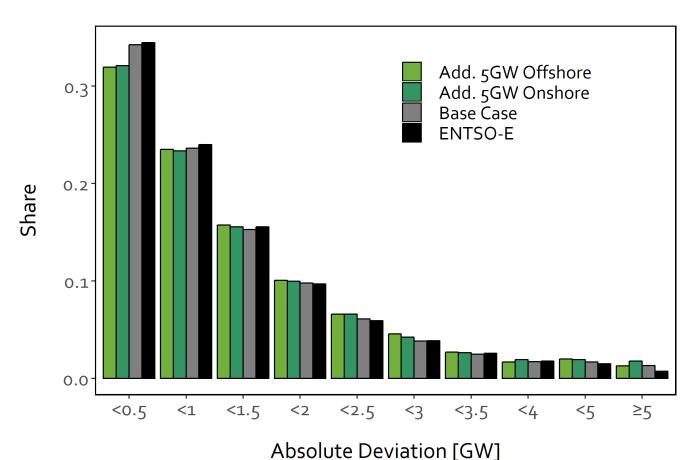
Hyperparameter configuration of Extra Trees model


Root mean squared errors (RMSEs) for test and training set (in parentheses) and duration of model training (in seconds) for different hyperparameters

Cross-	Maximum	Number of	Maximum Leaf Nodes				
Validation	Features	Estimators	100	500	1000	5000	10,000
3-fold			2459	1955	1773	1681	1667
	250	50	(2257)	(1278)	(919)	(737)	(737)
			33 s	36 s	45 s	70 s	73 s
3-fold			2441	1913	1744	1640	1641
	250	250	(2241)	(1251)	(883)	(690)	(691)
			83 s	157 s	213 s	338 s	340 s
3-fold			2347	1860	1741	1647	1618
	1000	50	(2099)	(1143)	(848)	(721)	(721)
			73 s	127 s	164 s	269 s	260 s
			2339	1806	1668	1586	1603
3-fold	1000	250	(2086)	(1116)	(811)	(674)	(675)
			313 s	620 s	805 s	1326 s	1276 s
3-fold			2306	1804	1665	1621	1633
	2500	50	(2030)	(1079)	(818)	(711)	(704)
			162 s	299 s	391 s	617 s	628 s
3-fold			2280	1775	1651	1600	1597
	2500	250	(2013)	(1056)	(779)	(669)	(668)
			762 s	$1464 \mathrm{~s}$	$1940 \mathrm{s}$	$3050 \mathrm{s}$	3119 s

Model performance

- Extra Trees model performs well for transforming wind speeds and capacities into wind energy amounts
- RMSE relative to installed capacity
 - Training set: 0.7%
 - Test set: 1.8%
- Note that these results correspond to stratified sampling; performance on consecutive out-of-sample time series could be inferior


Exemplary performance of Extra Trees Model

Offshore wind capacity expansion leads to greater day-ahead uncertainties

EE²

Results: Categorical shares of absolute wind energy forecast errors for the three analyzed cases

Conclusion

- Wind capacity expansion leads to greater absolute deviations
 - Fewer deviations < 1 GW</p>
 - More deviations 1 5 GW
- Offshore wind capacity expansion leads to more frequent deviations from 0.5 - 5 GW than onshore expansion
- Onshore wind capacity expansion leads to more frequent deviations ≥ 5 GW
 - Near-shore locations with large forecast errors
 - Simultaneous over- or underestimations of many onshore locations (higher spatial correlation)

Open access publication addressing the research question

EE²

energies	MDPI	
Article The Effect of Offshore Wind Cat Uncertainties in Germany's Day Energy Forecasts David Schönheit * and Dominik Möst David Schönheit and Dominik Dominik Möst Dav	y-Ahead Wind iness Management, Chair of Energy Economics, 351-463-39766 aly 2019 which is a straight of the straight of t	Schönheit, Möst: The Effect of Offshore Wind Capacity Expansion on Uncertainties in Germany's Day-Ahead Wind Energy Forecasts Energies 2019, 12(13), 2534 <u>https://doi.org/10.3390/en12132534</u>
 Introduction Germany has seen rising onshore wind capacities in capacity of around 56 GW at the end of 2018. At the sa were installed, with substantial capacities starting to be substantial contributions to the renewable energy gener 	ime, ca. 5.6 GW of offshore wind parks added in 2013. These large capacities make	

Energies 2019, 12, 2534; doi:10.3390/en12132534

are supposed to be completed or fully commissioned in 2019, e.g., Arkona (385 MW, commissioned in April), Borkum Riffgrund II (450 MW, commercial commissioning completed in June), Deutsche Bucht (269 MW), Hohe See (497 MW), Merkur (396 MW, already partly commissioned) and Trianel Borkum II (200 MW). Until 2025, the total offshore wind capacity in Germany will reach almost 12 GW. The capacities are obtained from a self-compiled dataset, with information on planned offshore power plants [1–18]. Wind energy forecasts are subjected to uncertainties due to errors in wind speed predictions. Wind energy is characterized by variability and limited predictability. Additionally, it affects the power system at all hours of the day and does not necessarily coincide with load. This affects day-ahead decisions

www.mdpi.com/journal/energies

IAEE 2019, Ljubljana

Faculty of Business and Economics, Chair of Energy Economics, Prof. Dr. Möst

Thank you for your attention! Questions?

David Schönheit

+49 (0)351 463 39766 david.schoenheit@tu-dresden.de

