

Faculty of Electrical and Computer Engineering Chair of Electrical Power Systems

Prospects of Electricity Demand and Demand Side Management Potentials of Residential Customers

Jörg Dickert

Enerday 2016

Introduction

Definition

Demand Side Management

process that is intended to influence the quantity or patterns of use of electric energy consumed by **end-use customers**

ensure save operation of grid

grid capability

integrate renewables

Demand Response

action resulting from <u>management</u> of the electricity demand in response to **supply conditions**

Source: Electropedia

Introduction Residential Electricity Consumption

Demand Side Management Potentials

Overview

Demand Side Management Potentials

Characterization

Direct Demand Side Management

appliances are turned ON or OFF
 -> usage is shifted

Virtual Demand Side Management

• intermediate storage for energy – electricity or thermal energy

... with central batteries or e-cars

... with central thermal storage tank

• combinations with direct heating, heat pump, solar heat or CHP

... with decentral thermal reservoir

• intermediate storage within the appliance

Evolution of Electricity Demand

From 1978 via 2016 to 2040

Appliance	1978	1999	2016	Reduction 1978-2016	Prospective
	in W	/h (per	use)		
fridge	900	490	60	-93%	-50% 🔰
freezer	1.100	480	120	-89%	-50% 🔰
dish washer	210	100	50	-76%	-50% 🔰
washing machine	420	190	70	-83%	-50% 耸
tumble dryer	900	640	140	-84%	-25% 🏓

Evolution of Electricity Demand Rebound effect & backfire

Evolution of Electricity Demand

Electricity Consumption Per Capita

usage: intensive	
efficiency: up-to-date appliances	

Appliance	DSM	usage	P or E	<i>E</i> _a in kWh		
fridge	yes	365d	200 Wh/d	72	ר	Prospective
freezer	yes	365d	75 Wh/d	28		FIUSPECTIVE
washing machine	yes	104x	350 Wh	36	- 250 kWh	🕈 200 kWh
tumble dryer	yes	104x	850 Wh	88		
dish washer	yes	104x	250 Wh	26		
hob	no	104x	500 Wh	52		
backing oven	no	104x	630 Wh	66		
kettle	no	365x	100 Wh	37		
micro wave	no	365x	100 Wh	37		
vacuum cleaner	no	52x	500 Wh	26		
iron	no	52x	1.000 Wh	52		
hair dryer	no	104x	200 Wh	21	690 KW	500 kwn
lighting	no	4h 365x	20 W	30		
consumer electronics	no	4h 365x	100 W	146		
small appliances	no			50		
communication	no	8760h	10 W	88		
no-load losses	no	8760h	10 W	88	J	
annual electricity consumption				940		

Performance Evaluation DSM potential Germany 250 ⇒ 200 kWh/a home loss of comfort 16 TWh/a appliances DSM with decentral thermal reservoir 6 Mio. e-cars by 2030 e-cars distance: 20.000 km pa 18 TWh/a with batteries consumption 15 kWh/100 km HVAC heating in winter air-conditioning in summer central storage storage tank for load shifting tanks

Performance

Comparison

		virtual DSM				
	direct DSM	battery	central storage tank	decentral reservoir		
comfort	low	high	high	high		
potential	high	high	lower	lower		
losses	none	low	low	high		
costs	low	very high e-car: anyway costs	anyway costs	integrated in appliances		
installation	low	very high	low	low		

Conclusion

Efficiency gains for home appliances ⇒ reduction of overall electricity consumption

Direct demand side management for appliances ⇒ loss of comfort ⇒ potential for virtual DSM with decentral thermal reservoir

Virtual demand side management with e-cars ⇒ 6 million cars vs. 200 million appliances

HVAC (heating, ventilation, air conditioning)
⇒ electricity as energy source
⇒ high DSM potential especially with central storage

Thank you!

Joerg Dickert

TU Dresden – IEEH

+49 351 463 43201

joerg.dickert@tu-dresden.de

21.04.2016