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I. Sedimentation – Technische Relevanz
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• Sedimentation:
– Partikelabscheidung mit Hilfe 

von der Schwerkraft oder unter 
Ausnutzung von 
Trägheitseffekten 
(Zentrifugalkraft) 

• Technische Bedeutung:
– Fest-Flüssig-Trennung
– Partikelgrößenanalyse

K. Höfler
http://www.icp.uni-stuttgart.de/movies/

Sedimentation
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Sedimentationsapparate - Längsbecken
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Sedimentationsapparate - Rundbecken
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Sedimentationsanalyse
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II. Berechnungsgrundlagen 
– Studium –
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Kräftegleichgewicht an sinkender Kugel

 

FG

FWFA 

vP 

2105103100100,5

Stokes NewtonÜbergangsbereich

lg

 

cW

Re

WAG FFF 

223

246 S
F

W vdcdg 


Re
cW

24


.44,0 konstcW 

NEWTON-Regime
(103 < Re < 2105)

STOKES-Regime
(Re < 0,5)



TU Dresden, 02.02.2011 Sedimentation kolloidaler Suspensionen Folie 9 von 55

Fakultät Maschinenwesen Institut für Verfahrenstechnik und Umwelttechnik, AG Mechanische Verfahrenstechnik

Berechnung des Widerstandsbeiwertes
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Vergleich mit experimentellen Daten
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Stokes-Geschwindigkeit
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Partikelform

KSPS vKv ,,  

 RefK ,

 VSKS xrDurchmessemitKugelvv ,

Formkorrektur:

mit

F. Fonseca 
http://www.icp.uni-stuttgart.de/movies/
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Konzentrationseinfluss

 RefK , 

Konzentrationskorrektur:

mit

PSeffS vKv ,,  

M. Strauß 
http://www.icp.uni-stuttgart.de/movies/
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Richardson and Zaki (1954) 
(Trans. Instn. Chem. Engrs, Vol. 32 (1954) 35-53)

Ergebnis:

 n
Stokes

Sed
hydr u

uk  1

mit n = funct.(Re,x/D)

schleichende Strömung (x/D0): n = 4.65

turbulent Strömung: n = 2.39
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Maude and Whitmore (1958) 
(Br. J. Appl. Phys. 9, 9 (1954) 477-482)
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III. Klassische Modelle 
– für konzentrierte Partikelsysteme –
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Schwarmsedimentation (individuelle Partikel)

Konzentrationseffekte:
Rückströmung, hydrostatischer Druck, hydrodynamische Behinderung
(Wandeffekte etc.)

Stokes-Geschwindigkeit: 
(schleichende Strömung, 0)
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Ansätze zur Sedimentationsbehinderung
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Ansätze zur Sedimentationsbehinderung
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Was ist die Wahrheit? 

Welche Kurve gilt für kolloidale Suspensionen? 
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Besonderheiten für kolloidale Suspensionen

• Diffusion
• elektrisch geladene Oberflächen
• interpartikuläre Wechselwirkung

• Zentrifugation
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IV. Diffusion
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Was ist Diffusion?

1. Mikroskopischer Prozess
stochastische Bewegung infolge von 
Stößen durch die Lösemittelmoleküle


 

diffusive Bewegung

tDr  62

2. Makroskopische Wirkung
Ausgleich von Konzentrations-
gradienten 


 

diffusiver Stofftransport

mdiff cDJ grad

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Einfluss der Diffusion auf die Sedimentation

Endzustand abhängig von der Partikelgröße und …
der Avogadro-Konstante

idealer Verlauf zur Zeit tc0

yH

c(y)

Anfangszustand

tatsächlicher
Verlauf zur Zeit t

Endzustand

?
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Wann muss man die Diffusion beachten?

