Appendix 1: Module Descriptions for the Master's program Nanobiophysics

Module Number	Module Name	Resp. Lecturer
BT-NB 1.1.	Fundamentals of Biophysics	Jochen Guck
Contents and qualification aims	The students are familiar with concepts of phenomenological thermodynamics: energy, entropy, transport phenomena, biologically active forces, classical reaction and enzyme kinetics, bioenergetics as well as membrane biophysics and basics of electrophysiology. They know the most important methods with respect to molecular,	
	cellular and systems biophysics as well as structural methods (NMR, X-Ray), spectroscopy and microscopy, modern methods in biochemistry and proteomics.	
	Students have an overview over the most important concepts and the broad methodology of modern applied biophysics. They are able to select the best method(s) for a certain practical task and have background knowledge about their prerequisites and which systems to best apply them to.	
Type of course	4 SWS lecture, 2 SWS seminar, 1 SWS lab p	practical
Requirements	Basic knowledge in mathematics, particular	ly differential and integral
for study	calculus, simple differential equations on Bachelor level. Basic knowledge in classic physics (mechanics, electrodynamics,	
	 thermodynamics) on Bachelor level. Literature: Courant & Hilbert: Methods of Mathematical Physics Jackson: Classical Electrodynamics Sakurai: Advanced Quantum Mechanics Huang: Introduction to Statistical Physics 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics	
Requirements for	The credits are awarded if the module examination is passed. The	
the award of	module examination consists of:	
credits	• a presentation,	
	 a written examination (90 minutes) and a lab protocol. 	
Credits	For the module 10 credit points can be acqui	uired. The module grade
and grades	is the weighted average of:	
	 2/5 presentation 	
	 2/5 written examination 	
	 1/5 lab protocol 	
Frequency of the course	The module is offered every academic year	in winter semester.
Workload	The workload is 300 working hours	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB 1.2	Structural and Computational Biology	Maria-Teresa Pisabarro
Contents and qualification aims	The students are provided with a comprehensive overview of the fundamentals of structural biology and methods and applications in current computational biology/chemistry. The students are familiar with essential structural properties of biomolecules (proteins, peptides, sugars, nucleic acids) that underlie their great structural and functional variety in nature. The students have an overview of basic concepts needed to quantitatively understand the implications of the three- dimensional structure of these biomolecules for their stability, dynamics, molecular recognition and function. The students know how to analyze biological problems from a structural point of view. They gain insights into the bases needed to define and develop structure-based rational	
- /	engineering strategies for bio- and nanot	technology.
Type of course	2 SWS lecture and 2 SWS seminar	
Requirements for study	 Basic knowledge of biology, physics and chemistry on Bachelor level. Literature: Nelson/Cox: Lehninger Principles of Biochemistry, Worth Publishers David Halliday, D, Resnick, R, Walter, J, 1997, Fundamentals of Physics, Wiley 	
Practical use of the module	Compulsory module of the master's programous Molecular Biophysics.	am Nanobiophysics, track
Requirements for the award of credits	The credit-points can be acquired, if the successfully passed. The module examin - a presentation and - a written examination (90 minutes).	
Credits and grades	For this module 4 credit-points can be awarded. The module grade is the weighted average of: - ¹ ⁄ ₄ presentation - ³ ⁄ ₄ written examination	
Frequency of the course	The module is offered every academic year	in winter semester.
Workload	The workload is 120 working hours	
Duration of the module	1 semester	

Module Number BT-NB 1.3	Module Name Introduction to Biochemistry and Molecular Cell Biology	Resp. Lecturer Bernard Hoflack
Contents and qualification aims	Students know the fundamentals of biochemistry, organic chemistry, biomolecules and their structure, biosynthesis, gene expression and cellular organization, enzymology, network of primary metabolic pathways, mutagenesis, genetic architecture of selected biosyntheses.	
