

Faculty of Environmental Sciences Institute for Groundwater Management

Addition and Enhancement of Flow and Transport processes to the MODFLOW-2005 Conduit Flow Process

Thomas Reimann (1), Rudolf Liedl (1), Markus Giese (2), Tobias Geyer (2), Jean-Christophe Maréchal (3), Nathalie Dörfliger (3), Sebastian Bauer (4), Steffen Birk (5)

in cooperation with W. Barclay Shoemaker, USGS

(1) TU Dresden; Institute for Groundwater Management

- (2) University of Göttingen; Geoscientific Centre
- (3) BRGM; Water, Environment and Ecotechnologies division
- (4) University of Kiel; Institute of Geosciences
- (5) University of Graz; Institute for Earth Sciences

NGWA Ground Water Summit 2013

Intended model use

Karst characterization – artificial signals

Cent Fonts catchment, South France

Intended model use

Karst characterization – artificial signals

Cent Fonts catchment, South France

Intended model use

Karst characterization – artificial signals

Cent Fonts catchment, South France

pumping well

Intended model use

Karst characterization – artificial signals

Intended model use

Karst characterization – artificial signals

Intended model use

Karst characterization – artificial signals

conduit head observation

Intended model use

Karst characterization – artificial signals

matrix head observation

Outline

1. Initial situation

2. Flow enhancements

boundary conditions

conduit storage

3. Transport enhancements

solutes

heat

4. Conclusion

Model approaches

SCPE Single	DCPE Double	HM	DSFS Discete	DMFS Discete
Continuum	Continuum	n Hybrid	Single	Multiple
Porous Equivalent	Porous Equivalent	Model	Fracture Set	Fracture Set
Determini	stic Approach –		\rightarrow	Stochastic Approach
small -		- Investigation Effort		► high
high -		Practical Applicability		small
limited -	(Capability to Simulate Heteroge	eneities -	good

(from Teutsch and Sauter 1991)

Hybridmodels

Hybridmodels

MODFLOW-2005 Conduit Flow Process (CFP)

- Freely available hybrid model CFP Mode 1 (CFPM1)
- CFPM1 considers discrete pipe networks
- coupling to MODFLOW-2005
- no transport processes
- Shoemaker et al. 2008: USGS TM 6 / A14

A product of the Ground-Water Resources Program

Documentation of a Conduit Flow Process (CFP) for MODFLOW-2005

Techniques and Methods, Book 6, Chapter A24

Department of the trees
 Department Servers

Hybridmodels

CFPM1 hydraulics

→ laminar and turbulent flow in discrete pipes

Matrix
$$\frac{\partial}{\partial x} \left(K_{xx} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{yy} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{zz} \frac{\partial h}{\partial z} \right) \pm W = S_S \frac{\partial h}{\partial t}$$

Recharge Matrix Source Rive

Karst aquifer scheme (Bauer 2002)

Conduit system

laminar

turbulen

laminar
$$v = -\frac{d^2}{32} \frac{g}{v} I$$
Hagen Poiseuilleturbulent $v = 2log \left(\frac{k_c}{3.71d} + \frac{2.51v}{d\sqrt{2gdI}} \right) \sqrt{2gdI}$ Colebrook-WhiteTransfer $Q_{ex} = \alpha_{ex} (h_c - h_m)$

CFPM1 application

Large-scale pumping test (Maréchal et al., 2008)

some available data (e.g. Maréchal et al. 2008)

- conduit diameter ~ 3.5 m
- T_{matrix} 1.6E-5 m²/s
- S_{matrix} 0.007
- Bueges loses ~ 0.015 m³/s
- Herault inflow during pumping ~ 0.030 m³/s
- and more ...

CFPM1 application

Large-scale pumping test (Maréchal et al., 2008)

Conceptual model

some model characteristics

- fully filled pipes interacting with matrix
- uniform, straight conduit, diameter = 3.5 m
- 90 pipes / 91 nodes (conduit)
- spring represented by fixed head boundary
- K_{matrix} 9E-6 m²/s; S_{matrix} 0.007
- 100 m x 100 m cells (matrix)
- pumping with 400 liters per second from the conduit
- transient MODFLOW computation

CFPM1 application

Large-scale pumping test (Maréchal et al., 2008)

→ no significant drawdown; unhampered water inflow through fixed head

Outline

1. Initial situation

2. Flow enhancements

boundary conditions

conduit storage

3. Transport enhancements

solutes

heat

4. Conclusion

Boundary conditions

New Implemented

Fixed Head / Limited Flow (FHLQ)

• user defined flow threshold (e.g. limited inflow)

Cauchy

- head dependent flow (e.g. river)
- user defined flow threshold

Limited head

• temporarily fixed head (e.g. flooded sinkholes)

