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Properties of (x(yz))z with Loop Graph Varieties of Type (2,0)
Amp. Anantpinitwatna
Mahasarakham University, Thailand
amporn.a@msu.ac.th
Coauthors: T. Poomsa-ard

Graph algebras establish a connection between directed graphs without mul-
tiple edges and special universal algebras of type (2,0). We say that a graph G
satisfies a term equation s ≈ t if the corresponding graph algebra A(G) satisfies
s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ
where Σ is a subset of T (X) × T (X). A graph variety V ′ = ModgΣ

′
is called

an (x(yz))z with loop graph variety if Σ
′
is a set of term (x(yz))z with at least

one loop term equations.
In this paper we characterize all (x(yz))z with loop graph varieties.

Special M-hyperidentities in Biregular Leftmost Graph Varieties of
Type (2,0
A.. Anantpiniwatna
Mahasarakham University, Thailand
apinant.a@msu.ac.th
Coauthors: T. Poomsa-ard

Graph algebras establish a connection between directed graphs without mul-
tiple edges and special universal algebras of type (2,0). We say that a graph G
satisfies a term equation s ≈ t if the corresponding graph algebra A(G) satisfies
s ≈ t. A class of graph algebras V is called a graph variety if V = ModgΣ
where Σ is a subset of T (X) × T (X). A graph variety V ′ = ModgΣ

′
is called

a biregular leftmost graph variety if Σ
′
is a set of biregular leftmost term equa-

tions. A term equation s ≈ t is called an identity in a variety V if A(G) satisfies
s ≈ t for all G ∈ V . An identity s ≈ t of a variety V is called a hyperidentity
of a graph algebra A(G), G ∈ V whenever the operation symbols occurring in s
and t are replaced by any term operations of A(G) of the appropriate arity, the
resulting identities hold in A(G). An identity s ≈ t of a variety V is called an
M -hyperidentity of a graph algebra A(G), G ∈ V whenever the operation sym-
bols occurring in s and t are replaced by any term operations in a subgroupoid
M of term operations of A(G) of the appropriate arity, the resulting identities
hold in A(G). An identity s ≈ t of a variety V is called an M -hyperidentity of V
if it is an M -hyperidentity of A(G) for all G ∈ V . In this paper we characterize
all special M -hyperidentities in each biregular leftmost graph variety.
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On Verbal Subgroups of Finitely Generated Nilpotent Groups
A. Bier
Silesian University of Technology, Poland
agnieszka.bier@polsl.pl

For a set of words F , the verbal subgroup VF (G) of group G is the subgroup
generated by all values of the words from F in group G [1]. In any group G the
terms of its lower central series G = γ1(G) ≥ γ2(G) ≥ ... ≥ γn(G) = {1} are
verbal subgroups generated by the following commutator words:

c1 = x1, ci+1 = [xi+1, ci(x1, ..., xi)],

satisfying the equality γi(G) = Vci
(G).

We will say that the group G is verbally poor if it has no verbal subgroups but
the terms of its lower central series. In the talk we are interested in conditions
for finitely generated nilpotent groups to be verbally poor. We will show that
every verbally poor finitely generated nilpotent group is torsion and therefore
finite. Moreover, it will be shown that
Theorem. Every verbally poor finitely generated nilpotent group is a p-group.

The talk will be concluded with few examples of verbally poor p-groups.

References

1. Neumann H., ”Varieties of groups”, Springer-Verlag New York, 1967.

Basic Algebras with vt-operators
M. Botur
Dept. of Algebra and Geometry, Palack University Olomouc, Czech Republic
botur@inf.upol.cz

The aim of our talk is to introduce and study very true-like operators on
basic algebras. Basic algebras are a common generalization of algebras of logic
which are lattices with section antitone involutions.
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Prime n-Clones and the Representation of On(A)
R. Butkote
Potsdam University, Germany
unique1st@hotmail.com
Coauthors: K. Denecke (Potsdam University)

A clone is a set of operations defined on a base set A which is closed under
composition and contains all the projections. In this paper we study n-ary
parts of Boolean clones, for short n-clones, and define the concept of prime
n-clone. Moreover, we prove that On(A) can be represented as a sum of two
prime n-clones.

When Can we do Computations with Infinitary Linear Combinations
Without Worrying About Convergence?
R. Börger
Fernuniversität Hagen
Reinhard.Boerger@FernUni-Hagen.de
Coauthors: R. Kemper (Frankfurt)

When can one define infinitary linear combinations satisfying the usual rules
in a module over a complete valuation ring? Convergence to zero plays only a
role in the definition of the operations; the operations themselves are totally
defines and have countable arity. It turns out that this is possible exactly for
reduced Matlis cotorsion modules. Moreover; these infinitary operations are
uniquely detemined by the module structure, and they are preserved by all
linear maps.

On Semigroups of Relations with the Descriptor of Fixed Points
D. A. Bredikhin
Lermontova 7-22, Saratov, Russia, 410002
bredikhin@mail.ru

A set of binary relations closed with respect to some collection of operations
forms an algebra which is called an algebra of relations. Any algebra of relations
can be considered as partial ordered by set-theoretical inclution.

For any set Ω of operations on relations, denote by R{Ω} (R{Ω,≤}) the
class of algebras (partial ordered algebras) isomorphic to ones whose elements
are binary relations and whose operations are members of Ω. Let V ar{Ω}
(V ar{Ω,≤}) be the variety generated by R{Ω} (R{Ω,≤}).

We shall concentrate our attention on the operations of relation product ◦,
union U and the unary operations ∆ defined as follows:

∆(ρ) = {(x, x) : (there exists z) such that (z, z) belongs to ρ}.
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Note that ∆(ρ) is equal to the identical relation if ρ contains a fixed point,
and ∆(ρ) is equal to the empty relation otherwise. For these reasons, the oper-
ation ∆ can be considerred as the descriptor of fixed points.

The main result are formulated in the following theorems.

Theorem 1. An algebra (A, ·, ∗) of the type (2, 1) belongs to the variety
V ar{◦,∆} if and only if it satisfies the identities:

(xy)z = x(yz) (1), (x∗)2 = x∗ (2), xy∗ = y∗x (3),
(xy)∗ = (yx)∗ (4), (xy∗)∗ = x∗y∗ (5),

x∗(xk)∗ = x∗ (6) for any natural number k.

Theorem 2. A partial ordered algebra (A, ·, ∗,≤) of the type (2, 1) belongs
to the variety V ar{◦,∆,≤} if and only if it satisfies the identities (1) - (6) and
the identity xy∗ ≤ x (7).

Theorem 3. The varieties V ar{◦,∆} and V ar{◦,∆,≤} are not finitely based.

Theorem 4. An algebra (A, ·,+, ∗) of the type (2, 2, 1) belongs to the variety
V ar{◦, U,∆} if and only if (A,+) is a semilattice and the following identities
hold: (1) - (6) and

x+ xy∗ = x, (x+ y)z = xz + yz, x(y + z) = xy + xz, (x+ y)∗ = x∗ + y∗.

Discriminator Order Algebras
I. Chajda
Palacky University Olomouc, Czech Republic
chajda@inf.upol.cz

The concept of order algebra was introduced recently by J.Berman and W. J.
Blok. By an order algebra is meant an algebra defined on an ordered set whose
operations are derived by means of the order relation and, conversely, the partial
order is determined by these operations. We study order algebras with least and
greatest element and with a unary operation which is an involution. We answer
to the question when these algebras contain the ternary discriminator as a term
operation.
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Units in a Ternary Algebra
R. Chandra
3/3, Government Girls Normal School Campus, Civil Lines, Faiabad-224001,
(UP), INDIA
rameshchandra51@gmail.com
Coauthors: S. K. Gantayat

Firstly we have established a ternary system and then we find the number
of units in the ternary algebra.

On Semigroups of Regular Hypersubstitutions
T. Changphas
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon
Kaen 40002, Thailand
thacha@kku.ac.th
Coauthors: W. Hemvong, T. Changphas, K. Denecke

Hypersubstitutions were introduced as a way of making precise the concept
of hyperidentities and generalization to M-hyperidentities. Semigroup’s prop-
erties of hypersubstitutions have been studied by many authors. In this paper,
we characterize Green’s relations of every subsemigroup of the semigroup of
regular hypersubstitutions. Moreover, we give a partial solution concerning
G-subsemigroup of this semigroup.

The Vertex Arboricity of Regular Graphs
A. Chantasartrassmee
The University of the Thai Chamber of Commerce, Bangkok, Thailand
avapa cha@utcc.ac.th
Coauthors: N. Punnim

The vertex arboricity of a graph G, denoted by a(G), is the minimum integer
k in which there exists a partition V1 ∪ V2 ∪ · · · ∪ Vk of V (G) such that 〈Vi〉 is
acyclic for all i = 1, 2, . . . , k.