	Students have an overview of basic concel biology, principles of cellular organization relevance and organization of protein netwo cellular structure and function. They are fam of cell-cell-communication, regulation of gr tissue-development. They know the mos biomolecular and technical methods of cell b The students know the most important bar molecular cell biology and are able to perfor and cell and biomolecular lab activities thems	n (compartmentalization), prks for the generation of niliar with the coordination rowth, differentiation and t important biochemical, piology. asics of biochemistry and prm essential biochemical
Type of course	4 SWS lecture, 1 SWS exercise, 1 SWS tuto	rial, 2 SWS lab practical
Requirements for study	 Basic knowledge in physics, biology and chemistry on Bachelor level. Literature: Molecular biology of the Cell (Bruce Alberts), Kapitel 1 und 2 Molecular Cell Biology (Darnell), Kapitel 1 	
Practical use of the module	Compulsory module of the master's progra Molecular Biophysics. It provides the bas module.	am Nanobiophysics, track
Requirements for the award of credits	 The credits are awarded if the module examination consists of two oral examinations (individual examinations) a lab protocol 	
Credits and grades	For the module 10 credit points can be acquired. The module grade is the weighted average of: • oral examinations, each 40% • lab protocol 20%	
Frequency of the course	The module is offered every academic year, starting in winter semester.	
Workload	The workload is 300 working hours	
Duration of the module	2 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB 1.4	Elements of Nanobiotechnology	Gianaurelio Cuniberti
Contents and qualification aims	Students know the bottom-up generation of synthetic nanostructures with the help of proteins and DNA as well as structural, mechanical and electronic characteristics of DNA and proteins, DNA as construction material and the controlled generation of hybrid	
	nanostructures using biomolecular templatings. They are familiar with biomimetic cluster synthesis, nano crystals for biological detection, new principles of (bio)molecular electronics, manipulation of nanoparticles in 3 dimensions and latest research questions and problems in the context of nanotechnology and bionanotechnology	
	Students are in command of basic knowledge of bionanotechnology. They are able to comprehend the relevance of complex natural nanostructures for technical applications. In turn, they gain an understanding of how nanotechnological methods may be used in biology. Thanks to individually prepared papers and the subsequent discussions, students are able to communicate in a scientific manner.	
Type of course	2 SWS lecture, 2 SWS seminar, 1 SWS lab p	practical
Requirements for study	Basic knowledge in physics on Bachelor level, basic knowledge in biology and chemistry on Abitur level. Literature:	
	 W. Pompe, G. Rödel, HJ. Weiss, M. Mertig: Bio-Nanomaterials: Designing Materials Inspired by Nature, Wiley-VCH 2013 G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009 N.T. Nguyen, S.T. Wereley: Fundamentals and applications of microfluidics, Artech House, 2002 	
	F. Leal-Calderon, V. Schmitt, J. Bibette: principles, Springer 2007	
Practical use of the module	Compulsory module of the master's progra Molecular Biophysics. It provides the basic Nanotechnology	
Requirements for	The credits are awarded if the module ex	amination is passed. The
the award of credits	 module examination consists of an oral examination (individual exam, an presentation and a lab protocol 	duration 20 minutes)
	Passing the module requires that the oral ex "sufficient" (4.0) or better.	am is evaluated with min.
Credits	For the module 6 credit points can be acquir	ed. The module grade is
and grades	 composed of the weighted average of: 50% oral exam 35 % presentation 15% lab protocol 	
Frequency of the course	The module is offered every academic year i	n winter semester.
Workload	The workload is 180 working hours	
Duration of	1 semester	
the module		

Module Number	Module Name	Been Lesturer
		Resp. Lecturer
BT-NB 1.5	Concepts of Molecular Modelling	Gianaurelio Cuniberti
Contents and qualification aims	The students know basics of molecular dynamics simulation for the theoretical description of elements of bio- and nanophysics. They gain an overview of classic mechanics with the help of numerical methods and the modelling of interatomic forces (classically and quantum-mechanically). The students know mathematical approaches to characterise the	
	dynamics of molecules quantitatively and a computer programs.	re able to model them in
Type of course	2 SWS lecture, 2 SWS exercise, 2 SWS lab	oractical
Requirements	Basic knowledge in mathematics and physic	s on Bachelor level.
for study	Literature: D. Frenkel, B. Smit: Understanding molecular simulation: From algorithms to applications, Academic Press 2001	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Nanostructured Materials.	
