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Abstract

The paper presents numerical simulations modeling the ascent of an argon bubble in liquid metal with
and without an external magnetic field. The governing equations for the fluid and the electric potential
are discretized in a uniform Cartesian grid and the bubble is represented with a highly efficient immersed
boundary method. The simulations performed were conducted matching experiments under the same con-
ditions so that sound validation is possible. The three-dimensional trajectory of the bubble is analyzed
quantitatively and related to the flow structures in the wake. Indeed, the substantial impact of the mag-
netic field in the bubble trajectory results from its influence on the wake. Quantitative data describing the
selective damping of vortex structures are provided and discussed. As a result of applying a longitudinal
field, the time-averaged bubble rise velocity increases for large bubbles, it reaches a local maximum and
then decreases when increasing the magnetic interaction parameter. For small bubbles, the time-averaged
bubble rise velocity decreases when increasing the magnetic field. The bubble Strouhal number as a di-
mensionless frequency is reduced with the application of a magnetic field for all bubbles considered and
the zig-zag trajectory of the bubble becomes more rectilinear. All this is traced back to the modification
of vortical structures in the bubble wake due to the magnetic field.
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1. Introduction

The ascent of a single bubble in a quiescent liquid is a fascinating phenomenon, for the layman as

well as for the scientist. The trajectory of the bubble which can exhibit forms ranging from straight

vertical ascent to chaotic irregular motion, and regimes of shape ranging from strictly spherical to
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irregularly wobbling still challenge physicists and engineers. An interesting review assembling the

early knowledge on rising bubbles is given in [1]. In this reference, the term Leonardo’s paradoxon is

suggested for the tendency of sufficiently large bubbles to rise along a zig-zag or spiraling path rather

than along a rectilinear one. The reason for the latter is attributed to the structure of the bubble

wake. Two-threaded vortices of opposite circulation induce a lift force on the bubble deflecting

it from a strictly vertical trajectory. A review on the hydrodynamic forces acting on isolated,

spheroidal high-Reynolds-number bubbles and the associated motion is provided in [2]. The vortical

structures in the wake of air bubbles in water have been analyzed by modern optical experimental

techniques like Schlieren optics [3], digital particle image velocimetry [4] or dye visualization [5].

Alternately shed vortex filaments are observed for a bubble rising in zig-zag, while a spiral trajectory

is characterized by a continuous pair of parallel vortices wrapped around the axis of the helix. In

experiments, it has been observed frequently that the path first follows a zig-zag and later on changes

to a helical shape [6, 7], whereas a transition in the opposite direction has not been reported so

far. Not surprisingly, the structures in the wake behind bubbles rising in zig-zag are similar to

those observed behind rising solid spheres following a zig-zag trajectory [8]. It has been shown

experimentally [9] as well as numerically [10, 11, 12] that path oscillations can appear in the absence

of shape oscillations which proves that indeed the vortex structures in the wake are responsible for

the former. This is extensively discussed in the review of Ern et al. [13] which assembles current

knowledge about the wake of fixed bodies and its relation to the onset and development of path

instabilities of both bubbles and rigid objects.

Most experimental and numerical work on bubbles so far has been conducted for the air-water

system, often using hyper-clean water which is almost free of contaminants and therefore justifies

the application of a shear-free boundary condition at the gas-liquid interface [2, 12]. Nevertheless,

there is a variety of industrial applications where gas bubbles play an important role and where

these conditions are not met. The continuous casting process in metallurgy is one example [14, 15].

Here, gas bubbles are injected into the melt to clean the liquid metal from contaminants and to stir

and homogenize the liquid phase [16]. Magnetic fields are used in liquid metal processes to stir [17]

and to stabilize the flow regimes [18]. Liquid metals are prone to oxidation, and in general a melt

is never free of contaminants so that an oxide layer forms at the gas-liquid interface. Furthermore,

contaminants and inclusions agglomerate at the bubble surface. The appropriate condition for the

velocity at the bubble surface hence is the no-slip condition. This is backed by the observation that
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the drag of a fully contaminated spherical bubble corresponds to that of a solid sphere [2, 19].

To illustrate the parameter range considered in the present work, Table 5 lists material properties

of the eutectic alloy GaInSn and compares them to those of water. The definition of the non-

dimensional numbers is given in Section 2.1 below. The alloy GaInSn is representative of a general

liquid metal and has been selected here because the simulations reported below have been conducted

for a configuration with argon bubbles in GaInSn which is liquid at room temperature, an attractive

property for its use in experiments. Its density and surface tension are markedly higher than those

of water, while the kinematic viscosity is smaller. As a consequence, the Galilei number which

relates buoyancy forces to viscous forces is higher for an argon bubble in GaInSn than for an air

bubble of equal size in water, hence resulting in a higher bubble Reynolds number. The high

density ratio and high surface tension are difficult to deal with in many multiphase methods, e.g.

the volume of fluid method where spurious currents may occur as numerical artifacts and small time

step sizes become necessary. The most significant contrast with water is the difference in electrical

conductivity by about eight orders of magnitude. An approximate value for tab water is listed for

comparison. The Eötvös number relating buoyancy force to surface tension forces is almost the

same, so that in GaInSn similar bubble shapes as in water can be expected for a given diameter.

According to the review of Loth [20], or extrapolating the regime map of Clift et al. [21], the shape

of an argon bubble with diameter around 5 mm in GaInSn is expected to be ’ellipsoidally wobbling’,

in the sense that it is close to ellipsoidal with the axes of the ellipsoid varying in time.

Liquid metals are opaque and therefore experimental data are difficult to obtain and rare. The

optical measurement techniques specified above hence cannot be used to get detailed insight into

liquid metal multiphase flows. Ultrasound Doppler velocimetry is an alternative approach in this

case and has been used to study the motion of a single bubble [22] and a bubble-driven liquid

metal jet [16] under the influence of magnetic fields. Local conductivity probes have also been used

to measure the rise velocity of bubbles in mercury [23] as well as the behavior of gas bubbles in

turbulent liquid metal magnetohydrodynamic flows [24, 25].

Direct numerical simulation of bubbles in liquid metals is challenging due to the large differences of

density and viscosity between the phases and the high bubble Reynolds number typically encoun-

tered. As a result, there are only very few phase-resolving simulations of bubbles in liquid metal

under the influence of a magnetic field. A rising bubble in a small enclosure under a vertical mag-

netic field was computed in [26] by means of a Volume of Fluid approach with reduced density and
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viscosity ratio and very moderate Galilei number. Gaudlitz and Adams [27] simulated the influence

of a vertical magnetic field on the rise of a single bubble in electrically conductive liquids with a

hybrid particle level set method neglecting the effect of interface contamination. The numerical

parameters of this case correspond to a small bubble in mercury, i.e. the Galilei number is smaller

by a factor of five compared to the present study.

It is known that homogeneous magnetic fields substantially modify vortical structures in turbu-

lent flows [28, 29] as well as the pressure field around fixed objects [30]. Therefore, a considerable

impact of such a field on the bubble dynamics is to be expected [31],which indeed was observed

in experiments [22, 16]. Despite these studies the actual influence of a magnetic field on bubbles

in liquid metal is still not fully understood. In particular, the impact of a magnetic field on the

interaction between bubble wake and bubble dynamics in metallurgical systems is unclear and also

the modification of the bubble shape in that case is not fully understood to this date. This is mostly

due to the lack of visual data impeded by the opaque liquid metal.

The aim of the present paper is to fill this gap and to provide insight into the influence of a lon-

gitudinal magnetic field on bubble wake and bubble dynamics. Phase-resolving direct numerical

simulations of an argon bubble in the liquid metal GaInSn have been conducted for different val-

ues of magnetic interaction. The three-dimensional data of high spatial and temporal resolution

obtained from the simulations are evaluated, visualized and compared against experimental data.