We prove that if G runs over the set of graphs with a fixed degree sequence d,
then the values a(G) completely cover a line segment [a, b] of positive integers.
Thus for an arbitrary graphical sequence d, two invariants a := min(a,d) and
b := max(a,d naturally arise. For a regular graphical sequence d = rn :=
(r, r, . . . , r) where r is the degree and n is the number of vertices, the exact
values of min(a,d) are found in all situations and max(a,d) for all n ≥ 2r + 2.
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Freeoids
J. C̄ırulis
Department of Computer Science, University of Latvia, Riga
jc@lanet.lv

Let X be a fixed infinite set. A freeoid is defined to be a pair (W,E), where
W is a superset of X and E is a submonoid of WW that contains just one
extension of every mapping X → W . For example, if W is a relatively free
algebra with X the set of free generators, then F (W) := (W,End(W)) is a
freeoid. Let WX and FX stand for the class of all relatively free algebras of
various signatures and for that of all freeoids, respectively. We characterise the
kernel equivalence and the range of the transformation F : WX → FX . The
classes WX and FX naturally expand to categories, and F , to a full functor
that is constant on morphisms. The category WX is equivalent to the category
of all varieties. We also show that it is equivalent to F (WX).

Algebras, Coalgebras and State-based Systems
K. Denecke
University of Potsdam, Germany
kdenecke@rz.uni-potsdam.de

Most mathematicians first encounter algebraic structures in the classical
examples of groups, rings, fields and vector spaces. In each of these areas,
common themes arise: we have sets of objects which are closed under one or
more operations performed on the objects, and we are interested in subsets
which inherit the structure (subgroups, subspaces, etc.), in mappings which
preserve the structure (group homomorphisms, linear transformations, etc.) and
construction of new structures from old, for instance by Cartesian products or
quotients. We can also classify our structures according to the laws or identities
they satisfy, as for instance with commutative groups or groups of order four.

In universal algebra we abstract and generalize from these examples to a core
structure of an algebra: a set A of objects, with one or more operations defined
on the set. We study substructures, homomorphisms and product algebras,
and we classify algebras according to the identities they satisfy. To study such
algebras we also need to know how many operation symbols our algebra has,
and the arity of each one. This information is called the type or signature of
the algebra. In general we assume a type indexed by some set I: for each i ∈ I
we have an operation symbol fi, of arity ni ≥ 0, and we write the type as τ =
(ni)i∈I .

While universal algebras can be used to model most algebraic structures,
they are not as useful in modelling state-based systems. The main reason for
this is the following. An ni-ary operation on set A is a mapping fA : Ani 7→ A,
which combines ni “input” elements of A into one output element. In a state-
based system however, we often have the opposite situation: we need to map a
single state to an output which carries several pieces of information, for instance
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to a state-output-symbol pair. That is, we need mappings from set A to some
more complex set involving A.

In order to model dynamic state-based systems, the codomain might be a
product of the form A × Σ where Σ is an input or output language of the
machine. In general, we use some functor F to describe this structure, and
consider mappings f : A 7→ F (A). This leads to the definition of an F -coalgebra,
for a functor F , as a structure with a base set A together with one or more
mappings from A to F (A). There is an algebraic dual of this concept too: an
F -algebra is a set A with one or more mappings from F (A) to A. Any algebra
of type τ can be transformed into an F -algebra.

We take a further step in abstraction to a single structure which encompasses
both F -algebras and F -coalgebras. This can be done by using two functors F1

and F2, instead of a single functor F . A functorial system or (F1, F2)-structure,
for functors F1 and F2, consists of a set A and mappings f : F1(A) 7→ F2(A).
This expresses both F -algebras, by taking F1 = F and F2 to be the identity
functor, and F -coalgebras, when F2 = F and F1 is the identity functor. But
this concept also models other interesting algebraic structures as well, such as
power algebras (also called hyperstructures) and power coalgebras, and tree
automata. This structure thus allows us to unify results from the two different
areas of algebra and theoretical computer science.

The Maximal Subsemigroups of the Semigroup of all Monotone Par-
tial Injections
I. Dimitrova
South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria
ilinka dimitrova@yahoo.com
Coauthors: J. Koppitz

We study the structure of the semigroup of all monotone, i.e. order-preserving
or order-reversing partial injections on an n-element set. The main result is the
characterization of the maximal subsemigroups of this semigroup. There are
exactly 2n+1 − 3 such semigroups.

Random Constructions Imply Symmetry
M. Droste
Leipzig University, Institute of Computer Science, Leipzig, Germany
droste@informatik.uni-leipzig.de
Coauthors: D. Kuske; Guo-Qiang Zhang

We will argue for the claim of the title in the areas of algebra, theoreti-
cal computer science, and theoretical physics. In algebra, we will consider the
random graph. For theoretical computer science, we will give a probabilistic
construction of locally finite and of Scott domains and show that with probabil-
ity 1 our construction produces a universal homogeneous domain. Finally, we
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consider causal sets which have been used as basic models for discrete space-time
in quantum gravity.

De Morgan Quasirings and De Morgan Algebras
G. Eigenthaler
TU Vienna
G.Eigenthaler@tuwien.ac.at
Coauthors: I. Chajda

The concept of a De Morgan quasiring was introduced by the authors in
a recent paper. The aim of the talk is twofold. At first we find an axiom
system which determines both De Morgan algebras and De Morgan quasirings
(in dependence of the value of the algebraic constant 1 + 1). The second aim
is to show when an interval of a De Morgan quasiring A can be equipped by
operations such that the resulting algebra is a De Morgan quasiring again and
the operations are polynomials over A. Finally, we present a certain kind of
representation of De Morgan algebras by algebras of binary functions.

Polygroupoids, Polyringoids and Polyalgebroids: from Strings to Nets
A. Gasparyan
19/43, 50 Let Komsomola, 152026 Pereslavl Zalesskii, Russia
armen@armen.pereslavl.ru

Most of all type classical algebras involve mainly binary operations (multipli-
cation, addition, composition etc.), and this was key precondition for mathemat-
ics to be writtable means of linear strings — expressions, formulas, equations,
together with textual explanations. However, recent development of science
and, particularly, mathematics, determined new requirements concerning theo-
retical and technical base of algebraic constructions in cases if we are interested
in solving problems where the presented relations, interactions, maps and oper-
ations are sufficiently multiary, multityped and even multisorted. We meet with
such situations, for example, if we get to description or modelling systems with
complex interacting components — namely networks or network-like ones. It
becomes clear: the algebraic instrumentary that may be appropriate for study-
ing network- like complex objects, same should necesarily contain network-like
elements and constructs. It is obvious that also resulting mathematical expres-
sions and even the texts should necessarily contain network-like pices (graphs,
nets, schemes etc.).
Roughly speaking, our observation is that todays string- mathematics have ten-
dency to become network-mathematics. and one can suggest another name
for the mathematics of tomorrow — ”polymathematics” — with appropriate
terms: polyalgebras, polystructures, polygeometry, polyfunctions, polyspaces,
polymorphisms, polycategories . . .
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In the talk we will introduce several algebraic systems generalizing correspond-
ing fundamental structures of classical general algebra but in some time allowing
to compose different network-like algebraic expressions. The elements of alge-
braic systems, we introduce and study, usually have one, two or more inputs
and/or outputs with a method of their numeration and some composition rules.
Combining the elements and compositions one can obtain a wealth of expressions
that we name algebraic networks, schemes or graphs. If we require the holding
of additional appropriate conditions, we define algebraic systems of more con-
crete type, that only in much particular cases are the classical algebraic systems
with chain-like expressions.

Critical Points of Pairs of Varieties of Algebras
P. Gillibert
LMNO, Universit de Caen, France
pierre.gillibert@math.unicaen.fr

For a class V of algebras, denote by Conc(V ) the class of all semilattices
isomorphic to the semilattice Conc(A) of all compact congruences of A, for
some A in V . For classes V and W of algebras, we denote by crit(V,W ) the
smallest cardinality of a semilattice in Conc(V ) which is not in Conc(W ) if it
exists, infinity otherwise. We prove a general theorem, with categorical flavor,
that implies that for all finitely generated congruence-distributive varieties V
and W , crit(V,W ) is either finite, or ℵn for some natural number n, or infinity.
We also give some examples of critical points with varieties of lattices.

Regular Elements and Green’s Relations on Languages of Generalized
n-ary Terms
P. Glubudom
Department of Mathematics, Chiangmai University, Thailand 50200
puprisana@yahoo.com
Coauthors: K. Denecke

Tree languages are sets of terms of a given type. The power set of the set
of all tree languages forms an algebra with respect to superposition operations
and with respect to infinitely many nullary operations. These algebras are
called unitary Menger algebras of infinite rank. Unitary Menger algebras can
be extended to generalized power Menger algebras. We are looking for regular
elemnts and Green’s relations on the generalized power Menger algebra. This
generalizes and extends results of n-ary terms. This generalization is useful since
operations in tree languages are based on the generalized superposition on sets
of terms. The idea of a near endomorphism was used to solve the problem.
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Generalized E-Rings
R. Goebel
Universität Duisburg
ruediger.goebel@uni-due.de

In the paper (joint work with Daniel Herden and Saharon Shelah; submitted
to the European Journal of Math. in 2008) basic for this talk we solve an exactly
fifty year old problem on R-algebras A over cotorsion-free commutative rings R
with 1.

For simplicity I will assume that R = Z is just the ring of integers. Thus A is
an ordinary ring. It is called a generalized E-ring if the ring of endomorphisms
EndA+ of its additive group A+ is isomorphic to A as a ring.