• Pe-Zahl in Abhängigkeit vom Beschleunigungsvielfachen z

Péclet-Zahl:
D
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Diffusionseinfluss
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Suspensionsstruktur

geordnet, 
kristallin

geordnet, 
agglomeriert

ungeordnet, 
zufällig

• Diffusion wirkt einem Ordnungszustand entgegen
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V. Sedimentation elektrisch geladener Partikel
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Elektrochemische Doppelschicht
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Dorn-Effekt oder Das Sedimentationspotenzial
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• Smoluchowski (1914): a

 

>> 1,  
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• Booth (1954): beliebiges a
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,  

 

0

• Levine (1976): a
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VI. Einfluss von interpartikulären Kräften
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Sekundärer Elektroviskose Effekt

= behinderte Partikelbewegung bei überlappenden Doppelschichten (dicke 
Doppelschichten, Hohe Partikelkonzentrationen)



 

repulsive Doppelschicht-Wechselwirkung


 

Wirkung:
– Diffusionsbehinderung
– Erhöhte Suspensionsviskosität
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Sedimentations-Diffusions-Gleichgewicht
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VII. Noch einmal: Modellbildung



TU Dresden, 02.02.2011 Sedimentation kolloidaler Suspensionen Folie 37 von 55

Fakultät Maschinenwesen Institut für Verfahrenstechnik und Umwelttechnik, AG Mechanische Verfahrenstechnik

Sedimentation in konzentrierten Suspensionen

• Konzentrationseffekte
– Rückströmung verdrängter Flüssigkeit
– Hydrodynamische Wechselwirkung zwischen den Partikeln

• Hydrodynamische Wechselwirkung
– Störungen des Strömungsfeldes klingen schwach ab 


 

Beeinträchtigung durch andere Partikel & Wand
– Abhängig von der Suspensionsstruktur

• Literatur:
– G.K. Batchelor, J. Fluid Mech. 52 (1972) 2, 245-268
– C.W.J. Beenakker et al., Phys. Fluids 28 (1985) 11, 3203-3206
– B. Cichocki et al., Physica A 154 (1989) 213-232
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Ansatz von Batchelor 
(J. Fluid. Mech. 52, 2 (1972) 245-268)

• Sedimentationsbewegung eines definierten Partikels …
– beeinflusst Sedimentation aller benachbarten Partikel (Rückfluss & 

Reibungskraft)
– wird selbst durch benachbarte Partikel verändert
– andere Partikel sind homogen im Raum verteilt
– in erster Näherung gibt es nur einen unmittelbaren Nachbarn

• gefundene Korrekturterme für vS infolge von …
– Rückfluss durch eigenes Volumen: -vS,0

– Rückfluss durch mitgeführtes Fluidvolumen: -9/2vS,0

– Schleppkraft durch alle benachbarten Partikel: +½vS,0

– Schleppkraft durch benachbartes Partikel: -1.55vS,0
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Vergleich der Modelle

• Batchelor:

• Experimentelle Daten
– n. Richardson & Zaki: n = 4.65
– n. Maude (1958) – Kugel, Stokes: n = 4.8 … 5.6
– n. Maude (1958) – Korund: n = 6.8 … 7
– n. Maude (1958) – Acrylic powder: n = 6.75 … 9.35

• Unterschiede:
– Batchelor berücksichtigt nicht den hydrostatischen Druck
– Batchelor geht von unstruturierten Systemen aus (keine Agglomeration, 

keine Abstoßung, Diffusion dominiert)
– obige experimentelle Daten gelten für x>>1µm (keine Diffusion!)

  55.6
0,, 155.61  SeffS vv
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Abhängigkeit von der Suspensionsstruktur

• Hartkugelsysteme 
– gleichverteilte Abstände
– hydrodynamische Nahfeldwechselwirkungen
– Batchelor (0):

• starke, repulsive Wechselwirkungen
– geordnete Suspensionsstruktur
– geringe Partikelabstände weniger wahrscheinlich
– Zellenmodelle (0):

 55.61
0v
v

3
1

0

1  p
v
v
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• Kolloidales Silica in Ethanol
• Ionenstärken: 5 µM ... 2000 µM
• Moderate Doppelschichtdicken: a

 

= 5 ... 75

Thies-Weesie et al. (1995) 
(J. Colloid Interface Sci. 176 (1995) 43–54 )
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VIII. Zusammenhang Sedimentation – Diffusion
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Vergleich Sedimentation – Diffusion

• Sedimentation:
– gerichtete Bewegung
– kollektives Phänomen 
– gemessen wird mittlere Sinkgeschwindigkeit des gesamten 