The paper is structured as follows: Section 2 gives a short description of the equations to be solved

and the numerical approach employed, as well as a refinement study quantifying the numerical

error. Section 3 contains the numerical results for the ascent of a single bubble with and without

a magnetic field. Visualizations are presented to highlight conspicuous flow features in the bubble

wake. Furthermore, the numerical results are compared against available experimental findings and

other simulation data. The last section summarizes the results of the present study and outlines

future research directions.

2. Method

2.1. Parameters of single bubble ascent

The problem of a single particle rising or falling in a pool of quiescent fluid due to the effect

of buoyancy is governed by three parameters [13]: The particle-to-fluid density ratio πρ = ρp/ρf ,
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the Galileo number G =
√

|πρ − 1| g d3eq/ν, and a geometrical parameter relating to the shape of

the particle, such as the ratio of diameter to height for a cylindrical particle or the aspect ratio for

an ellipsoid of rotation, for example. Here, g is gravity, deq is the diameter of a volume-equivalent

sphere and ν is the kinematic viscosity of the liquid. In the following we will use the terms bubble

and particle practically as synonyms, with index p throughout. Indeed, the term ’particle’ in the

literature often designates any element of a disperse phase, be it solid, fluid or gaseous [21]. In case

of a rising bubble, the density ratio is very small and the motion is predominantly governed by

the inertia of the fluid. The Galileo number, which is the square root of the Archimedes number,

determines the ratio of the driving buoyancy force to the viscous forces. Inserting the gravitational

velocity uref =
√
|πρ − 1| g deq into the definition of G yields a reference Reynolds number Reref .

The latter velocity scale, uref , and in a similar fashion the reference time tref =
√
deq/(|πρ − 1| g)

are used for scaling here, together with the reference length deq.

The shape of a single rising bubble is governed by viscous and pressure forces deforming the inter-

face and by the stabilizing effect of surface tension driving the bubble shape towards a spherical one.

The Eötvös number Eo = ∆ρ g d2eq/σ which is the ratio of buoyancy force to surface tension force

therefore can be used to characterize the bubble shape. Here, ∆ρ denotes the density difference

between the phases and σ the surface tension. The three parameters G, πρ and Eo characterize the

system and are known a priori.

The bubble velocity up = (up, vp, wp)
T
is a result of the simulation. The rise velocity vp can then

be used to determine the bubble Reynolds number Re = vp deq/ν. The instantaneous, vertical

component of the bubble velocity is used here to calculate Re(t) because this component was mea-

sured in the corresponding experiments [22]. The Weber number is defined as We = ρf |up|2 deq/σ

using the absolute value of the bubble velocity. The instantaneous Weber number We(t) is used to

characterize the time-dependent bubble shape as discussed in Section 2.3 below.

Finally, a non-dimensional number needs to be introduced to quantify the relative strength of mag-

netic forces. This can be done by the magnetic interaction parameter N = σe B
2 deq/ (ρf uref ),

also termed Stuart number, representing the ratio of magnetic forces to inertial forces [22, 28].

2.2. Continuous phase

In the present work, an Euler-Lagrange approach is chosen for the phase-resolving simulation of

the ascent of a single bubble in liquid metal. The simulations presented here were carried out with

5
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the in-house multiphase code PRIME [32]. The equations for the continuous phase are solved on a

Cartesian grid with staggered grid arrangement employing a second-order finite volume method. A

Runge-Kutta three-step method with implicit treatment of the viscous terms by a Crank-Nicolson

scheme is used for time integration. Further details of the code, the discretization of the equations

and their numerical treatment are provided in the cited reference.

The incompressible Navier-Stokes equations including the Lorentz force read

∇ · u = 0 , (1)

∂u

∂t
+ (u · ∇)u = − 1

ρf
∇p+

1

Reref
∇2u+N (j×B) + f , (2)

with the usual nomenclature u = (u, v, w)
T
being the velocity of the continuous phase along the

Cartesian coordinates x, y, z. Furthermore, p is the pressure, j the electric current density, B the

magnetic field and f a specific volume force.

For small values of the magnetic Reynolds number, the magnetic field induced by the fluid motion is

negligible compared to the applied magnetic field [28]. This situation is encountered in the present

case. The magnetic Reynolds number, Rm = µ0σedeq uref ≈ 4 ·10−3, is indeed substantially smaller

than unity and the quasi-static approximation is justified. Here, the physical properties of Table 5

for an Argon bubble in GaInSn were employed and µ0 is the magnetic permeability of free space.

Ohm’s law then allows to express the current density j by

j = σe (−∇Φ+ u×B) , (3)

with Φ denoting the electric potential [33].

The electric conductivity for both phases is modeled to be the same in most of the present study.

This is adequate here as the focus is on the influence of a magnetic field on the bubble wake.

The assumption is scrutinized in Section 3.6.2. Under the present conditions, charge conservation

∇ · j = 0 yields a Poisson equation for the electric potential Φ

∇2Φ = ∇ · (u×B) (4)

which is solved in a similar fashion as the pressure correction employed to satisfy equations (1) and

(2).
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2.3. Disperse phase

With the present approach, the bubbles are numerically represented by an immersed boundary

method (IBM) [34] with extension to non-spherical particles and low particle densities proposed in

[35, 32]. The surface of each individual bubble is described using a set of Lagrangian marker points

interconnected by a triangular mesh (Figure 1a). The coupling between the embedded bubble

and the liquid metal is realized by introducing additional volume forces f in the right hand side

of (2) which are localized at the bubble surface and which impose a no-slip condition between

the phases [34] as discussed in the introduction. In a recent study of the present authors [36], an

extensive discussion is provided on the type of boundary condition to be applied and the respective

justification in terms of physical and numerical modeling.

The motion of a single bubble is obtained by solving its linear and angular momentum equation

mp
dup

dt
= ρf

∮
S

τ · nS ds+ Vp(ρp − ρf ) g , (5)

d (Ipωp)

dt
= ρf

∮
S

r× (τ · nS) ds . (6)

Here, up and ωp designate the linear and angular velocity of the particle, while mp denotes its

mass, and Ip its tensor of inertia. Furthermore, τ is the hydrodynamic stress tensor divided by

the fluid density, including contributions from pressure and viscous stresses, while nS denotes the

outward-pointing normal vector of the interface S, i.e. the bubble surface. The vector r identifies a

point on S with respect to the position of the center of mass of the particle xp. The buoyancy force

appears on the right hand side of (5) as a source term proportional to the density difference since the

hydrostatic component in the continuous pressure field p has been eliminated in (2). The equations

of motion (5) and (6) are solved and up and ωp are integrated in time to determine the bubble

position xp and inclination ϕ as a function of time. The inclination angles are defined according to

standard rotation matrices in xyz-convention of a Cartesian coordinate system centered in xp [37].

For details on the numerical solution of equation (5) and (6) as well as on the phase coupling, we

refer to [32, 34, 38, 39].

In the present study, the bubble shape is approximated as an oblate ellipsoid of rotation with

aspect ratio X = a/b and semi-axes a = c > b (Figure 1b). For the parameters of an argon bubble

in GaInSn, the bubble shape is expected to be ’ellipsoidally wobbling’ [21]. Hence, the shape

parameter X of the ellipsoidal particle has to be varied in time in a physically meaningful way. As
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suggested in [20], an empirical correlation between the instantaneous bubble Weber number We(t)

and the instantaneous aspect ratio X(t) is employed here. Loth [20] presented experimental and

theoretical data for the correlation X(We) and provided a fit for moderate to high bubble Reynolds

numbers Re > 100. The correlation was obtained using data for the mean rise velocity and mean

aspect ratio. It is then shown in [20] that the correlation is also a good fit for instantaneous data

X(We(t)) by comparing to the experiments of [7]. For the present parameter range with Re > 100,

the correlation reads

X−1(t) = 1− 0.75 tanh(0.165We(t)) , (7)

with We = ρf |up|2 deq/σ. Figure 7 shows this curve together with the data given in the review

of Loth [20]. With the material properties being constant, a bubble moving with a high velocity

|up(t)| will adopt a flat shape while the bubble shape remains spherical at low velocities. Note that

for very large Weber numbers the bubble in reality adopts a cap-like shape instead of an ellipsoidal

shape. In the parameter range studied here, however, the assumption of an ellipsoidal bubble shape

is very well justified [21].

