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Abstract

GMA welding is still one of the most frequently applied welding techniques in the industry. Par-
ticularly the joining of aluminium, high alloyed steels or titanium requires a cover of shielding
gas in order to provide a low PPM concentration of oxygen. Thus, the result of the welding
process depends essentially on the physiochemic and �uidic properties of the used process gas.
Consequently, it is necessary to be able to describe and to analyse its �ow with reference to
various in�uencing variables. However, it is very di�cult to realize this during arc welding pro-
cesses. A poor visibility is caused by the covered areas inside the welding torch, temperatures
up to 20,000 K, the high radiation of the arc and the electromagnetic �eld. The appliance of
a modern numerical welding process simulation o�ers the possibility to describe the complex
physical correlations economically and fast with a high resolution.
This article introduces a model, that was used for the visualization of the �ow of the shielding
gas in order to make statements about the �ow conditions inside the welding torch and the
concentration of oxygen at the workpiece. Furthermore, the possibilities of a measurement with
gauging the oxygen and the Schlieren technique are described.

1 Introduction and state of

the technology

GMA welding is used as a semi-automatic
or automatic arc welding process in many
applications. In this process the arc is burn-
ing between a continuous and consumable
wire electrode and the workpiece. The used
shielding gas assumes a lot of tasks, for ex-
ample the cooling of the torch, the de�nition
of features of the arc or the protection of the
melt from oxidation. Particularly the joining
of aluminium, high alloyed steels or titanium
requires a cover of shielding gas in order to
provide a low PPM concentration of oxygen;
otherwise costly rework cannot be avoided.
Furthermore, the shielding gas transports
metal vapour, dust and fume into the work-
ing environment. In summary, the shielding
gas �ow is so important, that it is essential
to analyse its characteristics in detail and in
context with the other process components.
A poor visibility is caused by the covered ar-

eas inside the welding torch, temperatures up
to 20,000 K, the high radiation of the arc and
the electromagnetic �eld. The description of
the shielding gas �ow is not a trivial problem
and measurements are limited. The con-
struction parameters of current GMA weld-
ing torches [2, 3] and developments associated
with the shielding gas �ow [9] are mostly de-
termined by experiments, which visualised
the shielding gas �ow without the arc. In
reference [20] the use of the Particle Image
Velocimetry (PIV) with GMA welding is de-
scribed. In this way it is possible to analyse
two-dimensional �ow �elds. There are results
with the open jet of short arc, impulse arc and
spray arc.[6, 20] The PIV is also part of this
study, but won't be discussed in this article.
In addition the �ow �eld can be described
by the Schlieren technique [8] and by gaug-
ing the oxygen it is possible to measure the
concentration of oxygen directly next to the
arc [5]. All these measurement methods are
the base to deploy and to validate the multi-
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faceted options of the numerical simulation.
It a�ords the description of complex physical
processes with a local and temporal high res-
olution. Therefore it is able to describe the
shielding gas �ow inside the torch, where no
measurement is adaptive. Although recent
simulation models of GMA welding processes
include the arc as well as the drip transi-
tion, they just can be applied to a perfect
cover of shielding gas within an atmosphere
of 100% argon. [7, 11, 16, 17] In reference [4]
a model was used, which allows statements of
the shielding e�ciency and fume extraction
of a GMA welding torch with the arc, but
the arc is modelled as a frustum regarding
only the thermal in�uence. In addition it is
unclear, if a turbulence model was applied.
Speiseder [17] compares calculated �ow �elds
in ANSYS CFX with PIV measurements.
The good accordance between the measure-
ment and the model even with a simple arc
model and without metal vaporisation can
be shown. But only qualitative statements
about turbulent and di�usive contamination
of atmosphere could be given. The model in

ANSYS CFX was developed within the last
few years and now it is able to regard di�usion
processes and complex models of the arc. [15]

2 Grid requirements and

Modelling

It is necessary to develop a special grid for
modelling a GMA welding process with the
aim to valuate the shielding gas �ow and
the atmosphere contamination. Areas that
are relevant for the gas �ow have to be very
�ne, whereas areas of little signi�cance can
be rather coarse-meshed. The grid will be
gradually improved until the results are in a
metrological validated range and change only
insigni�cantly through further improvement.
However, in some parts of the grid this high
solution is not necessary and can be system-
atically reduced. It is feasible to reduce the
computing time without losing quality of the
results.

Fig. 1: Proceeding for creating a computational grid with the GMA welding torch
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Especially the regions above the gas nozzle
and the wall near regions of workpiece are
important.