Requirements for the award of credits	 The credits are awarded if the module examination consists of: a modelling project and in the case of up to 10 students regis (individual exam, duration 20 minute than 10 students registered a writ: 90 minutes). The type of examinatio of the examination's registration per Biotechnology Center. Passing the module requires that the or evaluated with min. "sufficient" (4.0) or better that the the term of the evaluated with min. "sufficient" (4.0) or better that the term of the evaluated with min. "sufficient" (4.0) or better that the term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of the evaluated with min. "sufficient" (4.0) or better term of term of	stered an oral examination es) or in the case of more ten examination (duration n is announced at the end iod as is customary at the oral or written exam is ter.
Credits	For the module 6 credit points can be acqu	ired. The module grade is
and grades	the unweighted average of the 2 grades.	
Frequency of the course	The module is offered every academic year i	n winter semester.
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number BT-NB 2.1	Module Name Applied Nanotechnology	Resp. Lecturer Bernd Büchner	
		Derrid Ducriner	
Contents and qualification aims	Students know molecular pathways of different proteins and their assemblies functioning in the context of the biological organism and the possibility of transferring these mechanisms and functions to nanotechnological questions. They know basics of the molecular structure and functional mechanisms of proteins and how to transform transient forms of biochemical energy into storable forms. They know protein-induced diseases caused by failure of proteins in the functional chain, and strategies to correct these dysfunctions. The students are familiar with the requirements for the in vitro application of proteins for purposes in nanotechnology. Furthermore, they are introduced to the fabrication and the basic structural, electronic and magnetic characteristics and peculiarities of various nanostructures as for example cluster, semi-conductor nanostructures, molecules and nanotubes.		
	natural and synthetic nanostructures and -m inter-relate the knowledge of nanotechnolo	he students acquire an overview over the functioning mode of atural and synthetic nanostructures and –machines. They are able to nter-relate the knowledge of nanotechnology, molecular cell biology and biochemistry to apply them in continuative surveys and research rojects in the context of nanobiophysics.	
Type of course	4 SWS lecture, 2 SWS seminar		
Requirements for study	 Basic knowledge in polymer science, biochemistry, molecular and cell biology and bionanotechnology on Bachelor level, competences and skills of the module Elements of Nanobiotechnology Literature: Molecular Biology of the Cell, Alberts et al, Taylor & Francis Ltd, 5th revised edition Cell Biology, Pollard & Earnshaw, Saunders W.B., 2nd edition Neue Kohlenstoffmaterialien, Anke Krüger, 2007, B.G.Teubner Verlag / GWV Fachverlage GmbH) English translation: Carbon Materials and Nanotechnology, Anke Krueger, 2010, Wiley Fullerenes: Principles and Applications , Fernando Langa, Jean-Francois Nierengarten, The Royal Society of Chemistry 2007 Nanophysics and Nanotechnology , E. L. Wolf, 2006, WILEY-VCH Nanotechnology, M. Köhler, W. Fritzsche, 2007, WILEY-VCH E. Meyer, H. J. Hug, R. Bennewitz, "Scanning Probe Microscopy. The Lab on a Tip", 2004, Springer-Verlag Electronic transport in two-dimensional graphene, Das Sarma, Adam, Hwang & Rossi (Rev. Mod. Phys. 83, 407 (2011) Transport in Mesoscopic Systems, Supriyo Datta (Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, ISBN 978-0-521-59943-6) Carbon Nanotubes: Synthesis, Structure, Properties and Applications (2001), Springer, Berlin, Eds. M. S. Dresselhaus, G. 		

	 Dresselhaus, Ph. Avouris Carbon Nanotubes (2004) Wiley-VCH, S. Reich, C. Thomsen, J. Maultzsch Carbon Nanotubes, (1997) CRC Press, Ed. T. W. Ebbesen Carbon Nanotubes: Basic Concepts and Physical Properties, Stephanie Reich, Christian Thomsen, Janina Maultzsch Science of Fullerenes and Carbon Nanotubes, (1996), Academic Press, M. S. Dresselhaus, G. Dresselhaus and P. C. Eklund Carbon Nanotube Science. Synthesis, Properties and Applications, Peter J. F. Harris
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics. It provides the basics for the module Specialisation Module.
Requirements for the award of credits	 The credits are awarded if the module examination is passed. The module examination consists of a presentation and an oral examination (individual exam, duration 20 minutes)
Credits and grades	For the module 7 credit points can be acquired. The module grade is the unweighted average of the 2 grades.
Frequency of the course	The module is offered every academic year in summer semester.
