Modeling the wind auctions as a participation game

Silvester van Koten

Jan Vavra

University of Economics, Prague

(kle·vse·cz)

Consider the following case

- To enter to an industry:
 - need to win a license in an
 auction
 - To enter the auction: considerable
 (sunk) bid preparation costs

- Renewables were supported by feed-in tariffs in many EU countries
 - -big drawbacks (costly and hard to control)
- New system by auctioning the support in a reversed auction
 - -Limited number of "support units"
 - -Win support units by bidding the price you would like to have guaranteed for your

Focus on German auctions for support to onshore wind (EEG 2014)

- Bid eligibility requirement
 - •permits necessary for the realization of the project.
 - •form of (sunk) bid preparation costs
 - can be up to 10% of total project cost!
- Bid preparation costs is a wellknown phenomena
 - -Recent case: British printing firm De La Rue
 - lost bid for printing order of new UK passports
 - •profit warning, due to the large bid preparation costs.
 - £4m for contract of £490m -> 0.8%!

The model - setup

Stage 1

- The Auctioneer announces an auction with
 U units and CAP price.
- N potential bidders decide simultaneously whether to enter and pay δLFC
- Mixed strategy: each potential bidder enters with probability q.

Stage 2

- *n* actual bidders entered (common knowledge).
- Other bidders receive outside option 00.
- Actual bidders bid in an reverse

The model - solving

Stage 1

- There are N potential bidders
- Bidder enters with probability q

$$q^*$$
: $\Pr[n \le U \mid q] \cdot \pi^H + \Pr[n > U \mid q] \pi^L = OO$

Stage 2

• *n* bidder entered

• If

- $n \leq U$: GAP $\pi^H = CAP - MC - LFC$

- n > U: $bMC + (1 - \delta)LFC$ $\pi^{L} = -\delta \cdot LFC$

$$\alpha[q] = \sum_{n=1}^{U} \left(q^{n-1} (1-q)^{N-n} \right) \binom{N-1}{n-1}$$

 $\Pr[n \le U \mid q] \cdot \pi^H + \Pr[n > U \mid q] \pi^L = OO$

The simulation

Simulation parameters

- N = 30 (potential bidders)
- U = L....25 (units on sale
 varies)
- *MC* = 5
- CAP = 100
- •δ = 10%
- average of 50 000 draws

FIXED DISTRIBUTION
• LFC = 40 LFC iud E30,501

CAP = JOO Fixed costs iud E30,50]

CAP = IOO

Decreasing CAP may help?

- Decreasing CAP may help?
 - -Lowers cost
 - Increases cost of non-build capacity due to potential shortage of entry

Pre-investment costs only 1%

•Conclusion

- -Theory predicts that sunk preinvestment in an auction:
 - Creates a stochastic process of entry
 - Excess entry -> increases auction pricewasted sunk costs
 - Shortage of entry -> unimplemented projects
 - This results to higher bids then the same auction without pre-investment
- -Lowering the CAP price
 - Reduces excess entry
 - Increases shortage of entry
- -Lowering the pre-investment
 - •Lowers excess entry and shortage of entry
 - Make auction closer to a ideal case (solar

If anybody wants to know:

- Assumptions
 - One-shot game
 - -UPA instead of DA
 - Single-unit demand

$$\alpha[q] = \sum_{n=1}^{U} \left(q^{n-1} (1-q)^{N-n} \right) \binom{N-1}{n-1}$$

$$\alpha[q^*] \cdot u\left[\pi_P^H + W\right] + (1 - \alpha[q^*]) \cdot u\left[\pi_P^L + W\right] = u[OO + W]$$

Symbol	Reference
Exogenous variables	
U	Capacity on auction
N	Population of potential bidders
LFC	The levilized fixed cost for the full project
МС	Marginal cost of producing (assumed con-
	stant)
$\delta \overline{LFC}$ (where 0 <	The (administrative) cost of entry in the
$\delta < 1$)	auction auction
CAP	A price cap set by the regulator
00	The outside option of the potential bidders
VOUL	Value Of Uncontracted Load
RA	risk aversion parameter in the utility function
	$u[x] = x^{RA}$
Endogenous variables	
n	The number of actual bidders
q	Probability of entering (endogeneous)
$\alpha = P[n \le U M, q]$	Probability that the number of actual bidders
	is insufficient or just sufficient $n \leq U$