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SUPPLEMENTARY METHODS 
 
 
 
Methods Text 1: Analytical Model: Derivation of the expansion forces 

We consider two filaments with overlap length L, exhibiting l discrete binding sites of 

length δ on each filament in the overlap (with L = lδ). Motivated by our experimental 

observation that the dissociation constant from the overlap regions is one order of 

magnitude lower than from single filaments (Figure S3A and S3B) and considering 

the experimental crosslinker concentration in solution (much lower than the 

dissociation constant on single filaments), we assume that crosslinkers do not bind to 

single microtubules but exclusively bind to the overlap region to both filaments with a 

dissociation constant  as measured in the overlap. The experiments indicate that 

the cooperativity of binding is weak (Figure S3A), and we thus make the simplifying 

assumption that the crosslinkers bind non-cooperatively. The partition function for n 

crosslinkers in the overlap is then given by: 

Q(l,n) = l
n

!

"
##

$

%
&& X'( )* / KD

d( )
n
, 

where [X] is the concentration of the crosslinkers in solution. Motivated by the near 

constant number of crosslinkers in expanding overlaps (Figure S1B), we first consider 

the case where no crosslinkers bind into or unbind from an overlap (n = constant, 

scenario as in Figures 1 and 2). The force acting on the transport microtubule 

(‘expansion force’) is then given by: 
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where we used ln(1 − x) ≈ −x, for x = n/(l+1) ≪ 1. This shows that the force 

decreases as the overlap length δl increases and the crosslinker density n/l decreases. 

Equation 4. is the one-dimensional analog of the ideal gas law pV = nkBT for a gas in 

a cylinder. It can also be regarded as a special, discretized case of a Tonks gas. 

The maximum entropic force arises when the crosslinkers are maximally compressed, 

that is when they occupy all lattice sites (l = n): 

Fmax =
kBT
δ
ln n+1( )  

Because the number of crosslinkers is constant, the potential energy of binding is 

constant and the force is completely determined by the entropy of the crosslinkers in 

the overlap region. When l = n, the number of states is one, and the entropy is zero. 

The force is thus determined by the entropy of the system when l = n + 1. When l = n 

+1, one hole is created and the number of positions for this hole is n + 1. The entropy 

of this state is thus kBT ln(n + 1), which increases logarithmically with n. Considering 

a lattice spacing of δ = 8 nm and n = 10, the maximum expansion force is about 1 pN. 

For n = 100 the maximum expansion force rises to about 2.4 pN. 

Allowing for crosslinker binding into and unbinding from an overlap (with rates fast 

on the timescale on which the filaments move) the partition function becomes: 
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The free energy  

F ≡ −kBT lnQ(l)

= −kBTl ln 1+ X#$ %& KD
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then decreases linearly with the number of binding sites l in the overlap and the 

expansion force F = −∂F/∂L is constant: 

F = kBT
δ
ln 1+ X!" #$ KD

d( )  

If the overlap increases, additional binding sites become available. The binding of a 

crosslinker to a site in the overlap decreases the free energy of the system not only by 

the energy of binding, but also by increasing the entropy of the crosslinkers in the 

solution. The latter effect explains why the binding occupancy increases with 

concentration, and why the expansion force increases with concentration. While the 

expansion force decreases as the overlap increases at constant n (see Eq. 4), 

crosslinker condensation into the overlap allows the system to sustain a constant 

expansion force as the overlap length increases (Eq. 10). The expansion force, now 

independent of the overlap length, is 0.3 pN for [X]= KD
d . 

The average number of crosslinkers that bind to an overlap depends on the crosslinker 

concentration and is given by 
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which is simply the number of sites l times the probability that a site is occupied. 

 

Including crosslinker binding to and unbinding from single filaments into our 

analytical model can lead to a reduction in the estimated force 
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where KD
d

 and KD
s  are the dissociation constants for Ase1 binding to an overlap and a 

single filament, respectively. For the regime [X]< KD
s  present in our experiments the 

above equation reduces to Eq. 10 and crosslinker binding to single filaments can be 

ignored.  

A microtubule consists of 13 protofilaments, and it is conceivable that crosslinkers 

between two microtubules can bind to more than one protofilament. To account for 

this possibility, we modeled the force generation by a constant number of crosslinkers 

n in an overlap of length l consisting of d protofilaments. The total number of binding 

sites in such an overlap is ld and the partition function is  

    Q(ld,n) = ld
n

!