Workload	The workload is 210 working hours
Duration of the module	1 semester

Module Number	Module Name	Resp. Lecturer
BT-NB 2.2	Nanostructured Materials	Gianaurelio Cuniberti
Contents and	The students know the fundamentals of physics with respect to the	
qualification aims	fabrication and the characteristics of	, , , , , , , , , , , , , , , , , , , ,
•	particularly the synthesis of clusters and n	
	with the help of electron beam lithograph	-
	scanning microscopy.	
	Furthermore, they know the theoretical f	undamentals of scanning
	force microscopy, chemical scanning force microscopy and optical	
	near field microscopy. They are familiar with relevant quantum effects	
	in mesoscopic systems, concepts of scaling laws, density of states	
	and giant magneto-resistance. They know about electron transport in	
	low dimensional solid-state materials and si	
Type of course	2 SWS lecture, 2 SWS exercise, 2 SWS lab	-
Requirements	Basic knowledge in mathematics, and theo	
for study	level, competences and skills of the modu	, ,
	Modelling.	
	Literature:	
	 E.L. Wolf: Nanophysics and nanotechno 	logy Wiley-VCH 2006
	 R. Waser: Nanoelectronics and information 	
	VCH 2005	nation teennology, vincy
	 C.W. Shong, S.C. Haur, A.T.S. Wee: 3 	Science at the nanoscale
	Pan Stanford Publ. 2010	
	 V.V. Mitin, V.A. Kochelap, M. A. 	Stroscio: Introduction to
	nanoelectronics, Cambridge 2008	
		ascony and spactroscony
	D.A. Bonnell: Scanning tunneling micro VCH Weinheim 1993	uscopy and specifoscopy,
		orials Oxford 1996
	 A.P. Sutton: Electronic structure of mate W.R. Fahrner (Ed.): Nanotechnology and 	
	2005	a nanoelectronics, springer
Practical use of	Compulsory module of the master's progr	am Nanobiophysics, track
the module	Molecular Biophysics. It provides the	
	Specialisation Module.	
Requirements for	The credits are awarded if the module ex	amination is passed. The
the award of	module examination consists of:	
credits	 a modelling project and 	
	 in the case of up to 10 students regi 	stered an oral examination
	(individual exam, duration 20 minut	
	than 10 students registered a writ	
	90 minutes). The type of examination	
	of the examination's registration pe	
	Biotechnology Center.	,
	Passing the module requires that the	oral or written exam is
	evaluated with min. "sufficient" (4.0) or bet	
Credits	For the module 6 credit points can be acqu	
and grades	the unweighted average of the 2 grades.	
Frequency of	The module is offered every academic year	in summer semester.
the course		
Workload	The workload is 180 working hours	
Duration of	1 semester	
the module		

Module Number	Module Name	Resp. Lecturer
BT-NB 2.3	Advanced Biophysics	Stephan Grill
Contents and qualification aims	Students know the statistical physics of bio-molecules and membranes as well as stochastic processes and fluctuations. They are familiar with active transport processes and molecular motors, the physics of the cytoskeleton, collective behaviour, cellular oscillations and biological self-organization. Students have basic knowledge of theoretical biophysics allowing them to systematically and quantitatively address selected biophysical problems.	
	Students gain a historical view on the motivation behind single molecule det spectroscopy in solid host-guest-systems, hole burning, low temperature experime heterogeneity, ergodic theory, analysis of mean values, access to intermediate or tra- extended knowledge on applications of s such as fluorescence spectroscopy spectroscopy, scanning probe microscopy f and manipulation of single molecules conformational fluctuations, enzyme kinet markovian behavior.	ection: single molecule spectral jumps, spectral nts, static and dynamic distributions rather than ansient states. They have single molecule methods and microscopy, force for the detection, analysis s e.g. protein folding,
	They know common principles of Scanning Probe Microscopy (SPM) based on short range forces and principle experimental setups. They are familiar with concepts and function modes of scanning near-field microscopy (SNOM), electrochemical scanning tunneling microscopy (ESTM), scanning tunneling microscopy (STM), atomic force microscopy (AFM) and magnetic force microscopy (MFM).	