It is a useful feature of the employed method that the particle shape can be modeled directly.

The shape of each individual particle is analytically prescribed and therefore the constraint of

constant volume can easily be implemented. In this way the bubble mass can be conserved exactly.

Furthermore, experimental information on the bubble shape, if available, can be introduced. The

delicate evaluation of surface curvature and the introduction of surface tension forces are not needed

in the present model. This yields high robustness and avoids spurious currents [40]. An exactly

defined phase boundary, in contrast to a diffuse interface, is also advantageous for the modeling of

particle-particle and particle-wall interactions [41].

Since liquid metals are practically always contaminated by oxides a no-slip condition at the bubble

surface is physically the most reasonable one as discussed above. Therefore the fluid velocity at the

bubble surface S is imposed to equal the local surface velocity of the bubble at each Lagrangian

forcing point. The latter velocity consists of three parts,

uS(r, t) = up + ωp × r+ ush , (8)

where up is the translational velocity of the particle center resulting from equation (5), while the

second term denotes the part due to rotation calculated from equation (6). Finally, ush is the veloc-

ity induced by changes in the shape resulting from an instantaneous change in the ellipsoid aspect
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ratio X(t) as illustrated in Figure 1. The Lagrangian surface mesh is adapted to the instantaneous

shape X(t) in each time step by rescaling its relative coordinates with respect to the bubble center

according to the change in aspect ratio.

2.4. Refinement study

A grid refinement study was carried out to estimate the numerical error of the spatial and tem-

poral discretization and to determine the overall order of convergence of the method in the present

setup. It was conducted for the initial phase of the ascent during which the bubble accelerates and

changes its shape from spherical to ellipsoidal with X ≈ 1.5. Refinement is performed simultane-

ously for the spacing of the equidistant Cartesian grid, the Lagrangian surface mesh and the time

step. Consequently, the CFL number remains approximately constant. The number of forcing

points nL on the surface of an oblate ellipsoid is related to the mesh size ∆x of the equidistant

Cartesian grid by

nL & π

3

(
d2eq
(
2X−1/3 +X2/3

)
∆x2

+ 1

)
(9)

for an even distribution of Lagrangian surface markers. The relation is obtained following the proce-

dure derived for a sphere in [34] under the constraint ∆VL ≈ ∆x3, where ∆VL is the partial volume

associated with a single Lagrangian forcing point. In the present implementation, it is possible to

use more than the minimum required number of forcing points, i.e. a denser distribution of marker

points on the surface by adjusting the volume ∆VL according to the local density of marker points

on the surface.

The refinement study was conducted in a cubic domain of extent L = 6.0 deq in all three directions,

and an equidistant grid of n3 points was used with periodic boundary conditions in all three di-

rections. Gravity acts in negative y-direction. The setup basically corresponds to the one of the

simulations presented later on, where a significantly longer extent of the computational domain

in vertical direction was used, though. A single bubble is considered with a Galilei number of

G = 2825, an Eötvös number of Eo = 2.5 and a density ratio of πρ = 10−3 corresponding to a

4.6 mm argon bubble in GaInSn. Note that with πρ ≪ 1 the results become independent of ρp.

The particle is initially at rest, up = 0, ωp = 0, in quiescent fluid i.e. u = 0 in the whole domain.

The initial bubble position was chosen to be xp,0 = (3.0, 0.54, 3.0) deq. According to the shape

correlation (7) the bubble has a spherical shape, X0 = 1.0, at the beginning of the simulation.

A small initial inclination angle of ϕ0 = (0, 0, 0.05)π was applied which is of no relevance for a
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sphere, but gives a very small bias towards a zig-zag in the x − y-plane once the bubble starts to

deform.

We consider the initial acceleration of the bubble for a fixed duration tsim = 3 in dimensionless time

units, roughly sufficient for the bubble to reach its terminal velocity. The temporal evolution of

the bubble Reynolds number (based on vp) is shown in Figure 3 for different numerical resolutions.

At the end of the simulation, t = tsim, the bubble has traveled a distance in y of about 3 deq,

corresponding to slightly more than half the size of the computational domain (Figure 4.)

The discretization error is estimated at te = 1.0 by comparison of the computed instantaneous

particle Reynolds number with the value obtained using the finest grid. In the reference case, the

Eulerian grid has a spatial resolution of n = 512 corresponding to deq/∆x = 85.3 gridpoints over

the equivalent diameter and a total number 134.2 · 106 cells. A set of nL = 24976 Lagrangian

forcing points was used in this case to represent the bubble surface and a non-dimensional time

step of ∆t = 1.25 · 10−3 was employed. By means of the fit depicted in Figure 5, excluding the

two coarsest grids, a convergence order of about 1.7 is obtained for the systematically refined grids

employed. The fluid discretization alone is second order accurate for single-phase simulations [42].

The direct forcing scheme utilized with the immersed-boundary method for coupling the dispersed

phase to the fluid yields a reduction of the order of convergence [43]. The result for the present

configuration is in line with the data in [32].

Based on the results of the refinement study, the resolution n = 256 was chosen for the simula-

tions in the large computational domain. With an error of about 4%, it provides a good compromise

between accuracy and computational effort. Further refinement would exceed the available compu-

tational resources. The chosen resolution therefore does not correspond to a full DNS, but will be

adequate to provide valuable and detailed insight into the physics of this magnetohydrodynamic

multiphase flow. Interpreting the results of the refinement study in physical terms we find that the

time scale for the initial acceleration of the bubble is longer on coarser grids. A coarse resolution

also yields higher Reynolds numbers at the end of these simulations (see Figure 3).
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3. Results

3.1. Simulation of a single bubble without magnetic field

3.1.1. Setup of simulation without magnetic field

This section presents a simulation of a single bubble in liquid metal without magnetic field and

a comparison against the experimental data of [22]. The physical parameters of the bubble corre-

spond to those used for the refinement study above, G = 2825, Eo = 2.5 and πρ = 10−3, which

relate to an argon bubble with deq = 4.6 mm in eutectic GaInSn. As no magnetic field is applied,

the magnetic interaction parameter is N = 0.

Compared to the refinement study, the computational domain was enlarged in the direction of grav-

ity to resolve as much as possible of the bubble dynamics. The box extends over L = (Lx, Ly, Lz) =

(6.0, 30.0, 6.0) deq and was discretized with a spatial resolution of n = (256, 1280, 256) points yield-

ing a total of 83.9 Mio cells of the Eulerian grid. The bubble was represented with nL = 9093

Lagrangian forcing points distributed over its surface. The time step is ∆t = 2.5 · 10−3 in dimen-

sionless units. Boundary conditions and initial conditions are the same as in the refinement study

of Section 2.4, i.e. periodic conditions were applied in all three directions while the fluid as well as

the bubble were initially at rest.

3.1.2. Setup of experiment and justification of box size

In the experiments by Zhang et al. [22], an open cylindrical container with a diameter of

D = 100 mm and a height of H = 220 mm was used corresponding to D ×H ≈ (22 × 48)deq for

deq = 4.6 mm. The bubble was injected at the bottom center. A box with a quadratic cross section

(Lx×Lz) is used in the present study for technical reasons with periodic boundary conditions which

mimic a somewhat larger domain. Due to the high computational cost, especially the horizontal

extension had to be reduced whereas a moderate reduction was chosen concerning the height. The

areal blockage πd2eq/ (4Lx Lz) is about 2%. Gaudlitz [44] used a lateral extent of only 4deq, also

with periodic boundary conditions, for a simulation of single bubble ascent at lower Re. It has

been shown in [45] that the added mass coefficient of a spherical bubble horizontally aligned with

a second bubble equals the one of a single bubble if the distance exceeds 3deq. The wake of two

spheres placed side by side in uniform flow is only very weakly coupled if the spacing is larger

than 3.5deq [46]. A sphere next to a solid wall was studied in [47]. In [48] it is shown that for
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the largest Reynolds number considered, Re = 300, and a wall distance of 4deq, drag and lift as

well as the Strouhal number deviate only slightly from the values obtained in an unbounded fluid.