Subrings of Q are the first obvious examples. Properties, including the
existence of many such rings are derived in various papers. The study was
stimulated by Fuchs first edition of his book on “Abelian Groups” from 1958,
and specially by the PhD-thesis of Phil Schultz from 1973. But due to Schultz’
work the investigations concentrated on ordinary thus commutative E-rings. A
substantial part of problem 45 of the 1958-Fuchs-monograph (repeated in later
publications by Vinsonhaler and others) remained open:

Can we find non-commutative generalized E-rings?
I will indicate the proof about the existence of such rings, thus of proper

generalized E-rings.
The new strategy should be interesting and useful for other problems as well:

We will first translate the heart of the algebraic question on the existence of
certain monoids via model theory into geometric structures leading to a special
class of

finite (decorated) trees and solve this problem introducing products of trees
etc. This can be compared with the well-known, but different process translating
group problems to small cancelations in groups via the van Kampen lemma used
for answering famous problems in group theory. By small cancelation of trees we
are able to find a suitable monoid and thus a non-commutative ring A with an
important non-canonical embedding A ↪→ EndA+, our ∗-scalar multiplication.
In a second part of this paper we must enlarge A to get rid of all undesired
endomorphisms and getting the desired ring. This can be done more easily. I
will make plausible how to get rid of all unwanted endomorphisms. This follows
roads of work in the last twenty years using our useful Black Box predictions
principle as outlined in the recent book by Trlifaj and Göbel, Approximation
Theory and Endomorphism Algebras, Walter de Gruyter, Berlin (2006).

Dependences spaces
E. Graczyńska
Opole University of Technology, Poland
e.graczynska@po.opole.pl
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N. J. S. Hughes proved Steinitz’ Exchange Theorem for infinite bases in [1]
under the following assumptions: ”Given a system in which a suitable relation
of dependence is defined, we give a construction (assuming well ordering), by
which some of the elements of any basis may be replaced, in a one-one manner,
by all the elenents of any independent subset to give a new basis”. His construc-
tion includes the classical examples of the theorem. In fact, the author used a
natural ordering in his proof. Therefore we propose a modifiation of the proof
of Steintz’ theorem, assuming Zorn’s Maximum principle [2,3].
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Quantum Polynomials
Ashish Gupta
University of Melbourne, Australia
a0gupt@gmail.com

Quantum polynomials play an important role in mathematical Physics. They
are multiplicative analogues of the Weyl algebras. We shall introduce the quan-
tum polynomials and describe the basic properties and also discuss some module
theory.

On Very True Operators on Pocrims
Radomir Halas
Dept. of Algebra and Geometry, Palack University Olomouc, Czech Republic
halas@inf.upol.cz
Coauthors: M. Botur

P. Hajek introduced the logic BLvt enriching the logic BL by a unary con-
nective vt which is a formalization of Zadehs fuzzy truth value very true. BLvt
algebras, i.e. BL-algebras with unary operations, called vt-operators, which
are among others subdiagonal, are an algebraic counterpart of BLvt. Partially
ordered commutative integral residuated monoids (pocrims) are common gen-
eralizations of both BL-algebras and Heyting algebras. The aim of our talk is
to present algebraic properties of pocrims endowed by “very-true” and “very-
false”-like operators.
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Regularity of Weak Projection Hypersubstitutions I
W. Hemvong
Department of Mathematics, Faculty of Science, Khon Kaen University, Khon
Kaen 40002, Thailand.
hwonlop@hotmail.com
Coauthors: T. Changphas

Let f and g be the binary operation symbols of type τ = (2, 2). For binary
terms a and b of type τ , the hypersubstitution which maps the operation symbol
f to the term a and the operation symbol g to the term b will be denoted by
σa,b. Using the fact that any σa,b can be inductively extended to a map σ̂a,b on
the set of all terms of type τ , the set Hyp(2, 2) of all hypersubstitutions of type
τ forms a semigroup. In this paper, we give sufficient and neccessary conditions
for a weak projection hypersubstitution of type τ (that is a hypersubstitution
σa,b which either a or b is a variable) to be regular.

Some New Aspects of Islands
E. K. Horváth
University of Szeged, Bolyai Institute, Hungary
horeszt@math.u-szeged.hu
Coauthors: P. Hajnal (University of Szeged, Bolyai Institute), B. Šešelja (Uni-
versity of Novi Sad), A. Tepavčević (University of Novi Sad)

Given a square grid in a big rectangle, where each cell is filled with a real
number, its height. A rectangle on a grid is called a rectangular island, iff there
is a possible water level such that the rectangle is an island in the usual sense
([1]). The notion comes from information theory ([2]). The talk starts with
a summary about the history of islands (since 2007). Then a surprising exact
formula and its proof will be presented for the maximum number of hypercubic
islands in a big hypercube. The set of cells – the board – now consists of
all vertices of a hypercube, in other words the elements of a Boolean algebra
{0, 1}n. We consider two cells neighbouring if they are neighbouring in the
usual sense, i.e. if their Hamming distance is 1. We present the exact formula
for the maximum number of hypercubic islands, i.e. the sub-Boolean algebras
that are intervals. In the remaining part of the talk, first the definition of
fuzzy rectangular relation will be given. This definition is based on the original
rectangular island definition of G. Czédli, but uses it only in implicite way. Some
basic properties of fuzzy rectangular relations will be reported.
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Bounded Boolean Powers of Pseudo MV-algebras and Related Struc-
tures
M. Hyčko
Mathematical Institute, Slovak Academy of Sciences, Štefánikova 49, SK-81473,
Bratislava, Slovakia
hycko@mat.savba.sk
Coauthors: A. Dvurečenskij

Algebraic contruction of Boolean powers and bounded Boolean powers were
investigated for orthomodular posets by Pták ([Pta]), for orthoalgebras by Foulis
and Pták ([FoPt]) and for difference posets by Dvurečenskij and Pulmannová
([DvPu]). We extend definition of bounded Boolean power for pseudo MV-
algebras and also for more general structures. We show that bounded Boolean
power of a finite Boolean algebra and a pseudo MV-algebras is isomorphic to
their free product. There is a topological construction of bounded Boolean pow-
ers for arbitrary universal algebras ([Fos1], [Fos2]). We show that the algebraic
construction is dual to the topological one.
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Symmetry Groups of Boolean Functions
P. Jasionowski
Silesian University of Technology, Poland
pawel.jasionowski@polsl.pl

Mapping of the type f : {0, 1}n → {0, 1, ..., k− 1} is called k-values boolean
function of n variables. Let Fk,n be the set of all such function. The symmetric
group Sn act on the set Fk,n according the rule:

f(x1, x2, ..., xn) = f(xσ(1), xσ(2), ..., xσ(n)) = fσ(x)

for f ∈ Fn,k , σ ∈ Sn.
Subgroup S(f) = {σ ∈ Sn|fσ = f} is called the symmetry group of the function
f . Permutation group G < Sn is called k-representable if G = S(f) for some
f ∈ Fk,n. In [1] was a statement that every k-representable subgroup of Sn is
2-representable, for all k ≥ 2. In [2] was proposed a counter - example to this
statement:
Counterexample [by A. Kisielewicz] Let G ⊆ S4 is a group generate by
σ1 = (1, 2)(3, 4), σ2 = (1, 3)(2, 4). Then G is 3-representable , but is not 2
- representable.
We propose the following generalisation of the Kisielewicz example:
Theorem 1
For every positive integer number n ≥ 3 the symmetric group S2n contains a reg-
ular representation of elementary abelian 2-group Zn

2 , which is s-representable,
but is not a s− 1 - representable for some s which hold condition

2n ≤ s ≤
(

2n

2n−1

)
− 2n
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Some (known) Resutls on Free-by-Cyclic Groups
C. Kocapinar
Balkesir University
cnyilmaz@gmail.com
Coauthors: F. Ates

Let P and Q be algebraic properties. A group G is a P-by-Q group if G
has a normal subgroup N such that N has P and G/N has Q. There are vari-
ous studies about P-by-Q groups and its connections between the other group
structures such as decision problems (word, conjugacy, isomorphism problems),
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subgroup separability, polynomial growth, some group extensions,etc. As an one
of the important application, in this talk, I would like to present some results on
free-by-cyclic groups, especially, connection between free-by-cyclic groups and
subgroup separability, and also present examples of free-by-cyclic groups by us-
ing topological tecniques and group extensions.
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The Word and Generalized Word Problem for Semigroups under
Wreath Products
E. G. Karpuz
Balikesir University, Turkey
eguzel@balikesir.edu.tr
Coauthors: A. S. Cevik

Algorithmic problems such as the ”word, conjugacy and isomorphism prob-
lems” have played an important role in group theory since the work of M. Dehn
in early 1900’s. These problems are called ”decision problems” which ask for a
yes or no answer to a specific question. In this paper, we investigate the solv-
ability of the word problem for the wreath product SwrT, where S and T are
infinite and finite semigroups, respectively and then present a result giving the
solvability of the generalized word (membership) problem for the same wreath
product by using the normal form constructions of words.
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On Congruence Lattices of Commutative Unary Algebras
A. Kartashova
Volgograd State Pedagogical University, Russia
kartashovaanna@mail.ru

A unary algebra is called commutative if every two operations of this algebra
commute with each other. We consider the variety M consisting of all commu-
tative unary algebras < A, f, g, h > that satisfy the identity f(g(h(x))) = x.
We describe the class of all distributive lattices each of which is isomorphic to
a congruence lattice of some algebra from the variety M. We also characterize
algebras of this variety whose congruence lattices are linearly ordered.