"
#

$

%
& X[ ] /KD

d( )
n

   

The force is then given by 
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In the low-density limit, this expression reduces to the ideal-gas expression of Eq. 4: 

in this limit, the force is given by the overall density , irrespective of the 

number of protofilaments. However, at higher densities, the force depends on the 

number of protofilaments. Indeed, the maximum force, which is reached when the 

overlap is fully occupied (n = ld), depends on the number of protofilaments and is 

given by: 
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The maximum force increases approximately linearly with the number of 

protofilaments. For 10 crosslinkers (a typical number of crosslinkers in our 

experiments) and for d = 3 protofilaments the maximum force is predicted to be  ~ 4.5 

pN. 

 

Methods Text 2: Analytical Model: Derivation of the sliding velocity  

To elucidate the effective friction coefficient γMT on the transport filament (top 

filament) that is connected to the fixed template filament (bottom filament) via 

diffusible crosslinkers with two filament interaction sites (heads), we use a simple 

force-balance argument (neglecting the viscous drag exerted by the solution (Hunt et 

al., 1994; Tawada and Sekimoto, 1991)). We first consider a top filament that is 

connected via a single crosslinker to the bottom filament. In steady state, where the 

ρ = n / l
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top filament and crosslinker move at constant but different speeds, the drag on the top 

filament is given by 

γMT vF = γ (vF −vP)  

where is the frictional drag coefficient between a head and a filament, vP is the 

relative velocity of the crosslinker with respect to the bottom filament, and vF is the 

velocity of the top filament with respect to the bottom filament. To determine vP we 

note that in steady state the drag force exerted by the bottom filament on the 

crosslinker must balance the drag force exerted by the top filament:  

γ vP = γ (vF −vP) 

Hence, it follows that in steady state 

vP =  vF   /  2 

Combining this expression with Eq. 16 yields the effective friction  

γMT = γ  /  2 

This argument can straightforwardly be extended to n crosslinkers assuming that they 

hop independently. This gives 

            γMT = nγ  /  2  

Assuming crosslinker binding and diffusion is in quasi-equilibrium on the timescale 

of filament sliding, the sliding velocity of the top filament is given by: 

γ
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v = F
γMT  

Using Eq. 20 and Eq. 3 we then obtain the equation for the velocity in response to an 

expansion force by a constant number of crosslinkers: 
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In the limit of l ≫ n, (expansion force given by Eq. 4) the velocity reads 

v = 2kBT
lδγ

=
2DAse1

MT

L  

The velocity for overlap expansion with additional condensation of crosslinkers to 

microtuble overlaps is given by combining Eq. 10, 11, 20, 21 and the Einstein 

equation:
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This expression is independent of the number of protofilaments d because both the 

condensation force and the average number of crosslinkers (and hence the friction) 

increase linearly with the number of protofilaments. It is seen that the velocity decays 

as 1 / L, as in the case with entropic expansion without condensation (Eq. 23). 

 

(21) 

(22) 

(23) 

(24) 



 
 

8 

Methods Text 3: Computational Model 

In the simulations we model a bottom protofilament of length lB that is fixed and a top 

protofilament of length lT that can move. The length l is expressed in the number of 

binding sites for crosslinker heads. A crosslinker consists of two heads that are 

connected by a spring of stiffness k. The heads mutually exclude each other and 

cannot pass each other on a filament.  

A crosslinker can bind from solution to a single filament via one of its two heads with 

a rate konclα(1−nα), where kon is the crosslinker association rate, c is the concentration 

of crosslinkers in solution, lα is the length of filament α = B, T and nα is the 

occupancy of the lattice sites on filament α; lα(1 − nα) is thus the total number of free 

binding sites on filament α to which a crosslinker can bind. When a crosslinker is 

connected to a single filament only, it can dissociate from it into the solution via a rate 

koff. Binding from solution is thus characterized by the dissociation constant KD
s = 

koff/kon. A crosslinker i that is bound to one filament via one of its two heads can, via 

its other head, bind to an empty site on the other filament with rate ka = kd0

exp[−β∆U/2] (see also footnote 1), where ∆U = 0.5k (xF
i - xB

i)2  is the potential energy 

of the spring with xF
i and xB

i  the positions of the heads on the top and bottom 

filament, respectively. A head of a crosslinker bound to two filaments can dissociate 

from a filament with rate kd = k0
d exp [β∆U/2]. Filament binding of a head that is 

already connected to one filament via its other head is thus characterized by the 

equilibrium constant Keq = ka / kd = k0
a / k0

d exp[−β∆U]. Note that, as detailed balance 

dictates, the equilibrium constant depends on the tension in the spring connecting the 

                                                
1 Detailed balance implies that ka = ka

0 exp[−β(1 − λ)∆U], while kd = kd
0 exp[βλ∆U]. Here we 

have taken λ = 1/2. 
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two heads; a higher tension increases the potential energy and thus decreases the 

affinity. If the spring is not under tension, then the equilibrium constant is given by 

Keq
0 = k0

a / k0
d . The dissociation constant for the binding of a crosslinker from solution 

to two filaments is given by KD
d = KD

s / Keq, which indeed depends on the tension in 

the spring after binding; when the spring is not under tension, the dissociation 

constant is KD
d,0 = KD

s / Keq
0 . 