Fixed flow

- prescribed in- or outflow (e.g. well)
- → user friendly (input files, budgets, transport processes)
- → time dependent input possible (time series)

San Antonio, April 29th, 2013

 $FHLQ = \begin{cases} h = H, & Q \leq Q_L \\ Q = Q_L, & \text{else} \end{cases}$ H = fixed head value $Q_L = \text{limiting flow threshold} \qquad Bauer et al. 2005$

$$\begin{aligned} Q_{cy} &= c_{cy} \big(h - h_{cy} \big) \\ c_{cy} &= Cauchy \ conductivity \\ h_{cy} &= Cauchy \ head \ (e.g. \ river) \end{aligned}$$

$$h_{LH} = \begin{cases} h \text{ computed (node is free flow), } & h \leq H_{LH} \\ h = H_{LH} \text{ (fixed head boundary), else} \\ H_{LH} = \text{limiting head} \end{cases}$$

CFPM1 application – adaptation boundary conditions

Large-scale pumping test (Maréchal et al., 2008)

model enhancement:

- FHLQ boundary at the spring
- water abstracting through well boundary

CFPM1 application – adaptation boundary conditions

Large-scale pumping test (Maréchal et al., 2008)

adequate drawdown

Intermediate results

• temporarily behavior not reflected (quasi-steady hydraulics in the conduit)

San Antonio, April 29th, 2013

Conduit storage

Concepts

- actually: storage mainly provided by the matrix
- new suggestion: additional (fast reacting) storage associated with conduits
 - (e.g. large fractures, voids, caves)

Conduit storage

New concept - implementation

- Conduit Associated Drainable Storage CADS
- fully implemented in CFPM1 routines
- one additional parameter: CAD storage width W_{CADS}

Conduit storage

Functionality - testing

• CADS results in damping

CFPM1 application – conduit storage

Large-scale pumping test (Maréchal et al., 2008)

Model enhancement:

- FHLQ boundary at the spring
- pumping with well boundary
- conduit with CADS
- *W_{CADS}* = 0.21 m (from Marechal et al. 2008)

CFPM1 application – conduit storage

Large-scale pumping test (Maréchal et al., 2008)

• model (not calibrated) results in adequate drawdown / temporarily behavior

catchment scale modeling is ongoing work

San Antonio, April 29th, 2013

CFPM1 application – outlook

Inverse modeling / PEST

- example: different realizations for the conduit geometry
- adjustable parameters: K_{matrix} , S_{matrix} , α_{ex}

single conduit

conduit with tributaries

CFPM1 application – outlook

Inverse modeling / PEST

conduit with tributaries

Further consideration:

- real field situation (catchment, boundaries, geology, ...)
- matrix observation wells
- pumping well: drawdown derivatives / flow dimension ...

San Antonio, April 29th, 2013

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- (1) Initial stage well bore storage
- (2) Intermediate stage infinite system response
- (3) Late stage boundary conditions

Simple model

- 21 x 21 cells
- cell size 100 m x 100 m
- 1 layer
 - confined
 - 150 m thickness
- central conduit, 100 m long
- conduit pumping well
- without CADS

San Antonio, April 29th, 2013

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- (1)Initial stage – well bore storage
- (2)Intermediate stage – infinite system response
- (3) Late stage boundary conditions

Simple model

- 21 x 21 cells
- cell size 100 m x 100 m
- 1 layer
 - confined
 - 150 m thickness
- central conduit, 100 m long
- conduit pumping well

additional CADS

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- flow dimension *n* can be computed from drawdown derivative
- additional tool to characterize conduit structure

top view

- <u>n = 0: well bore storage</u>
- n = 1: linear flow
- n = 2: (pseudo)radial flow
- n = 3: spherical flow

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- flow dimension *n* can be computed from drawdown derivative
- additional tool to characterize conduit structure

top view

- n = 0: well bore storage
- n = 1: linear flow
- n = 2: (pseudo)radial flow
- n = 3: spherical flow

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- flow dimension *n* can be computed from drawdown derivative
- additional tool to characterize conduit structure

top view

- n = 0: well bore storage
- n = 1: linear flow
- n = 2: (pseudo)radial flow
- n = 3: spherical flow

San Antonio, April 29th, 2013

CFPM1 application – outlook

Drawdown derivatives / Flow dimension analysis

- flow dimension *n* can be computed from drawdown derivative
- additional tool to characterize conduit structure

Example:

- single conduit, variable length up to 10 000 m
- conduit pumping well, centrally placed
- constant pumping rate
- quasi infinite matrix
- n = 0: well bore storage
- n = 1: linear flow
- n = 2: (pseudo)radial flow
- n = 3: spherical flow