Rings Over Which all Modules are Strongly Gorenstein Projective
Ou. Khalid
Department of Mathematics, Faculty of Science and Technology of Fez, Box
2202, University S. M. Ben Abdellah Fez, Morocco
ouarghi.khalid@hotmail.fr
Coauthors: D. Bennis and N. Mahdou

One of the main results of this paper is the characterization of the rings over
which all modules are strongly Gorenstein projective. We show that these kinds
of rings are very particular cases of the well-known quasi-Frobenius rings. We
give examples of rings over which all modules are Gorenstein projective but not
necessarily strongly Gorenstein projective.

Commutative Directoids with Sectionally Antitone Bijections
M. Kolař́ık
Palacký University Olomouc, Czech Republic
kolarik@inf.upol.cz
Coauthors: I. Chajda (Palacký University Olomouc); S. Radeleczki (University
of Miskolc)

We study commutative directoids with a greatest element, which can be
equiped with antitone bijections in every principal filter. These can be ax-
iomatized as algebras with two binary operations satisfying four identities. A
minimal subvariety of this variety is described.
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On the Classification of Simple Finite Jordan Pseudo-Algebras
P. Kolesnikov
Sobolev Institute of Mathematics, Novosibirsk, Russia
pavelsk@math.nsc.ru

The notion of a pseudo-algebra is an appropriate generalization of ordinary
and conformal algebras. By definition, a pseudo-algebra is a module over a Hopf
algebra H endowed with a family of binary multiplications indexed by the dual
space H∗. The natural categorical approach leads to what is called associative
(commutative, Lie, etc.) pseudo-algebras. Our aim is to consider those Jordan
pseudo-algebras finite over H, and classify simple objects in this class. We will
also consider a variety of (ordinary) algebras which naturally arises from Jordan
pseudo-algebras; these algebras relate to Jordan algebras as Leibniz algebras to
Lie algebras.

Preclones
J. Koppitz
Universität Potsdam, Institut für Mathematik
koppitz@rz.uni-potsdam.de

The concept of a preclone was introduced by Ésik and Weil in order to de-
scribe recognizable tree languages from the algebraic point of view. We will
determine the free preclone and introduce the notation of the preclone of an
algebra of a given type in a natural way. It is known that the identities of the
clone of an algebra correspond to the hyperidentities of this algebra, that the
hypersubstitutions are endomorphims on the free clone and that eqivalent vari-
eties generate isomorphic clones. We want to discuss these facts for preclones.
Although, preclones are very close to clones there are essential and interesting
differences.

On Prime Deductive Systems in Pseudo-BCK-Algebras
J Kühr
Palacky University in Olomouc, Czech Republic
kuhr@inf.upol.cz

Pseudo-BCK-algebras or biresiduation algebras are the residuation subreducts
of non-commutative integral residuated lattices. We describe the meet prime ele-
ments of the lattice of deductive systems and the lattice of compatible deductive
systems (= congruence kernels) and characterize those pseudo-BCK-algebras in
which the primes in the two lattices coincide.
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Folding Theory of some Types of Ideals in BCI-algebras
C. Lele
University of Dschang, Cameroon
lele clele@yahoo.com

In 1,6,7,8, some types of ideals in BCI-algebras have been studied as well as
various relations between them. The main purpose of our work is to investigate
the folding of other types of ideals and the relation diagram between them simi-
lar as in 6,7. We have already managed with the folding theory in BCK-algebras
in 3, the folding theory of quasi-associative ideals (namely q-ideals ) in 2, the
n-folds of H-ideals in 4 and n-folds P-ideals in 5. The expecting results will be
a generalization of the results that appear in 1,6,7,8,9.
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The Order of Generalized Hypersubstitutions of Type (3)
S. Leeratanavalee
Deptm. of Mathematics Chiang Mai University
scislrtt@chiangmai.ac.th
Coauthors: S. Sudsanit

In this paper we characterize all idempotent generalized hypersubstitutions
of type (3) and determine the order of each generalized hypersubstitutions of
this type.
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On the Finite Index Property of Clones
Erkko Lehtonen
University of Luxembourg
erkko.lehtonen@uni.lu
Coauthors: . Szendrei

For each clone C on a set A, there is an associated equivalence relation,
called C-equivalence, on the set OA of all operations on A, which relates two
operations if and only if each one is a substitution instance of the other using
operations from C. The set of clones C on A that have the property that the
associated C-equivalence relation has finite index in OA, i.e., a finite number of
equivalence classes, constitutes an order filter in the lattice of clones on A. In
this talk, we present some recent results towards understanding the structure of
this filter.

Hypersubstitutions of Cloneτ
S. Lekkoksung
University of Potsdam
lekkoksung somsak@hotmail.com
Coauthors: K. Denecke

Defining superposition operations on the set Wτ (X) of all terms of type τ
one obtains a many-sorted algebra of a particular type:

clone τ := ((Wτ (Xn))n≥1; (Sm
n )m,n≥1, (xi)1≤i≤n).

If one wants to study identities and hyperidentities of clone τ one needs to define
terms over clone τ , i.e., terms over these particular many-sorted algebras. On
the set of all those terms superposition operations (of second level) are definable
and one gets a clone (of second level) where the universes are the sets of n-ary
many-sorted clone terms and the operations are these superposition operations.
As on the first level one can now define hypersubstitutions of second level. If
turns out that their extensions are endomorphisms of clones of second level.
These results can be generalized to the non-arity preserving case.
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Some Endoprimal Monoids over a Three-Element Set
H. Machida
Hitotsubashi University, Tokio, Japan
machida@math.hit-u.ac.jp
Coauthors: Ivo G. Rosenberg (University of Montreal)

For a set S of multi-variable functions on a finite set A, the centralizer S∗ of
S is the set of functions which commute with all functions in S. For a monoid
M of unary functions on A, M is called endoprimal if the unary part of the
bicentralizer (M∗)∗ coincides with M itself. Endoprimal monoids have been
studied in universal algebra. In this talk we show some examples of endoprimal
monoids on a 3-element set A. We also show some applications of Kuznetsov
Criterion.

Quasi-Exact Sequences
A. Madanshekaf
Math. Department, Faculty of Science, Semnan University, Semnan, Iran
a madanshekaf@yahoo.co.uk

All rings in this lecture are assumed to be commutative with non-zero
identity and all modules are unitary. Exact sequences have been used in-
tensively in many discipline of mathematics such as commutative algebras.
Let R be a ring and A

f→ B
g→ C an exact sequence of R-modules. Then

imf = ker g(= g−1({0})). It is raising a natural question:
What does happen if we substitute a submodule U of C instead of the trivial
submodule {0} above? In [b:ano], Davvaz and Parniam-Gramaleky introduced
the concept of quasi-exact sequences and answered the above question. They
generalized some results from the standard case to the modified case. In [b:ago]
Davvaz and Shabani-Solt introduced a generalization of some notions in homo-
logical algebra. They defined the concepts of chain U -complex, U -homology,
chain (U,U ′)-map, chain (U,U ′)-homotopy and U -functor. They gave a gener-
alization of the Lambek lemma, snake lemma, connecting homomorphism, exact
triangle and established new basic properties of the U -homological algebra (See
for example [H:aci]). In [s:use], Anvariyeh and Davvaz studied U -split exact
sequences and established several connections between U -split sequences and
projective modules.

In this talk we investigate further this notion. In particular, some interesting
results concerning this concept and torsion functor are given.
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Endomorphal Multiplication Modules
K. Mecam
Maejo University Sansai Chiangmai, Thailand
kamonthep@mju.ac.th
Coauthors: J. Sanwong

In this paper we prove that if is a multiplication module with is cyclic for
all , then is endomorphal. As an application, we get that every semisimple mul-
tiplication is endomorphal. Also, we list some rings in which all multiplication
modules over them are endomorphal.

The Fibonacci and Lucas Subsequences as Principal Minors of Quasi-
Pascal Matrices
A. R. Moghaddamfar
Department of Mathematics, Faculty of Science, K. N. Toosi University of Tech-
nology, P. O. Box 16315-1618, Tehran, Iran
moghadam@kntu.ac.ir

In the literature one may encounter certain infinite tridiagonal matrices the
principal minors of which constitute the Fibonacci or Lucas sequence (see [1-
3]). The major purpose of this lecture is to find some new infinite matrices
the principal minors of which again form the Fibonacci or Lucas sequence. In
particular, we obtain families of quasi-Pascal matrices whose principal minors
generate any arbitrary linear subsequences F(nr+s) or L(nr+s), (n=1,2,3,...) of
Fibonacci or Lucas sequence.
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On Automorphism Groups of Universal Hypergraphical Automata
V. Molchanov
Saratov State Socio-Economic University, Russia
v.molchanov@inbox.ru
Coauthors: A. Molchanov

A hypergraph is a system H = (X,R), where X is a non-empty set and R is
a family of arbitrary subsets of X. The elements of X and R are called vertices
and edges.