	Furthermore, the students know the techniques for single molecule imaging an and spectroscopy: confocal setup, spectroscopy (FCS), coincidence analysis analysis, lifetime measurements, anis fluorescence resonance energy transfer (Fmicroscopy. Single particle tracking in 2D analysis of motor proteins in surface mo magnetic tweezers	d tracking by microscopy fluorescence correlation s, multi-parameter burst- sotropy measurements, FRET): Far-field and TIRF on membrane systems,
	Students know theoretical and practical as analysis and manipulation, and know a applications to biological systems. They are method or combinations of methods for a c the experimental conditions under which the	the challenges of their able to choose the right ertain problem, and know

Type of course	4 SWS lecture, 2 SWS exercise, 2 SWS seminar, 2 lab practicals (1 week each)	
Requirements for study	 Basic knowledge in statistical physics on Bachelor level, basic knowledge in polymer science, biochemistry and molecular cell biology on Abitur level. Literature: Courant & Hilbert: Methods of Mathematical Physics Jackson: Classical Electrodynamics Sakurai: Advanced Quantum Mechanics Huang: Introduction to Statistical Physics Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition Pollard & Earnshaw, Cell Biology, Saunders W.B., 2nd edition 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics.	
Requirements for the award of credits	 The credits are awarded if the module examination is passed. The module examination consists of two oral examinations (individual exam, 20 minutes each) and 2 lab protocols 	
Credits and grades	 For the module 12 credit points can be acquired. The module grade is the weighted average of: oral examinations 40% each lab protocols 10% each 	
Frequency of the course	The module is offered every academic year, starting in summer semester.	
Workload	The workload is 360 working hours	
Duration of the module	2 semesters	

Module Number BT-NB 2.4	Module Name Microsystems and Bioinspired Structures	Resp. Lecturer Hans-Georg Braun
Contents and qualification aims	The students know the physical and chemical basics for the production of microsystems by lithographic (electron beam/optical) and soft lithographic methods. They are familiar with the microstructuring of surfaces and the resulting changes in the physical properties (wetting/dewetting). They get to know the physical characteristics of liquid phases in contact with chemically/topographically heterogeneous surfaces and in microsystems as well as technical applications in microfluidic systems. They are familiar with basic concepts of biologically inspired nanotechnology. By means of selected examples they are introduced to the physical basics of the functioning and technological applications in the production of ultra-adhesive or ultra-hydrphobic structure elements that follow biological models. They are familiar with principles of selforganisation of meso- and microscopic objects, particularly capillary phenomena.	
Type of course	2 SWS lecture, 2 SWS lab practical	
Requirements For study	 Basic knowledge in physics (Optics, surface physics) and in physical chemistry on Bachelor-level Literature: T. Engel, P. Reid Physical Chemistry, Pearson R.A.L. Jones Soft Condensed Matter, Oxford Master Series in Condensed Matter Physics, Oxford University Press 2002 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics.	
Requirements for the award of credits	 The credits are awarded if the module examination is passed. The module examination consists of an oral examination (individual exam, duration 20 minutes) and a lab protocol 	
Credits and grades	 For this module, 5 credit points can be acquired. The module grade is the weighted average of: oral examination 85% lab protocol 15% 	
Frequency of the course	The module is offered every academic year in summer semester.	
Workload	The workload is 150 working hours.	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB 3.1	Lab Rotation Biophysics	Jochen Guck
Contents and	In this module, students work on a short s	scientific project from the
qualification aims	field of experimental biophysics in an in	-depth lab practical. The
	students gain practical experience with top	pical scientific methods in
	biophysical research teams and will be enabled to apply relevant	
	technologies and laboratory routines.	
Town of a compa		
Type of course	2 weeks block lab practical	
Requirements	Basic knowledge in mathematics (esp. Ca	
for study	calculus equations, basic knowledge in clas	
	electrodynamics, thermodynamics) on Bach	elor level.
	Literature:	
	Courant & Hilbert: Methods of Mathematical Physics	
	Jackson: Classical Electrodynamics	
	Sakurai: Advanced Quantum Mechanics	
Destinations	 Huang: Introduction to Statistical Physics Compulsory module of the master's program Nanobiophysics, track 	
Practical use of the module		
the module	Molecular Biophysics, as well as track Nanoscience and Nanotechnology/specialisation Biophysics.	
Requirements for		amination is passed. The
the award of	The credits are awarded if the module examination is passed. The module examination is a lab protocol.	
credits		
Credits	For the module 6 credit points can be acquired. The module grade is	
and grades	the grade of the lab protocol.	