A head of a crosslinker connected to a single filament—a singly-bound crosslinker—

can hop from one lattice position to a neighboring vacant lattice position with rate 

k0
hop = Ds/δ2, where Ds is the diffusion constant of a crosslinker connected to a single 

filament and δ is the lattice spacing. Note that hopping does not involve the unbinding 

of the head since crosslinkers can diffuse along filaments without detaching. The head 

of a crosslinker bound to two filaments—a doubly-bound crosslinker—can hop with a 

hopping rate khop = k0
hop exp[−β∆U/2], where ∆U is the change in the potential energy 

of the spring connecting the two heads. Clearly, the effective diffusion constant Dd of 

a crosslinker bound between two filaments depends on the spring stiffness k. We 

exploited this dependence to match Dd with the value measured experimentally. The 

equation-of-motion of the top filament is given by 

   
γ0
xT
dt
= − k xi

T − xi
B( )+η t( )

j=1

N

∑    (25) 

Here, γ0 = kBT/DF is the viscous drag experienced by a filament moving through the 

solution, with DF the diffusion constant of the filament, xT is the position of the top 

filament, N is number of doubly-bound crosslinkers, and η(t) is a Gaussian white 

noise term of magnitude 2kBTγ0 . 
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The algorithm to simulate the model is similar to that used in Albada et al. 2009 (van 

Albada et al., 2009). The equation-of-motion of the filament, Eq. 25, is propagated via 

a Heun scheme (Greiner et al., 1988). The algorithm to determine when the next 

hopping, binding or unbinding event of a crosslinker will occur is essentially a kinetic 

Monte Carlo algorithm (Bortz et al., 1975). It is based on the observation that the 

survival probability S(t), i.e. the probability that no crosslinker event has happened 

before a time t after the last event, is given by 

     S(t) = exp(−a(t))    (26) 

where a(t) is the cumulative total propensity function: 

     
a(t) = d !t kT ( !t )

0

t

∫    (27) 

with kT(t) being the total propensity function, which is obtained by summing up all the 

rates over all tentative crosslinker events, i.e. all possible hopping, binding and 

unbinding events. 

In practice, right after hopping, binding or unbinding event of a crosslinker, a random 

number, ξ, between zero and one is drawn. The equation-of-motion of the top 

filament, Eq. 25, is then integrated together with the equation that describes the 

temporal evolution of a(t): 

     
da(t)
dt

= kT (t)
    

(28) 

Integrating Eq. 28 since the last event leads to an estimate for a(t) = d !t kT ( !t )
0

t

∫ . The 

next event then occurs at a time t after the last event when 
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     a(t)> log(1 /ξ )    (29) 

The event i — either a hopping, binding or unbinding event — is subsequently chosen 

with a probability pi as given by 

     pi (t) = ki (t) / kT (t)    (30) 

where ki(t) is the rate of event i. 

 

Methods Text 4: Exponential friction 

The origin of the exponential dependence of the friction on the number of crosslinkers 

is that the transport filament has to overcome an energy barrier in order to move. 

Consider a top filament that is precisely in register with the bottom filament. The 

lowest potential energy configuration is one in which the crosslinkers are not under 

tension. Suppose that out of the N crosslinkers one head of one crosslinker, say the 

bottom head, makes a hop to the right. After the hop, this crosslinker will pull the top 

filament to the right. The lowest potential energy configuration is now one in which 

the force exerted by this crosslinker pulling the top filament to the right is precisely 

balanced by the force of the other crosslinkers pulling it to the left. However, in this 

new state the potential energy stored in the strained crosslinkers is higher than it was 

originally. 