For these reasons the horizontal extent of the computational domain selected for the present study

in combination with periodic boundary conditions is adequate to represent the conditions of the

experiments in the wide cylinder.

3.1.3. Results of the simulation and comparison with experimental data

A runtime of 60× 61.5 CPU hours on 60 cores of an SGI Altix 4700 is needed for one crossing

of the above box taking about 30 dimensionless units in time. The bubble Reynolds number based

on the vertical velocity vp is plotted over time in Figure 7. After an initial acceleration the bubble

rise velocity starts to oscillate quasi-periodically. The corresponding experimental data of [22]

are displayed in the same graph for comparison. These data were obtained using single-sensor

ultrasound Doppler velocimetry which allows to measure the velocity component along a line.

An overview of the characteristic figures calculated from the instantaneous Reynolds number Re(t)

is given in Table 2, where Ret = ⟨Re⟩t denotes the average rise Reynolds number obtained from

a time average over the interval t ∈ (6, 29.2), in the present case, and σRe the corresponding

standard deviation. The average rise Reynolds number is in excellent agreement with the data

from the measurements. Concerning the oscillation in Re(t), an underestimation of the amplitude

characterized by σRe is recognized. Asymmetric bubble deformation, i.e. a deviation from an

ellipsoidal shape, and partial slip at the bubble surface in the experiment might be the reasons for

the deviation, besides the remaining discretization error discussed in Section 2.4. The frequency

on the other hand agrees well with the value reported in [22]. The dominant frequency fRe of

the oscillation in Re(t) was obtained from the Fourier spectrum by means of a discrete Fourier

transform (DFT) of Re computed with a Hanning window function to account for the non-periodic

time signal. In addition, the frequency was determined from the roots in Re(t) − Ret and in the

original experimental work of [22] by a least square curve fit to a sine function. Comparing the

results to some extent assesses the uncertainty in the determination of fRe due to the irregular

oscillation and the limited period of time.

3.1.4. Additional data, interpretation and comparison with literature

Only the vertical component of the bubble velocity over time could be determined in the ex-

periments [22] due to the measurement technique employed. The present simulations now offer full
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access to all velocity and pressure data for the continuous liquid metal phase as well as 3D data of

the bubble trajectory. Therefore the simulations can deliver valuable complementary information

on the bubble dynamics. This is reported in Figure 8 and Figure 9. Indeed, a zig-zag trajectory

with lateral drift is observed in Figure 8 as conjectured by the experimentalists [22]. The maximum

in Re(t) occurs at extreme points of the bubble path xp(t). In these points, the bubble is oriented

with its small semi-axis parallel to the gravity vector, i.e. the inclination angle ϕz is approximately

zero. The amplitude of the zig-zag, measured between two extreme points of the path, is approxi-

mately ∆xz = 1.15 deq. An oscillation in bubble inclination is found as well and plotted in Figure

9. The temporal change in the orientation ϕ3 = ϕz is clearly associated with the zig-zag along x.

Maximum tilting of the bubble is found closely after a local minimum in Re(t) and approximately

half way between the turning points of the zig-zag trajectory where the lateral velocity is largest.

Towards the end of the simulation and with the onset of the lateral drift the other two rotation

angles ϕ1, ϕ2 also deviate from zero and oscillate with a higher frequency. The maximum inclination

angle is found to be |ϕz|max ≈ 36◦.

These values can be compared to data from the literature. Lateral distances between two extreme

points in a zig-zag trajectory of 1.0 . . . 1.3 deq and a maximum tilting of 27 . . . 30◦ are reported for

air-water experiments [49, 4] and for simulations of air bubbles in water [44, 11] at lower Reynolds

numbers.

Due to high contamination and oxidation of the gas-liquid metal system a no-slip boundary condi-

tion is used here on the bubble surface as justified above. Therefore, besides the higher Reynolds

number of the present simulation also the boundary condition at the bubble surface differs from the

aforementioned simulations for air bubbles in water. Markedly larger inclination angles are reported

for rigid spheroids compared to bubbles in clean water [2], and it is found in [13] that oblate bodies

may follow highly non-linear trajectories with large rotation rates if the Reynolds number is high

enough. After the initial transient in the present simulations the aspect ratio of the oblate ellipsoid

determined according to equation (7) oscillates in the interval X ∈ [1.35; 1.57]. The bubble shapes

for the mean, the minimum and the maximum aspect ratio are displayed in Figure 1 to convey an

impression of the amount of shape modification during the presented simulation.
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3.1.5. Simulation of a smaller bubble

A smaller bubble withG = 1488, Eo = 1.05 corresponding to an argon bubble of deq = 3.0 mm in

GaInSn was studied as well. The parameters were adjusted in the simulation by changing viscosity

and surface tension with all other parameters unchanged. For this smaller bubble, the time-averaged

Reynolds number is Ret = 1822. The change in surface tension yields different instantaneous Weber

numbers and therefore different instantaneous aspect ratios from the correlation (7). The shape

of this bubble remains almost spherical in this regime. The rise velocity again oscillates around

its mean and a zig-zag path is observed. The characteristic frequency, calculated from a Fourier

spectrum of Re(t), is f = 0.222 which is in good agreement with the data of [50] for an air bubble

in water at similar Ret. In [50], the non-dimensional frequency is determined from vortex shedding

visualized by optical measurements. If Re is high enough, a lock-in occurs between vortex shedding

and oscillations in the rise velocity of bubbles. No experiments in liquid metal were conducted for

this small bubble.

3.2. Simulation of a single bubble with magnetic field

3.2.1. Setup of simulation with magnetic field

A longitudinal, homogeneous magnetic field in the direction of gravity is now applied with the

magnetic interaction parameter being N = 0.5 and N = 1.0, respectively. All other parameters

are the same as for the simulation with N = 0 reported in the previous section. Only the domain

size was increased in y-direction to L = (6.0, 48.0, 6.0) deq with a mesh of n = (256, 2048, 256), i.e.

134.2 Mio grid points. A longer box size in the direction of ascent is necessary because the zig-zag

becomes stretched out and the characteristic frequency decreases under the impact of a magnetic

field as will be shown later. This box size now corresponds to the height of the experimental con-

tainer of 220 mm for the deq = 4.6 mm bubble.

3.2.2. Overview of results

A longitudinal magnetic field has significant impact on the bubble dynamics. The influence of

the magnetic field is now discussed for a single ascending bubble with the parameters G = 2825

and Eo = 2.5. Quantitative results of the simulations are summarized in Table 3. When applying

a longitudinal magnetic field this bubble rises faster and the oscillations in Re(t) are damped as
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shown in Figure 10. The maximum inclination of the bubble decreases from |ϕz|max(N = 0) ≈ 36◦

in the absence of a magnetic field to |ϕz|max(N = 1) ≈ 17◦ for the strongest longitudinal field con-

sidered which is a reduction by more than 50% (Figure 11). The corresponding path deviates less

from the vertical direction as shown in Figure 12. A zig-zag trajectory is found for all values of N

considered, with the transverse distance between two extreme points being reduced with increasing

the strength of the magnetic field. The time scale for one zig-zag increases as well, i.e. the path

oscillation is stretched in the direction of gravity. At the same time the amplitude of the oscillations

is somewhat smaller, as shown in Figure 12 and Table 3. The resulting 3D bubble trajectory is

therefore more rectilinear. The amplitude of the oscillation in Re(t) decreases with N and the

bubble rises faster (Figure 10). The time-averaged rise Reynolds number increases by about 8% for

the largest field. The oscillation in Re(t) appears more regular in the case with N = 0.5 and even

more for N = 1 compared to the case without magnetic field.