Frequency of	The module is offered every academic year in winter semester.	
the course	, , ,	
Workload	The workload is 180 working hours	
Duration of	1 semester	
the module		

Module Number BT-NB 3.2 Contents and qualification aims	Module Name Lab Rotation NanophysicsResp. Lecturer Gianaurelio CunibertiIn this module, students work on a short scientific project from the field of nanotechnology or nanophysics in an in-depth lab practical. The students gain practical experience with topical scientific methods in nanoscientific research teams and will be enabled to apply relevant technologies and laboratory routines.	
Type of course	2 weeks block lab practical	
Requirements for study	 Knowledge of polymer science, biochemistry, molecular cell biology and bionanotechnology, basics of mathematics and theoretical physics on Bachelor level, programming skills on Abitur level- Literature: W. Pompe, G. Rödel, HJ. Weiss, M. Mertig: Bio-Nanomaterials: Designing Materials Inspired by Nature, Wiley-VCH 2013 G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009 N.T. Nguyen, S.T. Wereley: Fundamentals and applications of microfluidics, Artech House, 2002 F. Leal-Calderon, V. Schmitt, J. Bibette: Emulsion science. Basic principles, Springer 2007 D. Frenkel, B. Smit: Understanding molecular simulation: From algorithms to applications, Academic Press 2001 Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics.	
Requirements for the award of credits	The credits are awarded if the module examination is passed. The module examination is a lab protocol.	
Credits and grades	For the module 6 credit points can be acquired. The module grade is the grade for the lab protocol.	
Frequency of the course	The module is offered every academic year in winter semester.	
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number BT-NB 3.3	Module Name Lab Rotation Choice	Resp. Lecturer Jochen Guck
Contents and qualification aims	In this module, students work on a short scientific project from any of the offered fields, e.g. biology, chemistry, or theoretical biophysics in an in-depth lab practical. The students gain practical experience with topical scientific methods in research teams and will be enabled to apply relevant technologies and laboratory routines.	
Type of course	2 weeks block lab practical	
Requirements for study	 Knowledge of polymer science, biochemistry, molecular cell biology and bionanotechnology, basics of mathematics and theoretical physics on Bachelor level, programming skills on Abitur level. Literature: David Halliday, D, Resnick, R, Walter, J, 1997, Fundamentals of Physics, Wiley W. Pompe, G. Rödel, HJ. Weiss, M. Mertig: Bio-Nanomaterials: Designing Materials Inspired by Nature, Wiley-VCH 2013 G.L. Hornyak et al.: Introduction to nanoscience and nanotechnology, CRC Press 2009 N.T. Nguyen, S.T. Wereley: Fundamentals and applications of microfluidics, Artech House, 2002 F. Leal-Calderon, V. Schmitt, J. Bibette: Emulsion science. Basic principles, Springer 2007 D. Frenkel, B. Smit: Understanding molecular simulation: From algorithms to applications, Academic Press 2001 Alberts et al, Molecular Biology of the Cell, Taylor & Francis Ltd, 5th revised edition 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics.	
Requirements for the award of credits	The credits are awarded if the module examination is passed. The module examination is a lab protocol (max. 4 pages).	
Credits and grades	For the module 6 credit points can be acquired. The module grade is the grade for the lab protocol.	
Frequency of the course	The module is offered every academic year in winter semester.	
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB E	Specialisation Module	Jochen Guck
Contents and qualification aims	The students know selected current nano- and biophysical research issues. By choosing their courses for this module, they create their own specific profile within the master's program. The selection of courses may vary according to topical academic questions and recent developments in the diverse subjects.	
	The students gain an in-depth knowledge of fields. They are able to orientate themselves research and know about the latest develor required subjects.	within different areas of
Type of course	4 SWS lecture. The subjects incl. scope need to be chosen from the list of electives/catalogue for the master's program Nanobiophysics/Molecular Biophysics. This list/catalogue is published at the start of the semester as is customary at the Biotechnology Center and includes the type of examinations.	
Requirements for study	Competences and skills of the modules Intro and Molecular Cell Biology, Applied Nanostructures Materials.	oduction to Biochemistry Nanotechnology and
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Molecular Biophysics.	
