Shifting intraday electricity usage through time-of-use tariffs

Martin Péclat & Sylvain Weber

University of Neuchâtel (Switzerland) Institute of Economic Research

ENERDAY 2018 Dresden, April 27, 2018

Motivation

Average solar radiation per hour in CDF/DEM/FAH in 2013-2016. Data source: *MeteoSwiss*. Average electricity used per hour by 498 HH in 2013-2016. Data source: *La Goule*.

Martin Péclat

Related literature and potential solutions

Engineering

- Large literature, see review by KONDZIELLA & BRUCKNER, *RSER* 2016)
- Solutions investigated: grid expansion and storage (supply-side)
- Economics
 - Focus on electricity conservation and peak reduction (demand-side)
 - Recent evidence based on high-frequency meter data: BARTUSCH ET AL. (*EP* 2011), DEGEN ET AL. (*SFOE report* 2013), DI COSMO ET AL. (*EJ* 2014), JESSOE & RAPSON (*AER* 2014), ITO ET AL. (*NBER* 2015)

Our objective: load shifting

Average solar radiation per hour in CDF/DEM/FAH in 2013-2016. Data source: *MeteoSwiss*. Average electricity used per hour by 498 HH in 2013-2016. Data source: *La Goule*.

Martin Péclat

The experiment

- Collaboration with a utility active in northern Switzerland (Jura/Bern) with 8,000 customers
 - Meters record electricity usage in 15- or 60-minute intervals since 2013
- Eligible households:
 - Flat electricity tariff, no PV, primary residence
- Participants:
 - Answered preexperiment survey
 - Randomly selected
- Random allocation:
 - Control
 - Treatment 1
 - Treatment 2

Treatment 1

With respect to standard tariff, rate is decreased between 11am-3pm and increased for other hours

Treatment 2

At 5pm every day, a text message (SMS) indicates the timing of low/high rates for the following day (based on weather forecast)

Waves and number of households

Note: size of line proportional to number of households in each wave-group.

Difference-in-differences estimations

Estimated equation for Treatment 1:

$$\ln(kwh_{iht}) = \sum_{h=1}^{24} \beta_h T_{ght} + \delta_t + \alpha_g + \lambda_h + \varepsilon_{iht}$$
(1)

Estimated equation for Treatment 2:

$$\ln(kwh_{iht}) = \sum_{h=1}^{24} \beta_h T H_{ght} + \sum_{h=11}^{19} \beta_{gh} T L_{ght} + \delta_t + \alpha_g + \lambda_h + \varepsilon_{iht}$$
(2)

- *kwh_{iht}*: electricity usage by household *i* in hour *h* of day *t*
- ▶ T_{ht} : 1 if household $i \in$ treatment group g, day $t \in$ treatment period, and hour is h
- ▶ TH_{ht} : 1 if household $i \in$ treatment group g, day $t \in$ treatment period, and hour h is a high tariff hour
- ▶ TL_{ht} : 1 if household $i \in$ treatment group g, day $t \in$ treatment period, and hour h is a low tariff hour
- δ_t: time fixed effect
- α_g : group fixed effects
- λ_h: hour fixed effect

(Very) preliminary results: Treatment 1 (11am-3pm)

(Very) preliminary results: Treatment 2 (sunny hours)

Conclusion

- To be continued...
- This experiment constitutes one step forward...
 - to investigate whether/how households adapt to time-of-use tariffs
 - to explore potential solution to temporal mismatch between electricity consumption and solar production
- ... but another step is to make the alternative tariff binding for the customers
 - Under discussion

Thank you for your attention