3.3. Comparison of results with experimental data and interpretation

A comparison with the experimental data from [22] is provided in Figure 13 and Figure 14.

Here, the average rise Reynolds number and the Strouhal number are normalized with the value in

the absence of a magnetic field (N = 0) and are plotted over the magnetic interaction parameter

N for different Eötvös numbers Eo, reflecting different bubble sizes.

3.3.1. Time-averaged Reynolds number versus N and Eo

Whether the time-averaged rise velocity decreases or increases with increasing magnetic inter-

action depends on the bubble size. This complex behavior is found in both, the present simulations

and the experiments in the literature [22]. An increase in rise velocity and hence Ret with increasing

magnetic field is found for large bubbles, i.e. large Eo, and a decrease in Ret for small bubbles, i.e.

small Eo. The reason for this phenomenon is a competition between adverse effects generated by

the magnetic field: On the one hand, a longitudinal magnetic field increases the drag of an object.

In order to pass around the object fluid elements need to move in a direction perpendicular to the

magnetic field which generates a Lorentz force such that the resulting pressure force on the particle

increases with magnetic interaction. This was shown experimentally for the flow around a fixed

sphere and a disc at high Reynolds number and moderate to high magnetic interaction [30, 51]

as well as numerically for spheres and ellipsoids at moderate Re in [52]. On the other hand, the
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magnetic field suppresses the lateral dynamics and the bubble rises on a more rectilinear trajectory.

Already in the inviscid situation this leads to a larger rise velocity, simply because the trajectory

is shorter. Considering viscous effects in addition, less energy is transferred towards rotation and

towards motion in the transverse direction where it is dissipated further increasing the rise velocity.

The amplitude of the changes in |Ret(N)/Ret(N = 0)| with N lies well within the band spanned by

the data obtained from the experiments. The measurements, however, show a different threshold

in Eo for the reversion of the trend, i.e. Ret increases or decreases with N at slightly larger Eötvös

numbers. This is visualized in Figure 13.

3.3.2. Frequency versus N and Eo

Different ways of defining a non-dimensional frequency have been proposed in the literature

so that before reporting the results obtained a few comments on this issue are appropriate. The

equivalent bubble diameter deq is a natural reference length in any case. But one can either choose

the a posteriori determined time-average rise-velocity ⟨vp⟩t or the a priori known gravitational

velocity scale uref =
√
|πρ − 1|deqg to determine a reference time scale. As in the experiments [22],

the Strouhal number

St =
f∗ deq
⟨vp⟩t

(10)

is employed here which is based on the dominant frequency f∗ in the oscillation of the vertical

bubble velocity vp(t) and on the average rise velocity ⟨vp⟩t of the bubble. The average rise velocity

itself is a function of bubble size and magnetic interaction. In contrast, the dimensionless frequency

fRe = f∗/fref = f∗ deq/uref = f∗/
√
|πρ − 1| g/deq is based on the constant reference velocity given

by the gravitational velocity scale. Therefore the Strouhal number according to (10) measures the

combined effect of an additional parameter on both, the average velocity and the frequency in the

velocity oscillations.

The determination of St and fRe can only be based on a small number of periods of the oscillation

in Re(t) here due to the size of the computational domain. The number of periods observed in the

experiments is the same for N > 0. A decrease of the bubble Strouhal number St and of fRe is

found with increasing strength of the magnetic field for all bubble sizes. The relative change in St

is less pronounced for small bubbles than for large bubbles in the simulation. For the larger bubble

with Eo = 2.5, the reduction in St is over-predicted at large magnetic interaction parameters in

the simulations. To quantify the influence of spatial resolution on the result, ’coarse’ simulations
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with an isotropic grid of step size 1.5 times the one of the common grid, i.e. nx = 192, have been

conducted for this bubble using the same values of the interaction parameter N = 0, 0.5, 1.0. It

appears that the results for the relative change in St on the finer grid are closer to the experimental

data.

Overall, the agreement of the results of experiments and numerical simulations is promising. All

dominant effects of the magnetic field have been captured by the simulation.

3.4. Comparative analysis of wake with and without magnetic field

3.4.1. Selection of characteristic events in the trajectory

For the bubble with G = 2825, Eo = 2.5, three particular instants in time, A, B, C, are chosen

for further analysis. These events correspond to characteristic points in the bubble trajectory,

extreme points of bubble inclination ϕz(t) and path xp(t), and are illustrated in Figure 6 and

highlighted as dots in Figures 15. The inclination ϕz(t) is zero for event A and C. The time of event

B was chosen half way between the time of A and C corresponding to approximately an extremum

in inclination ϕz(t). Events A and C mark approximately the turning points of the zig-zag in xp(t).

We therefore restrict the discussion to half a period of the zig-zag. At instant B, the transverse

velocity up is close to a maximum and the instantaneous rise Reynolds number Re = vpdeq/ν just

passed a minimum (Figure 15c).

3.4.2. Coherent structures in the wake

As discussed in the introduction, the trajectory of the bubble is closely related to the structure

of its wake. In experiments with liquid metal, an analysis of coherent vortex structures is difficult.

The presently available experimental techniques only provide selected one- or two-dimensional data

with relatively coarse resolution [22, 16, 53, 54]. Here, the present simulations can close this gap

and furnish insight into vortical structures of the bubble wake. This is provided in Figures 16 to 18

based on instantaneous 3D velocity and pressure data available from the simulations. The dominant

role of streamwise vorticity has been emphasized by several others, for instance in [4, 13, 2]. Figure

16 and 17 for this reason show the vertical component of the vorticity, ωy, for event B and C,

respectively. Two iso-surfaces are depicted, one with a positive and one with a negative value, so

that counter-rotating vortices can be detected. In these plots, complementary views of the same

structure are shown differing by an angle of 90◦. The magnetic interaction parameter increases

from left to right from N = 0 to N = 0.5 to N = 1.0.
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Visualizations using the λ2-criterion [55] were conducted as well. These are not reproduced here

since they show very much the same structures as the vorticity plots, at the same level of granularity.

The vorticity in the wake is distributed in an undulating pattern as a consequence of two effects.

One is the von Kármán instability of the wake leading to an alternating vortex pattern even if the

bubble would rise along a straight path. Additionally, once the path of the bubble oscillates in

horizontal direction, vorticity is generated at varying horizontal positions, so that even without the

wake instability a zig-zag trajectory yields a zig-zag shape of the vorticity pattern. Also recall that

in inviscid smooth fluid flows, vortex lines move with the fluid [56]. In all cases, one can observe

that vorticity is shed pair-wise with alternating sign in the zy-plane. These counter-rotating vortex

filaments induce a velocity in the x-direction according to the Biot-Savart law yielding a tilting

of the bubble and hence the observed zig-zag motion in the xy-plane. Substantial damping of

the vortical structures in the bubble wake by the vertical magnetic field is found. Especially small

structures vanish with increasing N while the larger vortex filaments are more aligned with the field.

The vertical orientation of the vortices, in turn, is also caused by the more rectilinear trajectory of

the bubble.

While iso-contours of the vertical vorticity component give access to coherent structures of

smaller scales, iso-contours of pressure can be used to visualize larger scales [57]. As vortex cores are

characterized by low pressure regions, iso-contours of the pressure coefficient Cp = p /
(
ρfu

2
ref/2

)
are displayed in Figure 18 for event C. (Recall that the hydrostatic component of the pressure has

been subtracted from the equations.)

Vortex rings form in the wake of the bubble in the absence of a magnetic field triggered by the

zig-zag path which have also been visualized in experiments at similar Reynolds number [8]. A 4R

vortex mode [8] is associated with one zig-zag period consisting of two primary vortex rings at the

extreme points of the path and two secondary rings in between at maximum, absolute inclination.