Outline

- 1. Initial situation
- 2. Flow enhancements

boundary conditions

conduit storage

3. Transport enhancements

solutes

heat

4. Conclusion

Transport implementation

Approaches

(1) Conduit transport **included in CFP** subroutines

- transport computation alternate with flow computation (time step splitting)
- → heat transport module HTM
- → solute transport module **STM**

(2) Conduit transport included in a **modified MT3D** → UMT3D (Spiessl et al., 2007)

- flow transport link file included in CFP
- transport computation independent from flow model
- (actually simplified transport within conduits no further consideration here)

Heat and solute transport (HTM / STM)

Processes – interaction with rock matrix

Boundary layer

- different behavior for lam. / turb.

Matrix diffusion

 considers influence of transfer processes on matrix conditions

San Antonio, April 29th, 2013

Heat and solute transport (HTM / STM)

Processes – interaction with rock matrix

Boundary layer

- different behavior for lam. / turb.

Matrix diffusion

- considers influence of transfer processes on matrix conditions
- 1D radial transport model around conduit (Birk 2003)

San Antonio, April 29th, 2013

Heat and solute transport (HTM / STM)

Processes

HTM (heat)	STM (solutes)
convection in conduits	advection in conduits
	dispersion
	 fixed coefficient, or
	 Taylor dispersion (lam./turb.)
thermal boundary layer	concentration boundary layer
rock matrix conduction	rock matrix diffusion with retardation
$\frac{\partial T}{\partial t} = -v \frac{\partial T}{\partial x} + S_T(x, t, T)$	$\frac{\partial C}{\partial t} = -v \frac{\partial C}{\partial x} + D_{dis} \frac{\partial^2 C}{\partial x^2} + S_C(x, t, C)$

 $S_{T/C}$ = source term (boundary layer)

Heat and solute transport (HTM / STM)

Some evaluation

Heat and solute transport (HTM / STM)

Some evaluation

convection only

Heat and solute transport (HTM / STM)

Some evaluation

convection only

convection and thermal boundary layer

Heat and solute transport (HTM / STM)

Some evaluation

convection only

convection, thermal boundary layer, and rock conduction

CFPM1 application

Temperature in pumping well

time dependent input: pumping rate, temperatures (river, pumping well)

San Antonio, April 29th, 2013

T. Reimann – Additions and Enhancements to MODFLOW CFP

CFPM1 application

Some evaluation

first results (intention here: check model!) → reasonable (not calibrated)

Outline

- 1. Initial situation
- 2. Flow enhancements

boundary conditions

conduit storage

3. Transport enhancements

solutes

heat

4. Conclusion

4. Conclusion

Addition and enhancement of flow and transport processes to CFP

Hydraulic enhancements

new boundary conditions

- Fixed Head Limited Flow (FHLQ) / Limited Head (LH) / Cauchy / Well
- time dependent input data
- applicable for solute / heat transport

enhanced concept: Conduit Associated Drainable Storage – CADS

- signal damping
- one additional parameter CADS width

Possible use / application:

- → water abstraction scenarios (horizontal wells?)
- → pumping test analysis (drawdown, derivative analysis, flow dimensions)
- → inverse modeling (coupling with parameter estimation tools)

4. Conclusion

Addition and enhancement of flow and transport processes to CFP

Transport enhancements

two alternative approaches

- (1) modified MT3D code and flow-transport link file within CFP
- (2) HTM / STM package within CFP
- processes within HTM / STM: advection (convection), dispersion, boundary
- layer, matrix diffusion (conduction)
- fully integrated in CFP (boundary conditions, time dependent input, budgets)

Possible use / application:

- → karst characterization
- → tracer test evaluation
- → geothermal investigations

4. Conclusion

Addition and enhancement of flow and transport processes to CFP

Further information / contact

- → modified CFP executable with documentation available on request
- → CADS / FHLQ boundary: "Representation of water abstraction from a karst conduit with numerical discrete-continuum models"; Open Access Journal HESSD; interactive discussion until 3rd June 2013; doi:10.5194/hessd-10-4463-2013
- → www.tu-dresden.de/fghhigw: further tools (conduit network generator)

Acknowledgements: German Research Foundation (DFG)			
W. Barclay Shoemaker	bshoemak@usgs.gov		
Sebastian Bauer	sebastian.bauer@gpi.uni-kiel.de		
Steffen Birk	steffen.birk@uni-graz.at		
Jean Christoph Maréchal	jc.marechal@brgm.fr		
Markus Giese	mgiese@gwdg.de		
Thomas Reimann	Thomas.Reimann@tu-dresden.de		

San Antonio, April 29th, 2013