Apart from solving continuity equations, mo-
ment or energy balances and equations of the
arc model a turbulence model will be inte-
grated and the di�usion of argon in the air
will be described by a transport equation.
The e�ects of the arc on the �ow of the gas
are analysed. The metal vaporization is also
part of the research [14], but will not be dis-
cussed in the present article. Figure 2 shows
the geometry of the used GMA welding torch
and the names of the domains.

Fig. 2: 3◦ model of a GMA welding torch

In the �rst step, the gas �ow was calculated
without the arc. All interfaces between the
�uid and the solids are taken as no slip walls
with a temperature of 300 K. To research the
contamination of the shielding gas by turbu-
lence mixing a turbulence model is used ac-
cording to the state of technology. Di�erent
turbulence models were compared (none, k-
Epsilon, k-Omega, SST, BSL, SSG,). The
present article applies a two-equation turbu-
lence model (Shear-Stress-Transport / SST)

from the series of turbulent viscosity models,
which is based on the Navier-Stokes equa-
tion (RANS). It is advanced from the k-
Omega model of Menter [12] and combines
advantages of various two-equation turbu-
lence models in areas close and far from the
wall [1, 10]. In this case the SST model is the
most advantageous.
The di�usion in the gas mixture of argon and
air will be calculated by the stated transport
equation (1) and the temperature-dependent
kinematic di�usivity. [13]

Argon transport equation [17]:

∂ (ρYAr)
∂t

+∇ (ρ~uYAr − ρDY∇YAr) = 0 (1)

with:
mass fraction of argon YAr

density of the mixture ρ
velocity vector ~u

It is assumed that argon �ows at the inlet
with a volume concentration of 99.996%. At
the beginning the �uid contains an air con-
centration of 100%. The concentration of
oxygen is calculated as a consistent propor-
tion of 23.135% of air.
The implementation of the arc model is ob-
tained by the physical model of magnetohy-
drodynamics (MHD). The conservation equa-
tions of the �ow (Navier-Stokes equation) are
combined with the equations of electromag-
netism (Maxwell's equation) and solved in
ANSYS CFX. The resistance heating and the
magnetic �eld that is caused by the electrical
power are considered. The Lorentz force pro-
duced from the current �ow and the magnetic
�eld act on the �uid.[19] The boundary con-
ditions are named in table 1.

Table 1: Boundary conditions of GMA welding model with MHD

region type T magnetic electric ṁSG / rel. slip
potential potential pressure

INLET
Inlet 300 K

∂Ax

∂n
=

∂Ay

∂n
=

∂Az

∂n
= 0

∂Φ

∂n
= 0 10 l/min -

F-G
electrode-TOP

Wall 400 K
∂Ax

∂n
=

∂Ay

∂n
=

∂Az

∂n
= 0 18,8 V 0 -

D-E
contact tube-TOP

Wall 400 K
∂Ax

∂n
=

∂Ay

∂n
=

∂Az

∂n
= 0 - 0 -

E-F
gas nozzle-TOP

Wall 300 K
∂Ax

∂n
=

∂Ay

∂n
=

∂Az

∂n
= 0 - 0 -

G-H
FLUID-electrode

Interface �ux �ux �ux 0 no slip
C-M
FLUID-workpiece

Interface �ux �ux �ux 0 no slip
B-K
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region type T magnetic electric ṁSG / rel. slip
potential potential pressure

FLUID-gas nozzle
Interface �ux �ux

∂Φ

∂n
= 0 0 no slip

G-P-Q-H
FLUID-contact tube

Interface �ux �ux
∂Φ

∂n
= 0 0 no slip

M-N-O-F
electr.-cont. tube

Interface �ux �ux
∂Φ

∂n
= 0 0 -

E-M
OPENING

Opening 300 K 0. - p0 -
H-I-J-K
workpiece-wall

Wall 400 K 0.
∂Φ

∂n
= 0 0 -

K-L
workpiece-bottom

Interface
∂T

∂n
= 0

∂Ax

∂n
=

∂Ay

∂n
=

∂Az

∂n
= 0 0. 0 -

A-L

3 Diagnostics

In order to validate the results of the simu-
lation, diagnosis methods were used and de-
veloped. The methods are described in the
following passage:

3.1 Schlieren technique

The Schlieren technique is based on the dif-
ferences of the density caused by the �ow in
transparent media. The change of density
caused to a de�ection of the light beams, be-
cause of changing the refractive index. In this
way are compressible turbulences and atmo-
sphere turbulences visualized. Because of the
high radiation the Schlieren technique is con-
ventionally used without the arc. But the
in�uence by the arc is so important, that it is
essential to comprehend it. Special mirrors,
lenses, apertures and �lters make this possi-
ble.