These rings are less pronounced in the case N = 0.5 and eventually vanish for N = 1.0 due to

the rather rectilinear path. The ’two-legged’ structure of the bubble wake is clearly visible in the

snapshot of N = 0.5 at the chosen value for Cp.

The pressure iso-contours also show a region of high pressure at the front of the bubble and a low

pressure region aside from and behind the bubble. Both regions increase in size with increasing

magnetic interaction indicating an augmentation of the pressure drag on the bubble with N as

discussed in [30]. The Lorentz force is generated by the transverse velocity components u and w
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for a vertical magnetic field, so that increasing magnetic interaction leads to a damping of these

lateral velocity components and to a straightening and stretching of the path lines of fluid elements

around the bubble in vertical direction resulting in the described change in the pressure field. The

effect is also visible in the graphs of Figure 19 where the extent of non-zero transverse vorticity in

front of the bubble increases with stronger magnetic fields.

3.5. Quantification of the damping effect in the bubble wake

The vorticity in the bubble wake has been found to be the crucial quantity in understanding

bubble dynamics and path oscillations [13, 2, 4]. Therefore, the focus is now on the quantification

of the damping effect resulting from the applied magnetic field. The absolute value of the vorticity

component ωy is integrated in xz-planes according to

⟨|ωy|⟩xz =
1

d2eq

∫∫
|ωy|
ωref

dx dz . (11)

The integration in equation (11) is conducted over the entire xz-plane and normalized with d2eq and

ωref = uref/deq. The transverse components ⟨|ωx|⟩xz and ⟨|ωz|⟩xz are determined in an analogous

way.

Sample results for event C are plotted over the vertical distance from the bubble center for increasing

magnetic interaction N = 0, 0.5, 1.0 in Figure 19. The plots show global maximum values of

⟨|ωx|⟩xz and ⟨|ωz|⟩xz at the front of the bubble in all cases. The values of the maxima are similar

since the bubble has zero tilting at event C and therefore the geometrical configuration is symmetric

with respect to x and z at this instant in time. With increasing magnetic interaction the maximum

in ⟨|ωx|⟩xz and ⟨|ωz|⟩xz is reduced and the region of non-zero vorticity extends further upstream. In

the bubble wake, considerable damping of all vorticity components is found when a magnetic field

is applied. The peaks of ⟨|ωy|⟩xz for N = 0 in Figure 19a vary in amplitude due to asymmetries in

the zig-zag and tilting of the bubble as well as due to irregular vortex shedding. With increasing

magnetic interaction, the bubble wake contains less vertical vorticity and the values of the extrema

in the plot are substantially reduced.

The damping effect of a vertical magnetic field is anisotropic. Joule damping associated with

the Lorentz force acts linearly on all scales with a privileged direction [28]. This is now assessed by

means of the average weight of |ωy| compared to the total vorticity |ω| using the quantity

Γy =
1

nxz

nxz∑
i=1

⟨|ωy|⟩(i)xz

⟨|ω|⟩(i)xz

. (12)
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With the present data, nxz = 1280 equi-distributed xz-planes have been used for the interval

(yp − y) /deq ∈ [−5; 25]. The quantity Γy is reported in Table 4 for event C. The table also lists an

integral measure of vorticity for all three components obtained by summation over all xz-planes.

The difference in the damping of ωx and ωz is related to the privileged direction of the zig-zag. A

roughly linear decrease of Γy with N is found, i.e. the vorticity component ωy is the one which is

affected most by the magnetic field. In general, a vertical magnetic field leads to homogenization

of the transverse velocities u and w and therefore reduces the gradients of these components with

respect to z and x which enter in ωy.

In summary, the applied vertical magnetic field particularly reduces the transverse velocities u

and w and therefore indirectly the vertical component of the vorticity ωy. This streamwise vorticity

is the direct cause of the zig-zag trajectory which is consequently reduced when ωy is smaller.

3.5.1. Energy spectra

Using the simulation data, energy spectra were obtained for the velocity components v and u,

corresponding to the direction of ascent and the predominant direction of the zig-zag, respectively.

These spectra are spatial spectra and were determined along vertical lines through the bubble center

(xp, zp) and along additional vertical lines shifted by ±req in x and z.. The spectra resulting from

these five lines were ensemble-averaged, as well as time-averaged in an interval of ∆t⟨ ⟩ = 1.25

around event C. A byproduct of the immersed boundary method applied here is an artificial, weak

flow field inside the bubble [32]. The velocity field therefore is continuously differentiable in the

entire domain and sampling data through the bubble does not effect the convergence of the spectra.

The spectra Evv and Euu are shown in Figure 20 over the spatial wave number ξy for the case

without magnetic field, N = 0, and the strongest vertical magnetic field applied, N = 1. The

results for N = 0.5 lie in between and have been removed for readability.

For N = 0, the spectrum of u exhibits an increase with wave number for small ξy, a maximum,

and a regular decay over more than two decades. Beyond this, a fine-scale range with steeper

decay is observed. The spectrum of the vertical velocity component behaves similarly. The overall

amplitude is larger, particularly for the lower wave numbers, as this component is in the direction

of the bubble rise velocity. Again, the high-frequency end of the spectrum decays fast and does not

exhibit any sign of unphysical behavior as it would occur from under-resolution due to aliasing, etc.

On the other hand, it can not be excluded that the finest scales are influenced by the grid resolution.
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In addition to the grid study presented above, the regular decay in both spectra over a large range

of wave numbers demonstrates that the flow indeed is well resolved in its energy-containing range

and well beyond.

The second type of information which can be extracted from Figure 20 relates to the application of

the vertical magnetic field. It is apparent that the u-component, which is perpendicular to the field,

is damped by an almost constant factor in the entire mid-to-high-frequency range. The amplitudes

of the large wave numbers are also uniformly damped, but by a somewhat smaller factor. For the

vertical component, a similar observation is made, except for the low wave numbers where the slope

of the spectrum is changed. As a result, the largest scales are less influenced by the magnetic field.

Overall, the damping by the magnetic field is seen to be stronger in the spectrum of u compared

to the spectrum of v. This is coherent with the understanding of the action of the Lorentz force

affecting predominantly the velocity component perpendicular to the field as discussed above. The

spectra are instructive in this respect as they reveal damping, albeit less, also for the v-component

of the velocity.

3.6. Examination of the employed numerical modeling

The scope of this section is to scrutinize the assumptions employed in the numerical modeling,

and also to provide a comparative view on the experimental data for the ascent of a single argon

bubble in the liquid metal GaInSn. With the numerical model described above, already a very good

agreement with the experimental data was achieved in the previous sections. All dominant effects

of the magnetic field observed in the experiments were reproduced, and could be analyzed in more

depth based on the available computational data of high detail. However, there is still room for

improvement in the quantitative agreement. Furthermore, awareness of possible sources of error is

important and an estimate about the magnitude of the error is a valuable information. Therefore,

the influence of the bubble shape representation is studied now and the impact of the insulating

bubble on the distribution of the electric current density is examined.

3.6.1. Influence of bubble shape representation

So far the bubble shape was approximated as an oblate ellipsoid where the ellipsoid aspect ratio

was correlated to the instantaneous bubble Weber number, X(t) = f(We(t)). The wake instability

of a fixed axisymmetric bubble of realistic shape [58], however, shows a perceptible difference with

respect to the instability of a bubble with oblate ellipsoidal shape [12]. Consequently, an additional
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simulation is conducted without magnetic field and the bubble shape represented by axisymmetric

spherical harmonics (SH) up to a polynomial degree of NSH = 12. The shape is computed directly

from the local fluid load along the bubble surface by the SH shape algorithm described in [38]. All

other parameters of the simulation remain unchanged. The non-dimensional numbers describing

the simulation are G = 2825, Eo = 2.5, N = 0, i.e. no magnetic field is applied.