By automaton we mean a system A = (X,S, Y, δ, λ) consisting of a state set
X, a semigroup S of input signals, a set Y of output signals, a transition function
δ : X × S → X and an exit function λ : X × S → Y such that δ(x, s1s2) =
δ(δ(x, s1), s2) and λ(x, s1s2) = λ(δ(x, s1), s2) for any x ∈ X, s1, s2 ∈ S. An
automaton A is said to be hypergraphical if its sets X and Y endowed with a
structure of hypergraphs H = (X,R) and H ′ = (Y,R′) such that, for any s ∈ S,
the mappings δs(x) = δ(x, s), λs(x) = λ(x, s) (x ∈ X) are homomorphisms
of the corresponding hypergraphs. In this case we denote the automaton A =
(H,S,H ′, δ, λ).

For hypergraphsH,H ′, the universal hypergraphical automaton is the hyper-
graphical automaton Atm(H,H ′) = (H,S(H,H ′),H ′, δ, λ), where S(H,H ′) =
End(H)×Hom(H,H ′) and, for every x ∈ X, (ϕ,ψ) ∈ S(H,H ′), δ(x, (ϕ,ψ)) =
ϕ(x), λ(x, (ϕ,ψ)) = ψ(x).

In this talk we investigate a connection between the automorphism groups of
hypergraphs H,H ′ and the automorphism group of the universal hypergraphical
automaton Atm(H,H ′).

Lattice Ordered Polynomial Algebras–Cayley Theorem for DeMorgan
Algebras
Y. Movsisyan
Department of Mathematics and Mechanics, Yerevan State University,Armenia
yurimovsisyan@yahoo.com

Let A = (A;F ) be an algebra, and let P (2)(A) be the set of all binary
polynomials in the operations of F . The algebra BA = (P (2)(A);+, ·,′ , 0, 1) is
defined as follows:

(f + g)(x, y) = f(x, g(x, y)),

(f · g)(x, y) = f(g(x, y), y),

f ′(x, y) = f(y, x),

1(x, y) = x,

0(x, y) = y.

In this talk we find necessary and sufficient conditions for BA to be a De-
Morgan algebra. We also prove a ”Cayley theorem” for DeMorgan algebras,
using hyperidentities.

22



Finitely Presented Monomial Algebras
Jan Okninski
Warsaw University, Poland
okninski@mimuw.edu.pl

A structural approach to the study of finitely presented monomial algebras
is discussed. As an application, it is shown that a monomial algebra K[X]/J
over a field K, where J is a prime ideal of a finitely generated free algebra
K[X] generated by finitely many elements of the free monoid X, is primitive
whenever it does not satisfy a polynomial identity. This yields a proof of the
trichotomy conjecture of Bell and Smoktunowicz, in the finitely presented case,
proved independently also by Bell and Pekcagliyan. Applications to the class of
algebras defined by permutation relations, studied recently in a joint work with
F.Cedo and E.Jespers, are discussed.

On Representations of Permutation Groups as Isometry Groups of
Finite Metric Spaces.
B. Oliynyk
National University ”Kyiv-Mohyla Academy”, Kyiv, Ukraine
bogdana.oliynyk@gmail.com

Let (X, dx) be a finite metric space. We can consider its isometry group IsX
as a permutation group (IsX,X). We intend to discuss which permutation
groups can be realized as the isometry group of some finite metric space. It
easy to see that there exists a permutation group (for example, the regular
cyclic group of order n ≥ 3) that is not an isometry group of any finite metric
space. We consider some constructions of finite permutation groups that we can
represent as isometry groups of finite metric spaces.

Generalized Derivations and Commutativity of Rings with Involution
L. Oukhtite
Department of Mathematics, Faculty of Science and Technology of Errachidia,
Box 509-Boutalamine, University My Ismal Errachidia , Morocco
oukhtitel@hotmail.com
Coauthors: S. Salhi and L. Taoufiq

Let (R, ?) be a 2 -torsion free ring with involution and F a generalized deriva-
tion, associated to a derivation d, satisfying one of the following conditions:
1) for each x, y ∈ R either d(x)oF (y) = 0 or d(x)oF (y) = xoy.
2) for each x, y ∈ R either [d(x), F (y)] = 0 or d(x)oF (y) = [x, y].
In this paper it is shown that if R is ?-prime, then R is commutative. Moreover,
examples proving the necessity of the ?-primeness condition for R are given.
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Group Divisible Designs with two Associate Classes and λ2 = 1
N. Pabhapote
University of the Thai Chamber of Commerce, Bangkok 10400, Thailand
nittiya pab@utcc.ac.th;
Coauthors: N. Punnim

The original classification of PBIBDs defined group divisible designs with
λ1 6= 0. Keeping up with that tradition, we study the group divisible designs
with two groups of unequal sizes and block size three. The necessary conditions
have already been proved to be sufficient for the case of two groups of equal
sizes and block size three. Here we obtain the necessary conditions and prove
that the conditions are sufficient for some infinite families.

Locally finite M-solid Varieties of Semigroups
B.ä Pibaljommee
The Department of Mathematics Khonkaen University, Thailand
banpib@kku.ac.th
Coauthors: K. Denecke

We use the theory of M-solid varieties to prove that a type (2)M -solid variety
of the form V = HMMod{F (x1, F (x2, x3)) ≈ F (F (x1, x2), x3)}, which consists
precisely of all algebras which satisfy the associative law as an M -hyperidentity
is locally finite iff the hypersubstitution which maps F to the word x1x2x1 or to
the word x2x1x2 belongs to M and that V is finitely based if it is locally finite.

Unityped Algebras
B. Plotkin
Hebrew University, Jerusalem, Israel
plotkin@macs.biu.ac.il

In the talk we give an extension of the ideas developed in B. Plotkin, G.
Zhitomirski, ”Some logical invariants of algebras and logical relations between
algebras”, St.Peterburg Math. J., 19:5, (2008) 859 – 879, whose main notion is
that of logic-geometrical equivalence of algebras (LG-equivalence of algebras).
This equivalence of algebras is more strict than elementary equivalence. We
introduce the notion of unityped algebras and relate it to LG-equivalence. We
show that these notions coincide. The idea of the type is one of the central
ideas in Model Theory. The correspondence between types and LG-equivalence
stimulates a bunch of problems which connect universal algebraic geometry and
Model Theory. We touch the following topics: 1. General look 2. Logical
noetherianity 3. Unitypeness and isomorphism 4. Logically perfect algebras
5. Some facts from algebraic logic. We provide a new general view on the
subject, arising ”on the territory” of universal algebraic geometry, which yield
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applications of algebraic logic and universal algebraic geometry in Model Theory.
We give a list of new unsolved problems.

Automorphic Equivalence of Multi-Models Versus Graphs
T. Plotkin
Bar Ilan Ubiversity, Israel
plotkin@macs.biu.ac.il
Coauthors: M. Knyazhansky

A model is treated as a triple consisting of an algebra from a fixed variety
of algebras, a set of symbols of relations and an interpretation which realizes all
symbols of relations in the given algebra. Algebras in the given variety may be
multi-sorted. This leads to multi-sorted operations and relations. Multi-model
differs from a model by the set of interpretations instead of a single one. Defini-
tions of a knowledge base and a category of knowledge bases rely on the notion
of multi-model which is treated as a subject of knowledge. Knowledge base
includes a category of knowledge description as well as categories of knowledge
content for each interpretation from the given set of interpretations. There is
also a functor transforming a knowledge description to its content. A notion
of informational equivalence of two knowledge bases with different subjects of
knowledge is defined in these terms. It has been proved that in case of finite
subjects of knowledge the corresponding knowledge bases are informationally
equivalent if and only if the subjects of knowledge are automorphically equiva-
lent. We define the notion of automorphic equivalence of two multi-models and
study this notion. If two multi-models are isomorphic, then they are automor-
phically equivalent. The opposite is not true since the notion of automorphic
equivalence is wider than that of isomorphism. In the talk we consider graphs
and multi-graphs as a subject of knowledge. The main problem here is an algo-
rithm of automorphic equivalence of multi-models verification. We consider the
general algorithm and its adaptation in special cases.

The class of Biregular Leftmost Graph Varieties of Type (2,0)
T. Poomsa-ard
Mahasarakham University, Thailand
tiang@kku.ac.th
Coauthors: M. Krapeedang

Graph algebras establish a connection between directed graphs without mul-
tiple edges and special universal algebras of type (2,0). We say that a graph G
satisfies a term equation s ≈ t if the corresponding graph algebra A(G) satisfies
s ≈ t. A class of graphs V is called a graph variety if V = ModgΣ where Σ is
a subset of T (X) × T (X). A graph variety V ′ = ModgΣ

′
is called a biregular

leftmost graph varaiety if Σ
′

is a set of biregular leftmost term equation. A
term equation s ≈ t is called an identity in a graph variety V if A(G) satisfies
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s ≈ t for all G ∈ V . An identity s ≈ t of a graph variety V is belong to the
class V whenever Modg{s ≈ t} = V .

In this paper we characterize the class of all biregular leftmost graph vari-
eties.

Lattice-Ordered Algebras of Real Continuous Functions
A. Pulgarin
University of Extremadura, Spain
aapulgar@unex.es

Throughout by algebra we mean a commutative R-algebra with identity,
and by lattice-ordered algebra (briefly l-algebra) we mean both an algebra and
a lattice whose order is compatible with the algebra structure. It is a standard
procedure in obtaining dualities or isomorphisms in categories to deal with sets
of morphisms into a significant object. In our categories such a significant object
will be R - either as an l-algebra or as a topological space. For an l-algebra A
consider X the set consisting in l-algebra morphisms from A to R equipped with
the initial topology defined by A. Hence we have an l-algebra morphism from A
to C(X).