Fig. 3: Set up of a Schlieren test station

The method was used with TIG and plasma
welding processes [8] and is applied to GMA
welding at time. Similar to the PIV measure-
ment results, the Schlieren pictures can be
compared with the simulation results. The
set up of the Schlieren technique is relative

easy to handle and the shielding gas �ow is
not in�uenced by the measurement method.
The main objectives are the characteristics
of global �ow not quantitative information
about special values like velocity or tempera-
ture.

Fig. 4: Pictures of TIG Processes with various

amounts of shielding gas

Figure 4 shows pictures of a TIG pro-
cess with di�erent amounts of shielding gas.
(Ar50/He50). The increasing appearance of
turbulent �ow becomes obvious in the pic-
tures.

4



3.2 Gauging of oxygen

The de�ned extraction of a marginal amount
of gas by suction directly next to the arc and
the appliance of the lambda sensor principle
permit gauging of the oxygen concentration
at the workpiece./5/ With TIG-processes the
arc is burning on a cooled copper plate. In
this assembly there is a small bore (0.5 mm
bore diameter) and the arc is guided over the
bore hole. The continuously sucked o� gas
stream (in middle 0.15 l/min) is analyzed by
the sensor and the concentration of oxygen
can be measured. With GMA welding pro-
cesses it is more di�cult because the melt
would clog the bore hole. To avoid this, a
special formed tungsten electrode is brazed in
the contact tube instead of the wire electrode
and so the process is approximately emulated.
To suck o� a gas stream from the near of the
electrode, it is imaginable to place a slender
duct into the arc.

Fig. 5: Set up of Gauging the oxygen

Fig. 6: Measurement results (without arc)

4 Results

It is assumed that the gas distribution with
GMA welding processes is nearly axially sym-
metrical. However, the typical construction
of standard GMA welding torches leads to
the assumption that the high �ow velocity
evokes turbulent circumstances in the bore-
hole, which also a�ect the cover of shielding
gas at the workpiece. In order to question the
in�ow conditions at the inlet and accordingly
to evaluate the measurement results, the �ow
was considered above the in�ow cross-section,
described in the model. A model without the
arc was used for these analyses. The simu-
lation of the gas �ow shows the formation of
turbulences and their e�ect on the workpiece.
It is proved that it cannot assume an axially
symmetrical gas distribution. The laminar
and steady in�ow conditions at the inlet have
to be assumed for reasons of simpli�cation.

Fig. 7: Gas distribution in the upper part of the welding torch (Argon 10 l/min)
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Fig. 8: E�ects of the turbulent in�ow at the workpiece without the arc

The comparison between �ow conditions with
and without the arc makes clear that the
gas is strongly accelerated by the in�uence of
the high temperatures and the Lorentz force.
Moreover, the �ow direction below the con-
tact tube changes. Without the arc model a
gas �ow of little velocities streams from work-
piece to the contact tube. Regarding to the
arc, the direction changes and velocities up to
280 m/s within the arc are calculated. The
gas is accelerated towards the axis of the arc
and �ow o� in axially parallel direction to the
workpiece.

Fig. 9: Proportion of oxygen of the gas �ow

with (on the right) and without the arc (on the

left), argon mass �ow 10 l/min

Fig. 10: Velocity (on the left) and temperature

(on the right) in the �uid with the arc model,

argon mass �ow 10 l/min

Fig. 11: Argon mass �ow 5 l/min (on the left)

and 10 l/min (on the right) with the arc
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Fig. 12: Comparison of measurement and

simulation (Argon 5 l/min)

Fig. 13: Comparison of measurement and

simulation (Argon 10 l/min)

Figures 12 and 13 show the results of the mea-
surement and the mass fraction of oxygen in
the simulation. The lower concentration of
oxygen in the simulation is caused by the as-
sumption of ideal, axially symmetrically con-
ditions. Furthermore, the simulation is aimed
to refer to the missing observance of the mea-
sured gas �ow.

5 Conclusion

The article introduces a numerical model that
visualizes the �ow of the shielding gas and
that permits a characterisation of the shield-
ing gas cover at the workpiece. It was proved
that high �ow velocity at the gas distribu-
tor or rather the resulting turbulences sig-
ni�cantly a�ect the �ow conditions at the
workpiece. The concentration of oxygen at
the workpiece was calculated and could be
partly validated by the lambda sensor prin-
ciple. The model allows statements about
atmosphere turbulences within the shielding

gas �ow. The article also introduces diagnos-
tic methods facilitating a validation of the re-
sults of the simulation by the measurement.
In the further progress these methods will be
improved for the use of GMA welding. The
aim of this research is to develop a GMA
welding torch, which regards all the compre-
hensive statements, acquired by the appliance
of the numerical simulation.
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