Figure 21 shows the bubble aspect ratio over time as well as the time-averaged bubble shape for

both runs. The average shapes are nearly identical whereas the SH bubble has a moderate front-aft

asymmetry being a bit front-flattened. In the case of the SH bubble, the aspect ratio is computed

fromX = 2max(x′)/(max(y′)−min(y′)) which results in a slightly lower value for the time-averaged

aspect ratio. In the definition of the aspect ratio, x′ and y′ are points on the bubble surface in the

local reference frame of the bubble with y′ being collinear to the axis of rotation of the SH and x′

perpendicular to it. The projected area of the bubble during the ascent is however very much the

same for both shape representations. Also the amplitude and frequency in the shape oscillation

agree very well. Table 22a) lists the main figures describing the bubble dynamics and compares

the results obtained with an ellipsoidal bubble shape, the SH representation, and the experimental

data. Figure 22b) again shows the history of the bubble rise Reynolds number for the three cases.

With the SH shape representation, a slightly higher average rise Reynolds number, Ret, is observed

compared to the ellipsoidal shape. The standard deviation, σRe, increases noticeably towards

the experimental value whereas the frequency, fRe, in the oscillation remains almost unchanged.

The maximum inclination, |ϕz|max, decreases somewhat to 32◦, while the measure of the zig-zag,

∆xz/deq, is basically unaltered.

In summary, the approximation of the bubble shape as an oblate ellipsoid was well justified in

the present case. The more sophisticated approach with the bubble shape represented by spherical

harmonics and coupled to the hydrodynamic forces yields a very similar bubble shape and well

comparable bubble dynamics. A non-axisymmetric shape might further improve the results. The

correlation of the bubble aspect ratio to the instantaneous Weber number did also yield good

agreement for the bubble shape oscillation. The additional simulation provides an a posteriori

justification of the previous assumptions towards the bubble shape.
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3.6.2. Influence of the electrically insulating bubble

One assumptions made above is to set the electric conductivity inside the bubble the same as

in the liquid. In this section, the bubble is treated as a local insulator. The representation of inter-

nal electric boundary conditions can be achieved by a magnetohydrodynamic IBM [59]. With this

approach, an IBM correction is introduced to Ohm’s law (3) in the vicinity of the non-conducting

immersed surface, S, to ensure jS = 0 [59]. In a very similar fashion, we here impose zero electric

current inside the entire bubble by a phase-dependent conductivity, σe(α), with α = 1 inside the

bubble and σe(α = 1) = 0 [33]. The phase-indicator, α ∈ [0, 1], is obtained from a second-order

accurate level-set approach [41]. With the modified numerical modeling, the electric current cannot

penetrate the phase boundary and the current circuits have to close through the liquid metal.

A one-to-one comparison with the above results again using the ellipsoidal shape is not conducted

here, because the simulations are quite expensive. Instead the bubble shape is represented by

spherical harmonics to achieve as much improvement as possible. All other parameters remain as

outlined above. The study is further extended towards larger magnetic interaction parameters.

Figure 23 shows an instantaneous contour of the current density component, jz. Note that this plot

provides information about the Lorentz force component, fL,x at the same time, since the Lorentz

force is fL = 1/ρf j × B and thus fL,x ∼ −jz for a vertical homogeneous magnetic field. The

non-dimensional numbers describing the simulation are G = 2825, Eo = 2.5, N = 1. Here, Figure

23a) shows a contour with ellipsoidal bubble shape and σe = const., while Figure 23b) displays a

similar instant for a non-conducting bubble and its shape represented by spherical harmonics. The

close-up Figure 23c) shows a detailed view of the phase boundary and the mesh for case b). With

the present configuration, the current distribution is very similar for both cases even in the direct

vicinity of the bubble. The current streamlines have to close due to charge conservation which leads

to the formation of circular patterns in front of the bubble and distorted loops in the bubble wake

as depicted in Figure 23. The corresponding Lorentz force distribution introduces damping of the

transverse velocity components and indirectly affects the rise velocity, e.g. by altering the pressure

field around the bubble.

Table 5 summarizes the main results for the insulating bubble with SH bubble shape for various

magnetic interaction parameters. The numbers in brackets indicate the previous simulation re-

sults with ellipsoidal bubble shape and constant electric conductivity. For N = 1, the average rise

Reynolds number, Ret, is almost identical for the insulating bubble with SH bubble shape compared
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to the value obtained when imposing an ellipsoidal shape and determining the aspect ratio from

the instantaneous bubble velocity and constant electric conductivity. The relative decrease in the

standard deviation, σRe, compared to the case without magnetic field is similar for both runs with

larger absolute values in the simulation with the insulating bubble. The most significant change is

that there is a less pronounced damping in the dominant frequency, fRe, in the case of an insulating

bubble. Now excellent agreement with the experimental data is found for the damping in the bubble

Strouhal number. At a value N = 1 of the interaction parameter, the decrease in Strouhal number

is St/St(N = 0) = 0.775, while the value calculated from the experimental data is 0.779 so that

the agreement is very good. With constant electric conductivity and ellipsoidal shape, the relative

change in Strouhal number was St/St(N = 0) = 0.656. In each case, the reference values taken for

N = 0 were obtained with the corresponding shape representation.

The extension of the study towards larger values of N supports the physical explanation of the

effects of a longitudinal magnetic field on the bubble dynamics given in the previous sections. In-

deed, there is a local maximum in Ret over N for larger bubbles. Further increasing the magnetic

interaction, the drag increases and the bubble rises slower. This is in agreement with the obser-

vation of a monotonously increasing drag with N for the flow around a fixed sphere or ellipsoid

observed in [30, 51]. The local increase in Ret for low and moderate N stems from the damping

of the lateral dynamics and the more rectilinear trajectory compared to the case without magnetic

field. A roughly linear decrease in the bubble Strouhal number with N is observed for small to

moderate interaction parameters which then seems to saturate at N = 4 where the damping is less

pronounced. Note that the statistics for the simulation with N = 4 were obtained for two crossings

of the periodic domain, but still only three quasi-periods of the oscillation in Re(t) could be used.

The uncertainty in the frequency and standard deviation of the oscillation therefore is rather high.

For values of the magnetic interaction parameters studied here, the lateral dynamics of the high

Reynolds bubble were not fully suppressed by the magnetic field.

In summary, using an insulating bubble does improve the quantitative agreement with the experi-

ments. The effect of the longitudinal magnetic field on the bubble dynamics, however, remains the

same as in the studies reported above. With the improved modeling, further simulations at higher

magnetic interaction were conducted and the physical explanations on the impact of the field on

the rise Reynolds number are supported.
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4. Conclusions

Phase-resolving simulations of single bubbles rising in liquid metal were conducted in this paper.

The following effects are observed when increasing the magnetic interaction parameter N compared

to the case without magnetic field:

The time-averaged bubble rise velocity increases for large bubbles (high Eo) reaches a local max-

imum and then decreases. For small bubbles (low Eo), the time-averaged bubble rise velocity

decreases for all N studied. The amplitude of oscillations in vp(t) decreases. The dimensionless

characteristic frequency f of oscillations in Re(t) and the resulting Strouhal number St decrease

for all bubbles. The amplitude of oscillation in lateral bubble positions xp(t), zp(t) decreases, i.e.

the trajectory is more rectilinear. Also the amplitude of oscillation in tilting angles ϕi(t) decreases.

The integral of the absolute value of the vertical vorticity component over cross sectional planes in

the bubble wake decreases. Similar observations were made for the transverse components, but the

vertical component of vorticity is affected most by the damping due to the vertical magnetic field.

The obtained results are in good agreement with the corresponding experiments presented in [22].