The classical results appearing in the literature on characterizing C(X) re-
gard the structure of A-l-algebra, that is, Archimedean l-algebras whose unity
is a weak order unit. This work deals with obtaining a characterization as an
l-algebra non necessary Archimedean nor with weak order unit. Our procedure
has two steps:

The first step consists of finding inner conditions under which our morphism
is 1-1. To this aim we define the class of real l-ideals of A as those convex ideals
I which satisfy that for any f in A there exists a real number r such that f-r is
in I, and we proof that it is is injective iff A is semisimple (the intersection of
all the real l-ideals is 0).

In the second task we must find conditions under which it is a surjection. We
found inner conditions on A in the spirit of the Urysohn lema’s proof that allow
A to separate disjoint zero-sets of X. Lastly by using inverse-closeness or the
existence of special suprema sufficient for generating all continuous functions on
X, our main result succeed.

26



Green’s Relations on HypG(2)
W. Puninagool
Deptm. of Mathematics Chiang Mai University, Thailand
wattapong1p@yahoo.com
Coauthors: S. Leeratanavalee

A generalized hypersubstitution of type τ = (2) is a map σ which takes the
binary operation symbol f to a term σ(f) which does not necessarily preserve
the arity. Any such σ can be inductively extended to a map σ̂ on the set of all
terms of type τ = (2), and any two such extensions can be composed in a natural
way. Thus, the set HypG(2) of all generalized hypersubstitutions of type τ = (2)
forms a monoid. Green’s relations on the monoid of all hypersubstitutions of
type τ = (2) were studied by K. Denecke and Sh.L. Wismath. In this paper we
use similar methods to study Green’s relations on HypG(2).

Laudatio for Klaus Denecke
R. Pöschel
Technische Universität Dresden
reinhard.poeschel@tu-dresden.de
Coauthors: H.-J. Vogel

In 1986, Prof. Klaus Denecke founded the series Conference for Young Alge-
braists (CYA) which, since 1996, is jointly organized with Arbeitstagung Allge-
meine Algebra (AAA) and which many times was held at Potsdam University.
This year, we celebrate the 65th birthday of Prof. K. Denecke. On this occasion
we want to honor his scientific activities, in particular, his contributions to the
success of the conference series CYA and AAA.

On One-sided Congruences of an Idempotent Groupoid
A. Reshetnikov
Moscow Institute of Electronic Technology, Russia
Resheton@mail.ru

Let G be a groupoid. By definition, a right congruence of G is such equiv-
alence relation s on G that (a,b)∈s implies (ac,bc)∈s for all a,b,c∈G. A left
congruence can be defined by the dual way.

The groupoids were described in [1] such that each of their equivalence re-
lations is a right congruence. We will call them R-groupoids and define an
L-groupoid by the dual way. A complete description of the semigroups, whose
equivalence relations are right or left congruences, was obtained also in [1]. If
every equivalence relation on a groupoid is a right or a left congruence, we will
call this groupoid as carbonoid. It turns out that if a semigroup is a carbonoid
then either it is an R-groupoid or it is an L-groupoid. Nevertheless, there exist
non-associative carbonoids, which are neither R-groupoids nor L-groupoids. An
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example is the set {a,b,c} with the following binary operation defined on it:
aa=ba=ca=c, bb=cb=b, ab=ac=bc=cc=a. However, the existence of a car-
bonoid of 4 or more elements with this property is unknown for the author.
He makes a hypothesis that such groupoids do not exist. Now, this hypothesis
is proved for the idempotent carbonoids, i.e. the ones satisfying the identity
xx=x. Namely, the following theorem is true.

Theorem. Let G be an idempotent carbonoid, and |G|≥4. Then either G is
an R-groupoid or G is an L-groupoid.

The following note is important for proving this theorem: if G is an idem-
potent groupoid whose equivalences are right or left congruences then ab∈a,b
for all a,b∈G. It means that every non-empty subject of G is a subgroupoid.

References

1. Kozhukhov I.B. Algebras whose equivalence relations are all congruences.
Siberian Math.J., in press.

Flocks in Universal and Boolean Algebras.
G. Ricci
Universit di Parma, I-43100 Parma, Italy
gabriele.ricci@unipr.it

We propose the notion of flocks, which formerly were introduced only in
based algebras, for any universal algebra. This generalization keeps the main
properties we know from vector spaces, e.g. a closure system that extends the
subalgebra one. It comes from the idempotent elementary functions, called
“interpolators”, that in case of vector spaces merely are linear functions with
normalized coefficients.

The main example, we consider outside vector spaces, concerns Boolean
algebras, where flocks form “local” algebras. Among several open problems
we outline the one of generalizing the Segre transformations of based algebras,
which used certain flocks, in order to approach a general transformation notion.

Endomorphism Rings of Quasi-rp-injective and Quasi-lp-injective Mod-
ules
A. Sudprasert
University of the Thai Chamber of Commerce, Bangkok 10400, Thailand
aisuriya sud@utcc.ac.th
Coauthors: S. Sanpinij, Hoang Dinh Hai and Nguyen van Sanh

Let R be a ring. A right R-module N is called an M -p-injective module if
any homomorphism from an M -cyclic submodule of M to N can be extended
to an endomorphism of M . Generalizing this notion, we investigated the class
of M -rp-injective modules and M -lp-injective modules, and prove that for a
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finitely generated Kasch module M , if M is quasi-rp-injective, then there is
a bijection between the class of maximal submodules of M and the class of
minimal left right ideals of its endomorphism ring S. In this paper, we give
some characterizations and properties of the structure of endomorphisms ring
of M -rp-injective modules and M -lp-injective modules and the relationships
between them.

Hyperalgebras and Hyper-coalgebras of Type τ
K. Saengsura
University of Potsdam
saengsur@rz.uni-potsdam.de
Coauthors: K. Denecke

In this paper we consider hyperalgebras and hyper-coalgebras of type τ ,
as an analogue of algebras of type τ and coalgebras of type τ . We consider
hyperalgebras and hyper-coalgebras as special cases of (F1, F2)-systems. There-
fore many results in this paper will be instances of the (F1, F2)-system results.
Nevertheless it is interesting and instructive to consider directly the theory of
hyperalgebras and hyper-coalgebras of type τ .

Products of Tree Languages
N. Sarasit
University of Potsdam, Institute of Mathematics
napaporn sarasit@hotmail.com
Coauthors: K. Denecke (University of Potsdam)

Sets of terms of type τ are called tree languages. The tree language prod-
uct is the most important operation defined on sets of tree languages which
maps recognizable tree languages to recognizable languages. This tree language
product can be described as superposition of sets of terms. Based on the su-
perposition operation we define a binary associative operation. In the theory of
tree languages this operation is called the z-product. The aim of this paper is to
describe some properties of the arising semigroup. We are especially interested
in idempotent and regular elements, Green’s relations L and R, in constant,
left-zero and right-zero subsemigroups and in rectangular bands. The iteration
of this binary operation plays the role of the Kleene-∗-operation of the theory
of formal languages.
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Weak Homomorphisms of F-Algebras
F. M. Schneider
TU Dresden
friedrich-martin.schneider@online.de

In the theory of universal algebras homomorphisms are considered only be-
tween algebras of the same similarity type. Different from that the notion of a
weak homomorphism does not depend on a signature, but only on the clones of
term operations generated by the examined algebras. We try to generalize this
idea by defining weak homomorphisms between F- and G-algebras, where F and
G denote not necessarily equal set-functors. The aim is to derive well-known
results as the weak homomorphism theorem.

C-dense Injectivity and C-dense Essential Monomorphisms in the
Category Act− S for an Arbitrary Closure Operator C
L. Shahbaz
Department of Mathematics, Faculty of Basic Sciences, University of Maragheh,
Maragheh, Iran
leilashahbaz@yahoo.com

Let C be a closure operator in the category Act-S of right S-acts. One has the
usual two classes of monomorphisms (C-dense and C-closed monomorphisms)
related to the notion of a closure operator. The class of sequentially dense
monomorphisms resulting from an special closure operator (sequential closure
operator) were first defined and studied by Giuli, Ebrahimi, and Mahmoudi
for projection algebras (acts over the monoid (N infty,min), of interest to com-
puter scientists, as studied by Herrlich, Ehrig, and some others) and generalized
to acts over arbitrary semigroups. Essentiality is an important notion closely re-
lated to injectivity. In this paper, first we study C-dense monomorphisms of acts
for an arbitrary closure operator C. Then, we study injectivity and essentiality
with respect to C-dense monomorphisms. We will show that the three different
definitions of essentiality usually used in literature with respect to a subclass
of monomorphisms are equivalent for the class of C-dense monomorphisms and,
among other things, we show the existence and the explicit description of a
maximal such essential extension for any given act.
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Characteristics of Quasigroups Isotopic to Some Loops
K. Shahbazpour
Dept. of Maths., Urmia University, Urmia, I.R.Iran
Shahbazpour2003@hotmail.com

A loop (Q,.) is quasigroup with identity element. In this talk we give the
characteristic quasigroups which are isotopic to Bruck loops,Moufang loops, Bol
loops and Alternative loops.