Requirements for the award of credits	The credits are awarded if the module examination is passed. The module examination consists of examinations as specified in the list/catalogue of electives Nanobiophysics/Molecular Biophysics.	
Credits and grades	For the module 6 credit points can be acquired. The module grade is the unweighted average grade of the grades.	
Frequency of the course	The module is offered every academic year in	winter semester.
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number BT-NB E1	Module Name Molecular Biophysics	Resp. Lecturer Jochen Guck
Contents and qualification aims	The students are familiar with concepts of phenomenological thermodynamics: energy, entropy, transport phenomena, biologically active forces, classical reaction and enzyme kinetics, bioenergetics as well as membrane biophysics and basics of electrophysiology.	
	They know the most important methods with respect to molecular, cellular and systems biophysics as well as structural methods (NMR, X-Ray), spectroscopy and microscopy, modern methods in biochemistry and proteomics.	
	Students will have an overview over the most important concepts and the broad methodology of modern applied biophysics. They are able to select the best method(s) for a certain practical task and have background knowledge about their prerequisites and which systems to best apply them to. The students are familiar with functional biomolecular units as machines with the specific aim to use them in more complex technological or medical processes as nanoscale functional elements. The students have an overview of potential applications of the proteins of fibrillar structures, applications of motor proteins, applications of motor proteins of the cytoskeleton, enzymes: classification, kinetics, control and use, applications of viruses, prediction, design and engineering of cellular machines. They know how to write a grant proposal.	
	The students have an interdisciplinary re competence, which qualifies them both (master thesis or rather subsequent doct activity in the R&D field of a biotechnology of	for scientific intentions corate) as well as for an
Type of course	4 SWS lecture, 2 SWS seminar, 2 SWS exer practical	rcise and 2 SWS lab
Requirements for study	 thermodynamics) on Bachelor level, basic level. Literature: Courant & Hilbert: Methods of Mathema Jackson: Classical Electrodynamics Sakurai: Advanced Quantum Mechanics Huang: Introduction to Statistical Physics Cell Biology, 2nd edition (by Thomas 	n Bachelor level. Basic nanics, electrodynamics, s in biology on Bachelor atical Physics

Practical use of	Compulsory module of the master's program Nanobiophysics, track	
the module	Nanoscience and Nanotechnology, specialization Biophysics	
Requirements for	The credits are awarded if the module examination is passed. The	
the award of	module examination is a written examination (duration 90 minutes).	
credits		
Credits	For the module 9 credit points can be acquired. The module grade is	
and grades	the grade of the written examination.	
Frequency of	The module is offered every academic year in winter semester.	
the course		
Workload	The workload is 270 working hours	
Duration of	1 semester	
the module		

Module Number	Module Name	Resp. Lecturer
BT-NB E2	Biological Oriented Module	Francis Stewart
Contents and qualification aims	The students know research issues and recent developments in selected research areas of molecular and cell biology, developmental or systems biology and surface chemistry. By choosing a number of elective, the students create an individual profile within the master's program.	
	They are able to orientate themselves within different areas of research and know about the latest developments in the selected subjects.	
Type of course	4 SWS lecture	
Requirements for study	 Basic knowledge in Biology, Physics and Chemistry on Bachelor-level. Literature: Molecular biology of the Cell (Bruce Alberts), Kapitel 1 und 2 Molecular Cell Biology (Darnell), Kapitel 1 	
Practical use of the module	Compulsory module of the master's program Nanobiophysics, track Nanoscience and Nanotechnology	
Requirements for the award of credits	The credits are awarded if the module examination is passed. The module examination consists of 2 oral exams (individual exam, duration 20 min each)	
Credits and grades	For the module 6 credit points can be acquired. The module grade is the unweighted average grade of the 2 grades.	
Frequency of the course	The module is offered every academic year in winter semester.	
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB E3	Nanooptics and Magnetism on the Nanoscale	Lukas Eng
Contents and qualification aims	 Nanoscale The students are familiar with: field of a hertz-dipole, evanescent field, far field, field distribution in focus of linear, circular, radial and azimuthal polarisation, diffraction, principles and applications of the near-field scanning optical microscopy, optical micro-cavity, impact of an optical field in a closed space on the fluorescence properties of a molecule, generation of optical near field on interfaces and through nanostructures: optical aperture, metallic nanoparticles, surface plasmon, optical antennae. The module introduces modern optics on the basis of single molecule detection. Furthermore, the students know fundamental aspects of magnetism, magnetic resonance, thermodynamics, magnetization, magnetic exchange, anisotropy on the molecular scale, molecular and nanoscale magnets in memory technology and medicine. They know modern aspects of magnetism of molecules and on the nanometer scale. 	