Partikelkollektivs 

• Diffusion:
– stochastische Bewegung
– individuelles und kollektives Phänomen
– gemessen wird Diffusion einzelner Partikel 

 

Selbstdiffusion
– oder die Fluktuation lokaler Konzentrationen 

 

Kollektivdiffusion

• beide: Hydrodynamik ist abhängig von Suspensionsstruktur!
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Kollektivdiffusion und Sedimentation

• Kollektivdiffusion = mittlere Bewegung vieler Teilchen 


 

ähnlich der Sedimentation

• Hydrodynamische Behinderung ist ähnlich der Sedimentation

• osmotischer Druck erhöht sich, weil Partikelmittelpunkte sich nur im 
Abstand eines Partikeldurchmessers annähern
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Selbstdiffusion

• für die Bewegung der einzelnen Partikel ist der osmotische Druck 
irrelevant



 

die Diffusion der einzelnen Partikel wird verzögert

• aber: die hydrodynamische Behinderung des einzelnen Partikels ist 
kleiner die des Partikelkollektivs
– gerichtete Bewegung vieler Partikel 

 

Rückfluss
– zufällige Bewegung aller Partikel 

 

kein Rückfluss

• Selbstdiffusion:    83.11~
0

selbst
selbst M
D
D
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Einfluss der interpartikulären Kräfte

3
1

0,

1  sed
S

S p
v
v3

4

0

1  diff
selbst p
D
D

Overbeck (1999), PhysRevE60 Thies-Weesie (1995), JCIS176

• starke, repulsive Wechselwirkungen
– geordnete Suspensionsstruktur
– geringe Partikelabstände weniger wahrscheinlich
– Zellenmodelle (0):
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Einfluss der interpartikulären Kräfte

Overbeck (1999), PhysRevE60 Thies-Weesie (1995), JCIS176

a,||
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IX. Zusammenhang Sedimentation – Rheologie
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Klassischer Ansatz

• bisher:
– Sedimentationsbehinderung ist erklärbar als Erhöhung der 

Suspensionsviskosität

– Hinderungsfunktion z.B. nach Einstein

• ¿ist das zulässig?
– Sedimentation = gerichtete, kollektive Bewegung in ruhendem Fluid
– Viskosität, d.h. gerichtete, kollektive Bewegung im gescherten Fluid

 
 


kv
v

S

S
2

0,

1

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Strömung bei Sedimentation und Scherung

ScherströmungSedimentation
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Strömung bei Sedimentation und Scherung

ScherströmungSedimentation
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Vergleich der hydrodynamischen Phänomene

• Relativbewegung zwischen Partikel und Fluid hängt ab
– von gemittelter Bewegung aller benachbarten Partikel (gerichtet oder 

zufällig)
– von Suspensionsstruktur = Abstandsverteilung  zu benachbarten 

Partikeln

• Sedimentation & Kollektivdiffusion
– gerichtete Bewegung 

 

hydrodynamische Behinderung sehr ähnlich
– Kollektivdiffusion wird beschleunigt durch Einengung des Freiraums

• Fließverhalten und Selbstdiffusion
– mittlere Relativgeschwindigkeit verschwindet 

 

ähnliche Hydrodynamik
– beim Scheren werden zusätzliche Drehmomente auf Partikel übertragen
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Viskosität von konzentrierten Suspensionen

newtonsch scherver- 
dünnend

newtonsch scherver- 
dickend

log Scherrate
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Erfahrungen – Viskosität

Grenzviskositäten
• ... für stationäre Messung

– Nullscherung 

 

0

– hohe Scherraten 

 



• ... für oszillatorische Messung
– niederfrequent 

 

‘0
– hochfrequent 
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Zusammenfassung



 

Sedimentation kolloidaler Partikel ist nichts für Amateure

• Sedimentation ist im Prinzip recht simpel

• Sedimentation kolloidaler Partikel:

– i.d.R. im Stokes-Bereich

– Diffusion

– zusätzliche Sedimentationsbehinderung durch interpartikuläre Abstoßung

• Sedimentation, Diffusion und Rheologie 

– basieren auf ähnlichen Strömungsphänomenen

– werden von der Strukturiertheit einer Suspension bestimmt 
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Vielen Dank für Eure Aufmerksamkeit!
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