On the Essential Arity Gap of Finite-valued Functions
S. Shtrakov
Neofit Rilsky South-West University, Blagoevgrad, Bulgaria
shtrakov@swu.bg

We study and describe finite valued functions with given essential arity gap.
This description is based on the representation of the functions in their SC-
forms as sums of conjunctions. The combinatorial problem how many are finite
valued functions depending essentially on all of its variables which have given
essential arity gap is solved, also.

Lattice Identities and Colored Graphs Connected by Test Lattices
B. Skublics
University of Szeged, Bolyai Institute, Hungary
bskublics@math.u-szeged.hu

Czedli has recently given a pictorial approach to several properties of free
lattices. Our goal is to generalize his construction and use it to prove some
additional classical lattice theoretical results in a new, more visual way.
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Diameter of Sylow p-Subgroups of the Symmetric Group Sp2

A. Slupik
Institute of Mathematics, Silesian University of Technology, Poland
anna.slupik@polsl.pl

We deal only with finite groups. Let G be a group andX its set of generators.
We denote by Cay(G,X) a Cayley graph of the group G with respect to the
set of generators X. A diameter dX(G) of Cay(G,X) is the longest distance
between vertices of this graph in the standard graph metric, i.e. the smallest k
such that every element of G can be expressed as a word of length at most k in
X ∪X−1.

Let p be a fixed prime. In the talk we study diameters of Cayley graphs of
Sylow p-subgroups of degree p2 for different 2-element generating sets. Sylow
p-subgroups of Sp2 are isomorphic to the wreath product Cp oCp of cyclic groups
of degree p (see [1]). According to [2] every element of Cp o Cp is presented in
the form

[f1, f2(x)], f1 ∈ Zp, f2(x) ∈ Zp[x], deg(f2) < p .

We investigate the following family W of generating sets of Cp o Cp

W = {{[a, 0], [0, b(x+ c)p−1]} : a, b, c ∈ Zp, a · b 6= 0}

Theorem
For any X ∈W

dX(G) ≤ p2 + 2p− 3
2

Using computer calculations we show that if p = 3 then for any 2-element
generating set X the following inequality holds:

4 ≤ dX(Cp o Cp) ≤ 6.
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Fuzzy Algebras as a Framework for Fuzzy Topology
S. Solovjovs
Department of Mathematics, University of Latvia, Zellu iela 8, LV - 1002 Riga,
Latvia
sergejs@lu.lv

The famous adjunction of D. Papert and S. Papert between the categories
Top (topological spaces) and Frmop (the dual of the category of frames) [7]
paved the way for considering the category Loc of locales (introduced by J. Is-
bell in [4]) as a substitute for Top. In particular, S. Vickers introduced the
notion of topological system to get a single framework for treating both spaces
and locales [15]. Later on J. T. Denniston and S. E. Rodabaugh considered
functorial relationships between lattice-valued topology and topological systems
[2]. To be more flexible they introduced the notion of lattice-valued topological
system over Loc [1]. In [10, 12] we considered a generalization of the notion,
replacing Loc by the dual of an arbitrary variety of algebras. In particular,
we proved that the category of variety-based topological spaces of [14] (à la [8])
is isomorphic to a full coreflective subcategory of topological systems. Dur-
ing the 30th Linz Seminar on Fuzzy Set Theory J. T. Denniston, A. Melton
and S. E. Rodabaugh presented an embedding of the category of lattice-valued
topological systems into a variable-basis modification of the category of fuzzy
topological spaces of T. Kubiak and A. Šostak [3, 5]. The problem of the opposite
embedding remained open. This talk answers the question positively.

Start with a variety-based version of the Kubiak-Šostak approach.

Definition 1 (Varieties) Let Ω = (nλ)λ∈Λ be a class of cardinal numbers. An
Ω-algebra is a pair (A, (ωA

λ )λ∈Λ) (denoted by A), where A is a set and (ωA
λ )λ∈Λ

is a family of maps ωA
λ : Anλ → A. An Ω-homomorphism ϕ : (A, (ωA

λ )λ∈Λ) →
(B, (ωB

λ )λ∈Λ) is a map ϕ : A→ B such that ϕ ◦ωA
λ = ωB

λ ◦ϕnλ for every λ ∈ Λ.
Alg(Ω) is the category of Ω-algebras and Ω-homomorphisms. A variety of Ω-
algebras is a full subcategory of Alg(Ω) closed under the formation of products,
subalgebras and homomorphic images. The objects (resp. morphisms) of a
variety are called algebras (resp. homomorphisms).

The categories Frm, SFrm and SQuant of frames, semiframes and semi-
quantales (popular in lattice-valued topology) are varieties. From now on we
fix a variety A, denoting by LoA its dual category. We also assume that L is
a subcategory of the category of completely distributive complete lattices and
join-preserving maps.

Definition 2 (Fuzzy algebras) An L-fuzzy algebra of type A is a map µ : A→
L (denoted by µ) such that (A,L) is in A×L and

∧
i∈nλ

µ(ai) ≤ µ(ωA
λ (〈ai〉nλ

))
for every λ ∈ Λ (cf. [6, 9, 11]). An L-fuzzy homomorphism of type A (ϕ, α) : µ→
µ′ is an A×L-morphism (ϕ, α) : (A,L) → (A′, L′) such that α◦µ(a) ≤ µ′◦ϕ(a)
for every a ∈ A . The category L-FA comprises L-fuzzy algebras of type A and
their homomorphisms.

The category L-FA is based on our approach to lattice-valued sets [13].
From now on we assume that C is a subcategory of LoA.
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Definition 3 (Fuzzy topological spaces) Given a set X and a C-object A,
a (C,LoL)-fuzzy topology on X is a fuzzy algebra τ : AX → L. A (C,LoL)-
fuzzy topological space is a triple (X,A, τ). A (C,LoL)-fuzzy continuous map
(f, ϕ, α) : (X,A, τ) → (X ′, A′, τ ′) is a Set×C×LoL-morphism (f, ϕ, α) :
(X,A,L) → (X ′, A′, L′) such that ((f, ϕ)←, αop) : τ ′ → τ is in L-FA, where
(f, ϕ)←(p) = ϕop◦p◦f and (−)op stands for the actual morphism. The category
(C,LoL)-FTop comprises (C,LoL)-fuzzy topological spaces and (C,LoL)-
fuzzy continuous maps.

The category (C,LoL)-FTop incorporates both Kubiak-Šostak [5] and Rod-
abaugh [8] approaches to fuzzy topology. From now on we assume that D is a
subcategory of Lo(L-FA).

Definition 4 (Fuzzy topological systems) Given a set X, a D-object ν :
B →M and a C-object A, a map |= : X×B → A is a (C×D)-fuzzy satisfaction
relation on (X,A, ν) provided that |= (x,−) : B → A is a homomorphism for
every x ∈ X. A (C×D)-fuzzy topological system is a tuple (X,A, ν, |=). A
(C×D)-fuzzy continuous map (f, ϕ, (ψ, β)) : (X,A, ν, |=) → (X ′, A′, ν′, |=′)
is a Set×C×D-morphism (f, ϕ, (ψ, β)) : (X,A, ν) → (X ′, A′, ν′) such that
|= (x, ψop(b′)) = ϕop(|=′ (f(x), b′)) for every x ∈ X and every b′ ∈ B′. The
category (C×D)-FTopSys comprises (C×D)-fuzzy topological systems and
(C×D)-fuzzy continuous maps.

The category (C×D)-FTopSys incorporates all above-mentioned concepts
of topological system [1, 12, 15].

Lemma 5 There exists a full embedding

E : (LoA,LoL)-FTop→ (LoA×Lo(L-FA))-FTopSys

given by E(X,A, τ) = (X,A, τ, |=) with |= (x, p) = p(x), and E(f, ϕ, α) =
(f, ϕ, (((f, ϕ)←)op, α)).

Lemma 6 There exists a functor

Spat : (LoA×Lo(L-FA))-FTopSys → (LoA,LoL)-FTop

given by Spat(X,A, ν, |=) = (X,A, τ) with τ(p) =
∨
{ν(b) | p =|= (−, b)}, and

Spat(f, ϕ, (ψ, α)) = (f, ϕ, α).

Theorem 7 Spat is a right-adjoint-left-inverse of E.

Spat is not an embedding and therefore differs significantly from the functor
proposed by J. T. Denniston et al. By our opinion the obtained results provide a
good starting point for developing the theory of variety-based fuzzy topological
spaces and systems.
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Syntactic Algebras of Formal Series over a Field in General Algebras
M. Steinby
Turku Center of Theoretical Computer Science, Finnland
steinby@utu.fi

The syntactic algebras of subsets of any algebra are natural common gener-
alizations of syntactic semigroups or monoids of string languages and syntactic
algebras of tree languages. It is actually convenient to study the properties of
all such structures in this general setting, and this way one can obtain a gen-
eralization of Eilenberg’s variety theory that also encompasses a variety theory
for tree languages. In this lecture we shall discuss a similar common general-
ization of Reutenauer’s syntactic K-algebras of string series and the syntactic
KΣ-algebras of tree series studied by Bozapalidis et al..

