Techno-Economic Analysis of Flexible Heat Pump Controls

ENERDAY Dresden – 12th Conference on Energy Economics and Technology

April 27, 2018

Presenter: Lars Nolting, RWTH Aachen University

FCN | Future Energy Consumer Needs and Behaviour

Outline: Techno-Economic Analysis of Flexible Heat Pump Controls

- 1. Introduction & Motivation
 - Need for Flexibility
 - Possibilities to Mitigate the Flexibility Gap
- 2. Literatur Review
- 3. Research Questions
- 4. Methodology
- 5. Main Results
- 6. Conclusion & Outlook
- 7. Regarding Publications and References

Picture source: Viessmann

Lars Nolting, M.Sc.

2

→ Necessity of grid services causing costs of ~2 billion € in 2015/16 (BNetzA, 2017)

Lars Nolting, M.Sc.

3

Introduction & Motivation

Possibilities to Mitigate the Flexibility Gap

→ Space heating accounts for 30% of Germany's final energy consumption (AGEB, 2017)
→ Heat pumps can be claimed a very promising coupling-technology (Fischer and Madini, 2017)

Lars Nolting, M.Sc.

4

Applied Control Methods:

- Model Predictive Control (MPC)
- Optimal Controls using MILP Formulations
- Maximization of Self-Consumption (On-Site PV/Wind)
- Rule-Based Algorithms

Comparison of Findings:

- Effects on Energy Efficiency:
 - Broad band of -75% to +15%
- Effects on Operating Costs:
 - Not always analysed, however possible cost savings of up to 35% are reported
- → Broad variety of findings, need for techno-economic analysis of easily applicable control methods

Lars Nolting, M.Sc.

Are currently applicable HP control methods that provide flexibility profitable from an efficiency and cost perspective?

Further: Does the ecological and economic profitability change for a more advanced HP control method for flexibility provision in the year 2030?

 Lars Nolting, M.Sc.
Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Methodology

Model Scheme

 \rightarrow Flexibility can be provided by varying the buffer storage's set temperature

* A validated model of a Viessmann Vitocal 350-G type BW 351.A07 was used. Necessary data was collected in field measurements of a real HP unit.

** A validated model of a Viessmann Vitocell 100-E Typ SVW was used.

Lars Nolting, M.Sc.

7 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Analysed Controls for the Provision of Flexibility

1. Time of Use (TOU) Control

- Differentiation between high tariffs (HT) and low tariffs (LT)
- Preheating of buffer storage to 45°C before HT starts
- Usage of current market structures and tariffs (Neckermann Strom GmbH, 2016; FairEnergie GmbH, 2016)

2. Day-Ahead Price Based Control

- Variation of buffer storage's set temperature according to day-ahead prices
- Usage of spot market data for the heating season 2014/15 (EPEX Spot, 2016)
- Leveraging to domestic price level

3. Residual load based control

- Variation of buffer storage's set temperature according to residual load
- Analysis of six different scenarios for residual load curves in 2030 based on Trieb (2006)

Lars Nolting, M.Sc.

Time of Use Control

\rightarrow TOU based control is able to shift load to low tariff times

Lars Nolting, M.Sc.

9 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Methodology

Day-Ahead Price Based Control

\rightarrow Day-ahead price based control is able to shift load to times with low prices

Lars Nolting, M.Sc.

10 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Residual Load Based Control

\rightarrow The residual load based control shifts the storage tank's set temperature

Lars Nolting, M.Sc.

LNolting@eonerc.rwth-aachen.de

11

April 27, 2018 Junior Professorship for Energy Resource and Innovation Economics **E.ON Energy Research Cente**

→ TOU based control is able to reduce HT electricity consumption by up to 16%

April 27, 2018

Lars Nolting, M.Sc.

12 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

E.ON Energy Research Center

Time of Use Control

→ However, efficiency losses of up to 13% are to be expected leading to cost increases of 40 € per heating season

Lars Nolting, M.Sc.

13 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Day-Ahead Price Based Control

→ Even more drastic results for day-ahead price based control: Efficiency losses of up to 92% and cost increases of up to 90 € per heating season

Lars Nolting, M.Sc.

14 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Residual Load Based Control

→ Definition of energetic best and worst case scenarios

→ Conflict between best case scenarios from an energy efficiency perspective and possible cost reductions

Lars Nolting, M.Sc.

15 Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Conclusion

1. Time of Use (TOU) Control

- Easily applicable control methods can shift electricity consumption and provide flexibility
- However, efficiency losses and cost increases occur

2. Day-Ahead Price Based Control

- Easily applicable, rule-based control methods can make heat pumps follow price signals
- However, high efficiency losses prevent financial gains

3. Residual load based control

- Easily applicable, rule-based control methods can make heat pumps follow residual load signals
- Very high efficiency losses of up to 70 % were revealed
- A tension between ecological and economic consequences arises, as scenarios with high efficiency losses go along with potential cost savings

Outlook

- Comparison of efficiency gains on system level with losses on unit level
- Derivation of willingness to pay for flexibility
- Identification of business cases for heat pump owners that provide flexibility

Picture source: ndw-ka.de

Lars Nolting, M.Sc. Junior Professorship for Energy Resource and Innovation Economics LNolting@eonerc.rwth-aachen.de

Regarding Publications

1. Heat Pump Controls

Lars Nolting, Aaron Praktiknjo, 2018. Techno-Economic Analysis of Flexible Heat Pump Controls. *Proceedings of the 41st IAEE International Conference at Groningen,* accepted paper.

2. Heat Pump Labels

Lars Nolting, Simone Steiger, Aaron Praktiknjo, 2018. Assessing the validity of European labels for energy efficiency of heat pumps. *Journal of Building Engineering,* in press, corrected proof. DOI: https://doi.org/10.1016/j.jobe.2018.02.013 (Open Access)

References

AGEB, 2017. Energy Balance 2000 to 2015. Available at: https://ag-energiebilanzen.de/7-1-Energy-Balance-2000-to-2015.html [Accessed: 27 November 2017].

BNetzA, 2017. Network and system security measures "figures." Available at:

https://www.bundesnetzagentur.de/EN/Areas/Energy/Companies/SecurityOfSupply/NetworkSecurity/Network_security_node.ht ml.

EPEX Spot, 2016. Marktdaten Day-Ahead-Auktion. Available at: https://www.epexspot.com/de/marktdaten/dayaheadauktion [Accessed: 13 December 2016].

FairEnergie GmbH, 2016. Fair Strom Wärme. Available at:

https://www.fairenergie.de/fileadmin/user_upload/onlineantraege/preislisten/preisblatt_fairstromwaerme.pdf [Accessed: 15 December 2016].

Fischer, D. and Madani, H., 2017. On heat pumps in smart grids: A review. *Renewable and Sustainable Energy Reviews*, 70, pp.342–357.

Lund, P.D., Lindgren, J., Mikkola, J. and Salpakari, J., 2015. Review of energy system flexibility measures to enable high levels of variable renewable electricity. *Renewable and Sustainable Energy Reviews*, 45(Supplement C), pp.785–807.

Neckermann Strom GmbH, 2016. Preisrechner Wärmestrom. Available at: https://www.neckermann-strom.de/ [Accessed: 15 December 2016].

April 27, 2018

Trieb, F., 2006. Integration erneuerbarer Energiequellen bei hohen Anteilen an der Stromversorgung. *Fachzeitschrift Energiewirtschaftliche Tagesfragen*, 63, pp.28–32.

Lars Nolting, M.Sc.

Thank you for your attention!

Do you have any questions or comments?

FCN | Future Energy Consumer Needs and Behaviour