The present results for the instantaneous vertical bubble and fluid velocity support the findings from

these experiments where the velocity component along a line was measured by ultrasound Doppler

velocimetry. Furthermore, additional data are now available from the simulations elucidating the

full three-dimensional bubble trajectory, flow structures in the bubble wake and wake vorticity as

well as energy spectra. These data provide valuable insight into the considered three-dimensional

multiphase flow and into the dynamics of a single bubble in liquid metal under the impact of a

longitudinal magnetic field which can so far not be obtained by experiments.

Future research will be concerned with the simulation of bubble chains and bubble swarms in liquid

metal to provide insight into the influence of a magnetic field on collective effects in bubble driven

flows [16, 60]. Another interesting direction of research is the influence of a magnetic field on the

flow through a relatively tight cluster of bubbles as presented in [33, 61]
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5. Figures and captions

Table 1. Material properties of GaInSn and water at a temperature of 20◦C and ambient pressure of 1 bar [22]. The

non-dimensional numbers are calculated for an argon bubble in GaInSn and an air bubble in water, both with an

equivalent diameter of deq = 4.6 mm.

GaInSn Water

Density ρf [kgm−3] 6361 998

Surface tension σ [N m−1] 0.533 0.073

Kinematic viscosity ν [m2 s−1] 3.46· 10−7 9.82· 10−7

Electrical conductivity σe [Sm−1] 3.27· 106 ≈ 5.0· 10−2

Galilei number G 2825 995

Eötvös number Eo 2.5 2.8

a) b)

Figure 1: a) Ellipsoidal bubble with nL = 664 Lagrangian forcing points, tilted by ϕz = 30◦. b)

Shape oscillation X(t) = a(t)/b(t). The discontinuous lines indicate the states with maximum and

minimum aspect ratio observed in the simulation with N = 0 reported below.
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Figure 2: Bubble shape: Aspect ratio X over Weber number We, data (symbols) and fit from [20].
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Figure 3: Bubble Reynolds number over time as a function of grid spacing, N = 0.
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Figure 4: Vertical position of the bubble over time as a function of grid spacing, N = 0.
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Figure 5: Relative error in Re at t = 1.0 for the simulation in Figure 3.
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a) b) c)

Figure 6: a) Side view of computational domain and bubble trajectory for N = 0 and b) perspective

view of the same data, c) events A, B, C of the bubble trajectory for this case as indicated in Figure

15 below.

0 5 10 15 20 25 30 35 40 45
t

0

500

1000

1500

2000

2500

3000

3500

R
e

Experiment, Zhang (2005)
present

Figure 7: Bubble Reynolds number over time for N = 0 and comparison to experimental data of

[22].
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Table 2. Results for a single bubble without magnetic field compared to experimental data of [22]. Ret = ⟨Re⟩t is

the temporally averaged Reynolds number, σRe the corresponding standard deviation, fRe = f∗/fref with f∗ being

the dominant frequency in Hz and fref =
√

|πρ − 1| g/deq .

Ret σRe fRe (DFT) fRe (roots) fRe (sine-fit [22])

Simulation 2871 245 0.276 0.270 —

Experiment [22] 2879 369 0.297 0.289 0.280
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Figure 8: Zig-zag trajectory for N = 0. History of lateral bubble center coordinates xp and zp,

non-dimensionalized with deq.
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Figure 9: Bubble orientation over time for N = 0 described by the angles of orientation.

Figure 10: History of bubble Reynolds number for the three cases N = 0, 0.5, 1.0 and G = 2825,

Eo = 2.5.
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Figure 11: History of inclination angle ϕz for the three cases N = 0, 0.5, 1.0 and G = 2825,

Eo = 2.5.
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Figure 12: Assessment of lateral motion with and without magnetic field. N = 0, 0.5, 1.0 and

G = 2825, Eo = 2.5. Left: History of lateral bubble center coordinates xp non-dimensionalized

with deq illustrating the zig-zag trajectory of the bubble. Right: Top view on trajectories, xp versus

zp, only the center part of the domain is shown.
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Table 3. Summary of simulation results.

Eo = 2.5, G = 2825, fine Ret f (DFT) |ϕz|max ∆xz(Zig-Zag)

N = 0 2871 0.276 36◦ 1.15 deq

N = 0.5 2957 0.233 31◦ 1.08 deq

N = 1.0 3132 0.181 17◦ 0.78 deq

Eo = 2.5, G = 2825, coarse

N = 0 3029 0.297 35◦ 0.96 deq

N = 0.5 3054 0.246 29◦ 0.92 deq

N = 1.0 3202 0.185 15◦ 0.73 deq
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Figure 13: Relative change in average rise Reynolds number: Present simulations (bold symbols)

with code PRIME compared to experimental data of [22].
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Figure 14: Relative change in Strouhal number: Present simulations with code PRIME compared

to experimental data of [22].

35
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Figure 15: Selected instants in time A, B, C characteristic for the bubble trajectory. They are

defined in the plot of the inclination angle ϕz and marked by dots in the other plots of bubble

position xp and bubble Reynolds number for the three cases N = 0, 0.5, 1.0; G = 2825, Eo = 2.5

in all cases.
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zy-plane

N = 0 N = 0.5 N = 1.0

Figure 16: Event B: Iso-contours of ωydeq/uref = ±6.
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xy-plane

N = 0 N = 0.5 N = 1.0

zy-plane

N = 0 N = 0.5 N = 1.0

Figure 17: Event C: Iso-contours of ωydeq/uref = ±6.
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Figure 18: Event C: Iso-contours of pressure with Cp = p /
(
ρfu

2
ref/2

)
= ±0.24.
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Figure 19: a) Absolute vertical vorticity component ⟨|ωy|⟩xz integrated over horizontal planes for the

event C indicated in Figures 15, with comparison of the three cases N = 0, 0.5, 1.0. b) Analogous

data for the transverse component ⟨|ωx|⟩xz. c) The same data for the component ⟨|ωz|⟩xz.

41
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Table 4. Event C: Average magnitude of ωy compared to total vorticity measured by Γy, according to (12), and

integral measure of vorticity for all three components.

N = 0 N = 0.5 N = 1.0

Γy 0.471 0.337 0.210∑ny

i=1⟨|ωy|⟩(i)xz 73.2 36.7 25.8∑ny

i=1⟨|ωx|⟩(i)xz 75.8 50.4 48.5∑ny

i=1⟨|ωz|⟩(i)xz 74.5 45.3 39.6
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Figure 20: Spatial energy spectra Evv of the vertical velocity component, v, and Euu of the hori-

zontal velocity component, u, along vertical lines with ξy the spatial wave number in y. Results for

N = 0 and N = 1.
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Figure 21: Comparison of results obtained with SH algorithm and with ellipsoidal shape from

X(t) = f(We(t)), for parameters G = 2825, Eo = 2.5, N = 0: a) Aspect ratio over time. b) Time-

averaged bubble shape.
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Figure 22: Comparison of spherical harmonics (SH) and ellipsoidal bubble shape for parameters

G = 2825, Eo = 2.5, N = 0. a) Bubble dynamics and b) history of bubble rise Reynolds number.
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6

B
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Figure 23: Instantaneous contour of the z-component of the current density, jz/jref , with jref =

σeurefBy. The values are depicted in an xy-plane through the particle center. The parameters of

the simulation are G = 2825, Eo = 2.5, N = 1. a) Ellipsoidal bubble with σe = const. and selected

current streamlines. b) Same plot for an insulating bubble with its shape represented by spherical

harmonics at a similar instant in time. c) Detailed view of the phase boundary and mesh for case

b).
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Table 5. Summary of simulation results for an insulating bubble with its shape represented by spherical harmon-

ics. Numbers in brackets indicate previous simulation results with ellipsoidal bubble shape and constant electric

conductivity. Eo = 2.5, G = 2825

N Ret σRe fRe

0 3037 (2871) 307 (245) 0.281 (0.276)

0.5 — (2957) — (166) — (0.233)

1.0 3122 (3132) 125 (90.3) 0.218 (0.181)

2.0 3009 144 0.138

4.0 2639 148 0.072
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