 We can now ask what is the lowest potential-energy path by which the top 

filament can move from one lattice position to the next. Starting from the 

configuration above, with NR  = 1 crosslinker pulling the filament to the right and the 

other NL = N - 1 crosslinkers pulling it to the left, the lowest path is one in which a 
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head of one of the NL crosslinkers makes a hop: either the bottom head making a hop 

to the right or the top head making a hop to the left. In either case, we have NR = 2 

crosslinkers pulling the top filament to the right and NL= N-NR crosslinkers pulling it 

to the left. The next step along the lowest potential-energy path is one in which this 

process is repeated, until we have NL = N/2 crosslinkers pulling the top filament to the 

left and NR = N/2 crosslinkers pulling it to the right. Importantly, during this whole 

process, the potential energy of the system rises. The state with NL = N/2 crosslinkers 

pulling the top filament to the left and NR = N/2 linkers pulling it to the right is the 

transition state, the state of the system at the top of the barrier, after which the energy 

falls again. One can show that the height of the potential-energy barrier is given by 

U*= kδ
2N
8

. This means that the diffusion constant of the top filament 

D = δ 2k0e
−βkδ 2N /8  decreases exponentially with the number of crosslinkers N and the 

total crosslinker friction γ = kBT /D  increases exponentially with N. 
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 Table S1: Parameters for the model used in the simulations.  
 

Parameter Value Description Source 

D 0.1 µm2s-1 Diffusion constant single Ase1 head Figure S3C 
k 5×104 kBTµm-2 Spring stiffness of Ase1 dimer Fit (a) 

kon 0.01 nM-1s-1 Ase1 binding rate to a single microtubule From KD
s and koff 

koff 0.1 s-1 Ase1 unbinding rate from a single 
microtubule 

Measured (b) 

ka
0 0.5 s-1 Association rate 2nd Ase1 head From  KD

d, KD
s, kd

0 
kd

0 0.05 s-1 Dissociation rate 2nd Ase1 head Measured (c) 
Keq

0= ka
0/ kd

0 10 Equilibrium constant From ka
0  and kd

0 
KD

s=koff/kon 10 nM Dissociation constant of Ase1 from 
single microtubule 

Figure S3A 

KD
d,0 = KD

s / Keq
0 1 nM Dissociation constant of Ase1 from 

overlap (double microtubule) 
Figure S3B 

DF 0.01 µm2s-1 Diffusion constant of microtubule in 
solution 

(Hunt et al., 1994) 

δ 0.01 µm Lattice spacing Tubulin dimer 
length 

 

Footnotes: (a) The spring stiffness k has been chosen such that the diffusion constant of a 

crosslinker between two filaments is as observed in experiment. (b) The crosslinker unbinding 

rate koff depends on the concentration c of crosslinkers in solution, as observed by Marko and 

coworkers for the unbinding of proteins from DNA (Sing et al., 2014); the value reported in 

our table is the unbinding rate for a concentration c ~ 0.45 nM as determined experimentally 

(Braun et al., 2011). We used this value for the simulations of the experiments with Ase1-

GFP in solution presented in Figures 4 and 5. As we did not observe any unbinding of 

crosslinkers from the overlap in experiments when we washed out Ase1-GFP from solution 

(Figures 1 and S1B), we set the unbinding rate to 0.0001 s-1 for the simulation presented in 

Figure 3. (c) The dissociation rate kd
0
 of the “second head” (thus when the crosslinker makes a 

transition from doubly filament-bound to singly filament-bound) is estimated from the 

measured effective rate of dissociation of crosslinkers from the overlap region between two 

filaments, using the procedure described in the Appendix; since koff depends on the 

concentration, kd
0
 will also depend on the concentration. 
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Appendix  
to footnote (c) to the table of parameters for the model used in the simulations. 

 
To determine the effective dissociation rate, we compute the effective time for a 

doubly-bound crosslinker to completely dissociate. This is a first-passage time 

problem. Let’s denote α = ka/(ka + koff); tc = 1/kd + 1/koff; tr = 1/kd + 1/ka. The average 

time is given by 

                

T = (1−α) (tc + itr )α
i

i=0

∞

∑

= tc (1−α) α i +
i=0

∞

∑ (1−α) itrα
i

i=0

∞

∑

= tc + tr
α
1−α

=
2
koff

+
1
kd

ka
koff

+1
$

%
&

'

(
)

    

          

Substituting in the numbers of Supplementary Table 1 yields T = 80 s and an effective 

dissociate rate for a doubly-bound crosslinker of 0.7 min-1. This estimate, based on koff 

= 0.1 s-1 measured at c ~ 0.45 nM, is within an order of magnitude of the effective 

dissociation rate for a doubly-bound crosslinker of approximately 0.1 min-1 measured 

using FRAP (Braun et al., 2011).   

(31) 
 
 
(32) 
 
 
(33) 
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