

Christoph Zöphel

Optimal Investments in Flexibility Options – An Analysis of Interactions and Sensitivities

Chair of Energy Economics, TU Dresden

Enerday - Dresden, 27th of April 2018

Effects of Renwable Energy Sources (RES) Extension

Theoretical Applications for Flexibility Options

Smoothing of the residual load

Influence of the PV-Wind-Mix on the Need for Flexibility Development of RES-extension scenarios based on RES-p

- **Flexibility** Development of RES-extension scenarios based on RES-potentials in 17 countries
- In total 80% share of PV- and Wind generation on electricity demand

Installed Capacities in the Countries

Research Questions

Forschungsfragen

Which influence has the need for flexibility at a high share of RES on the optimal combination of flexibility options?

Which effect does the PV-Wind- Mix have?

Using and extending ELTRAMOD

	Input	Linear Optimization	Output
 Hourly RES gen countrie Conven Export/ (NTC) for exchanged 	profiles for load and heration for 17 es tional power plants import capacities or transnational ge	Objective: cost- minimizing investment and dispatch of flexibility options	 Installed capacities Generation and use of electricity System costs Emissions
 In total includir plants, -to-Hea Technic charact number duration investm and -do 	21 flexibility options og storages, RES power DSM processes, Power at al and economical eristics: efficiencies, r of activations, shifting ns, fuel costs, ent costs, ramp-up own costs,	 Additional restrictions for observed flexibility options Endogenous investment decision Greenfield approach 	 Optimal combinations of flexibility options Synergies and competition of technologies Interaction between need for flexibility and flexibility provision

Model Extensions

Installed capacities and Meeting of the Residual Load

Example: Netherlands

Sensitivities of Investment Costs on Total Installed Capacities – Example: Storage

Summary

- PV-Wind-Mix effects optimal combinations of flexibility options regarding the optimal investments and dispatch
- Availability and Simultaneity of RES generation have high influence on flexibility mix
- Technologies to shift energy regionally and temporarily play a major role in the flexibility provision
- When investment costs are increased/decreased these effects increase/decrease optimal investments in flexibility options

Thank You for Your Attention

Christoph Zöphel Christoph.zoephel@tu-dresden.de

Some Interactions between need for flexibility and flexibility provision

	Application	Factors influencing the	Value of flexibility
Power Plant S	 Dispatchable electricity generation 	 flexibility need Availability of fluctuating RES 	• Increasing with higher
NTC	 Regional Shifting of Energy 	 Simultaneity of RES generation 	 PV share Increasing with higher
Storages	 Temporal Shifting of Energy 	 Simultaneity of RES generation 	 PV share Decreasing with higher
Power- to-x	• Increase Load	 RES surplus peaks 	 PV share Increasing with higher DV share
			FV SHALE

Full Load Hours in the Observed Region

Cost Assumptions

	Flexibility Option	Specific investments [kEUR/MW] [1] [2] [3]	Fuel Costs [EUR/MWh] ^{[4] [5] [6]}
REF	OCGT	400	33,7
	CCGT	800	33,7
	Coal	1.300	10,4
	Lignite	1.500	1,5
	CCGT_chp	1.000	33,7
	Coal_chp	2.030	10,4
	Lignite_chp	2.350	1,5
	Reservoir		
	RoR		
	PSP		
DRES	Biomasse	1.951	35,0
	Geo	2.740	
	Geo_chp	2.740	
	CSP	1.520	
ΡΤΧ	Boiler	140	
	Wärmepumpe	1.100	
	PtG	530	
SHIFT	DSM	0 - 250	
	NTC	400 [EUR/MW/km]	
	HOU	300	
	DAY	640	
	SEA	900	