If K is a field and C = (C,Σ) is a Σ-algebra, we call any mapping S : C → K
a KC-series; it may be written as the formal sum

∑
c∈C(S, c).c, where for each

c ∈ C, the coefficient (S, c)(= S(c) ∈ K) is the weight of c in S. A KC-
series with just finitely many non-zero coefficients is called a KC-polynomial.
The KC-polynomials form a K-vector space that can be endowed with mul-
tilinear Σ-operations. Such Σ-algebras based on a K-vector space are called
KΣ-algebras. The syntactic KΣ-algebra SA(S) of a KC-series S is a quotient
algebra of the KΣ-algebra of KC-polynomials. It can be shown that SA(S) is
finite-dimensional iff the series S is recognizable. We shall also characterize the
subdirectly irreducible KΣ-algebras and show that all of them are syntactic.
Moreover, we show how various operations on KC-series relate to the syntactic
KΣ-algebras. The lecture is mostly based joint work with Z. Fülöp.

Automorphism Groups of Diagonal Direct Limits of Hamming spaces
V. Sushchansky
Institut of Mathematics, Silesian University of Technology, Gliwice, Poland
Vitaliy.Sushchanskyy@polsl.pl

In the paper [1] P. Cameron and S. Tarzi introdused the conception of di-
agonal inductive limits of Hamming spaces. Such limits form a big class of
discrete metric spaces with many interesting properties. In the talk we discuss
some properties of metric spaces from this class and we describe automorphism
groups of diagonal inductive limits of Hamming spaces in terms of wreath prod-
ucts of a cyclic order two group and suitable homogeneous symmetric groups (
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for definition homogeneous symmetric groups see [2] ).

References

1. P.Cameron, S.Tarzi, Limits of cubes. Topology and Applications, 155(2008),1454
- 1461.
2. N.Kroshko, V.Sushchansky, Direct Limits of Symmetric and Alternating
Groups with Strictly Diagonal Embedding. Arch Math.(Basel), 71(1998), 173-
182.

Positivity of Third Order Linear Recurrence Sequences
P. Tangsupphathawat
Department of Mathematics, Kasetsart University, Bangkok 10900, Thailand
pinthira12@hotmail.com
Coauthors: V. Laohakosol

It is shown that the positivity problem for a sequence satisfying a third
order linear recurrence with integer coefficients, i.e., the problem whether each
element of this sequence is nonnegative, is decidable.

On the Maximal Subsemigroups of Finite Transformation Semigroups
K. Todorov
Bulgarian Academy of Sciences, South-West University Blagoevgrad, Bulgaria
kalchot@yahoo.com

In the paper are described: (a) the maximal subsemigroups of the Dk-
classes: Dk = Jk = {αεTn, |imα| = k, 2 ≤ k ≤ n− 1} and (b) the maximal
subsemigroups of the Ideals Ik =

⋃k
i=1D〉 of the finite singular transformation

semigroup Tn.

Clique Coverings of Glued Graphs at Complete Clone
Ch. Uiyyasathian
Chulalongkorn University, Bangkok, Thailand
Chariya.u@Chula.ac.th
Coauthors: W. Pimpasalee and W. Hemakul

A clique covering of a graph G is a set of cliques of G in which each edge
of G is contained in at least one clique. The smallest cardinality of clique
coverings of G is called the clique covering number of G. A glued graph results
from combining two nontrivial vertex-disjoint graphs by identifying nontrivial
connected isomorphic subgraphs of both graphs. Such subgraphs are referred
to as the clones. The two nontrivial vertex-disjoint graphs are referred to the
original graphs.

37



In this paper, we investigate bounds of clique covering numbers of glued
graphs at clone which is isomorphic to Kn in terms of clique covering numbers
of their original graphs, and give a characterization of a glued graph with the
clique covering number of each possible value.

Keywords : clique coverings, glued graphs
2000 Mathematics Subject Classification : 05C69, 05C70, 05C99

Clausal Constraint Relations and C -clones.
E. Vargas
TU-Dresden
Edith Mireya.Vargas Garcia@mailbox.tu-dresden.de

A clausal constraint is a disjunction of inequalities of the form x ≥ d and
x ≤ d were x, d ∈ D = {0, . . . , n − 1}. It was introduced by Nadia Creignou,
Miki Hermann and collaborators in order to classify the complexity of con-
straints. We introduce clausal constraint relations and define C -clones via a
Galois-connection (Pol-C Inv) between the set of all finitary operations on D
and the set of clausal constraint relations. We shall describe the lattice of all
C -clones for the boolean case D = {0, 1}.

Congruences and Ideals in Lattice Effect Algebras as Basic Algebras
E Vinceková
Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia
vincekova@mat.savba.sk
Coauthors: S. Pulmannová

We study effect basic algebras which correspond to lattice ordered effect alge-
bras. We reformulate some important results from the theory of effect algebras
in the language of basic algebras, that are (in contrast to effect algebras) total
algebraic structures. In particular, we characterize ideals, congruences and ho-
momorphisms and their one-to-one correspondence by the tools and axioms of
basic algebras.
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Interpreting Graphs in 0-simple Semigroups with Involution with Ap-
plications to Computational Complexity and the Finite Basis Problem
M. Volkov
Ural State University, Ekaterinburg, Russia
Mikhail.Volkov@usu.ru
Coauthors: M. Jackson (La Trobe University, Bundoora, Australia)

We consider the varieties of unary semigroups generated by certain ‘adja-
cency semigroups’, which are combinatorial Rees matrix semigroups with unary
operation (i, j) 7→ (j, i). The identities of these structures precisely capture a
natural notion of equivalence modulo adjacency patterns in unary semigroup
words. We establish a surprisingly close relationship between universal Horn
classes of graphs and varieties generated by adjacency semigroups. For exam-
ple, the lattice of subvarieties of the variety generated by adjacency semigroups
that are regular unary semigroups is essentially the same as the lattice of univer-
sal Horn classes of reflexive graphs. A number of examples follow, including new
examples of limit (minimal non-finitely based) varieties of unary semigroups and
first examples of finite unary semigroups with NP-hard pseudovariety member-
ship problems.

Completely Regular Endomorphisms of Split Graphs
A. Wanichsombat
Carl von Ossietzky Universitaet Oldenburg
apirat589@yahoo.com
Coauthors: U. Knauer

In [1], Weimin Li and Jianfei Chen studied split graphs such that the monoid
of all endomorphisms is regular. Here, we extend the study of [2]. We find con-
ditions such that regular endomorphism monoids of split graphs are completely
regular. Moreover, we find completely regular subsemigroups contained in the
monoid End(G).
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Representation of Graph Monoids by Regular Rings
F. Wehrung
Université de Caen
wehrung@math.unicaen.fr
Coauthors: P. Ara, F. Perera

One of the most prominent open problems in the theory of (von Neumann)
regular rings is the characterization of their nonstable K-theory. A significant
advance was made in 2006 by Ara and Brustenga, who proved that the graph
monoid of a row-finite quiver is always the nonstable K-theory of a regular ring.
Hence the characterization of those commutative monoids that appear as graph
monoids of a row-finite quiver was given a new importance. The aim of this
talk is to give a quick overview of this topic, and the characterization, obtained
with Ara and Perera, of all finitely generated antisymmetric graph monoids.
The talk is intended to be self-contained. Representation of Graph Monoids by
Regular Rings

Human Being and Mathematics – Logical and Mathematical Thinking
R. Wille
Darmstadt University of Technology
wille@mathematik.tu-darmstadt.de

Logical thinking as as an expression of human reason grasps the actual reality
by the basic forms of thinking: concept, judgment, and conclusion. Mathe-
matical thinking abstracts from logical thinking to disclose a cosmos of forms
of potential realities hypothetically. Mathematics as a form of mathematical
thinking can therefore support humans within their logical thinking about re-
alities which, in particular, promotes sensible actions. This train of thought
has been convincingly differentiated by Peirce’s philisophical pragmatism and
recently concretized by a “contextual logic” invented by members of the math-
ematics department at the TU Darmstadt.

Contents
1. Logical Thinking
2. Mathematical Thinking
3. Human Being, Mathematics, and Reality
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Idempotent-closed Endomorphism Monoids of Strong Semilattices of
Semigroups.
S. Worawiset
Carl-von-Ossietzky University of Oldenburg, Germany.
nuek w@yahoo.com
Coauthors: Ulrich Knauer

In this paper, we study the endomorphism monoids of strong semilattices
of semigroups which are idempotent-closed, i.e., the idempotents from a semi-
group and we obtain orthodox endomorphism monoids of strong semilattices of
semigroups.

Maps which are Concordant with Binary Relations
V. Yaroshevich
Moscow Institute of Electronic Technology, Moscow, Russia
v-yaroshevich@ya.ru
Coauthors: I. Kozhuhov (Moscow Institute of Electronic Technology)

M. Bötcher and U. Knauer defined some partial kinds homomorphisms of
graphs. Namely, the semi-strong, locally strong, quasi-strong and strong homomor-
phisms. We obtained a convenient matrix form for these partial homomor-
phisms. For an arbitrary set X, we shall speak that a partial map α is concor-
dant with a binary relation σ on X if σα is a subset of ασ. The set of such α
forms a semigroup. We got an exhaustive description of all sets with regular
semigroups of par-tial transformations which are concordant with a quasi-order
on X.
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