Type of course	4 SWS lecture	
Requirements for study	 Knowledge of theoretical and experimental biophysics on Bachelor level. Literature: Courant & Hilbert: Methods of Mathematical Physics Jackson: Classical Electrodynamics Sakurai: Advanced Quantum Mechanics Huang: Introduction to Statistical Physics David Halliday, D, Resnick, R, Walter, J, 1997, Fundamentals of Physics, Wiley 	
Practical use of the module	Compulsory optional module of the master's program Nanobiophysics, track Nanoscience and Nanotechnology, specialisation Nanoelectronics	
Requirements for the award of credits	The credits are awarded if the module examination is passed. The module examination consists of an oral exam (individual exam, duration 20 min).	
Credits and grades	For the module 6 credit points can be acquired. The module grade is the grade for the oral exam.	
Frequency of the course	The module is offered every academic year in winter semester.	
Workload	The workload is 180 working hours	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer
BT-NB E4	Molecular Electronics	Gianaurelio Cuniberti
Contents and qualification aims	The students know the fundamentals of molecular electronics, particularly experimental methods, physical effects and theoretical instruments. They are familiar with single molecule electronics, scanning probes and break junction techniques, transport mechanisms on the nanoscale, molecular components (diodes, transistors, sensors) and molecular structures. The students know the most important experimental and theoretical methods for the analysis of charge transfer on the molecular scale.	
Type of course	2 SWS lecture, 2 SWS exercise, 2 SWS seminar	
Requirements for study	 Basics of mathematics and physics on Bachelor level. Literature: M.C. Petty: Molecular electronics, Wiley 2007, Kapitel 1 und 2 J.C. Cuevas, E. Scheer: Molecular electronics, World Scientific 2010, Kapitel 1 	
Practical use of the module	Compulsory optional module of the master's program Nanobiophysics, track Nanoscience and Nanotechnology, specialisation Nanoelectronics	
Requirements for the award of credits	 The credits are awarded if the module examination is passed. The module examination consists of an oral exam (individual exam, duration 20 min) and a presentation 	
Credits and grades	 For the module 9 credit points can be acquired. The module grade is the weighted average of: oral exam 70% oral presentation 30% 	
Frequency of the course	The module is offered every academic year in winter semester.	
Workload	The workload is 270 working hours	
Duration of the module	1 semester	

Module Number	Module Name	Resp. Lecturer	
BT-NB E5	Broadening Module	Jochen Guck	
Contents and	The students know selected current nano- and biophysical research		
qualification aims	issues. Based on their choice of courses, the students gain an in-		
	depth knowledge of the selected research fields. They will be able to		
	orientate themselves within different areas of research and know		
	about the latest developments in the chosen subjects.		
Type of course	6 SWS lecture. The subjects incl. scope need to be chosen from the		
	list of electives/catalogue for the master's program		
	Nanobiophysics/Nanoscience and Nanotechnology. This list/catalogue		
	is published at the start of the semester as is customary at the		
P	Biotechnology Center and includes the type of examinations.		
Requirements	Basic knowledge in Biology, Physics and Chemistry on Bachelor-level.		
for study	Literature:		
	 Nelson/Cox: Lehninger Principles of Biochemistry, Worth Publishers 		
	 David Halliday, D, Resnick, R, Walter, J, 1997, Fundamentals of 		
	Physics, Wiley		
Practical use of	Compulsory optional module of the master's program		
the module	Nanobiophysics, track Nanoscience and Nanotechnology		
Requirements for	The credits are awarded if the module examination is passed. The		
the award of	module examination consists of examinations as specified in the		
credits	list/catalogue of electives Nanobiophysics/Nanoscience and		
	Nanotechnology.		
Credits	For the module 9 credit points can be acquired. The module grade is		
and grades	the unweighted average grade of the grades of	obtained.	
Frequency of	The module is offered every academic year in winter semester.		
the course	, , ,		
Workload	The workload is 270 working hours		
Duration of	1 semester		
the module			