

The 66th International Conference on General Algebra

| June 19 - 21, 2003 | University of Klagenfurt |

Program

Abstracts

Sponsors and partners

The following sponsors and partners have contributed to this conference's success:

Forschungskommission of the University of Klagenfurt Fremdenverkehrsamt Klagenfurt Rector of the University of Klagenfurt Vice rector für Öffentlichkeitsarbeit und Außenbeziehungen Kärntner Universitätsbund Bank Austria Kärntner Landesversicherung

The City of Klagenfurt

Kärntner Landesversicherung

KÄRNTNER WISSEN, WAS SIE WOLLEN.

The University of Klagenfurt

Dear participants of the AAA66-workshop, ladies and gentlemen,

welcome to Carinthia, welcome to our university! We are here at the intersection of three cultures and at the intersection of the old paths through the Alps which connect them, the Roman, the Slavic and the German culture. We do not underrate the contribution of the participants from abroad, but it strikes us to be of a symbolic character that most of our participants stem from one of these cultures. This university also offers to be an institution for the spiritual paths between them.

AAA is a series of workshops on Algebra which was founded by Rudolf Wille - whom we heartily welcome among us - in the early seventies of the last century. It is hold biannually in Germany and in Austria and also sometimes in Switzerland and in the Czech Republic. This proves how vivid our old science is! Remember that it was Hermann von Kärnten who translated the arithmetic book of al-Khwarizmi (ca. 780-850) from Arabic into Latin in 1143 and that two colleagues of him, namely Robert of Chester and Gerhard of Cremona translated another work of al-Khwarizmi entitled "Hisab aljabr w'almuqabalah", thereby introducing the word "Algebra" into our culture and our civilization.

This conference could only be accomplished with the combined help of many. First we express our gratitude to the participants. Then we thank the public and private sponsors, above all the Province of Carinthia, the City of Klagenfurt, the Rector of the University of Klagenfurt, Kärntner Universitätsbund, Kärntner Landesversicherung, Bank Austria. Special thanks to our secretary, Mrs Christa Mitterfellner for her great efforts.

The single lectures are attributed to four sections, Universal Algebra, Lattice Theory, Classical Algebra and Applications of Algebra. We have strived in vain to group every single lecture in the requested section but finally we had to shift some lectures into others; please excuse us when you do not find your lecture in the requested section.

We perceive our main job in offering a platform for the exchange of ideas. We wish you a pleasant stay, interesting discussions and - last but not least - wonderful days in our beautiful country.

Klagenfurt, June 2003

Hermann Kautschitsch

Willi More

Johannes Schoißengeier

Contents

Sponsors and partners
General information
Conference address
Registration office
Internet and Electronic mail
Technical support
Important addresses and telephone numbers
Scientific Program
Sections review6
Plenary sessions7
Detailed timetable
Abstracts
Publication policy
Participants
Social activities
Informal welcome
Conference dinner
Local information
Bus lines
Food and beverages
The Klagenfurt Lindwurm
Buses to University
Bus lines of Klagenfurt
Maps of the university
1 2
University Campus Main building
Main building

General information

Conference address

The 66th International Conference on General Algebra Institut für Mathematik, Universität Klagenfurt Universitätsstraße 65-67 A-9020 Klagenfurt (Austria)

e-mail:	<u>aaa66@uni-klu.ac.at</u>
Website:	http://www.uni-klu.ac.at/AAA66
Voice:	+43 (0) 463 2700 3102
Fax:	+43 (0) 463 2700 3199

Registration office

Oman hall z-129, by the main entrance
Universität of Klagenfurt
Main building (Zentralgebäude)
Universitätsstraße 65-67
Voice: +43 (0) 463 2700 9042 – only at opening times (see below)

Opening times:

Thursday, June, 19 th	17:45-20:00	5:45 p.m. to 8 p.m.
Friday, June, 20 th	8:15-12:00	8:15 a.m. to 12

Internet and Electronic mail

During the conference, participants will have access to PCs in the room z-123. Use username: guest17, password: 22266 Moreover, all over the university there are "kiosks" for internet surfing where e-mail is only accessible per web-browser.

Technical support

Queries for technical support should be addressed to the registration desk. Please, announce your needs as early as possible.

Important addresses and telephone numbers

First Aid:	Tel. 144 – or address registration desk or desk clerk at main entrance
Pharmacy:	Uni-Apotheke, Universitätsstraße 23
	open Fr 8 a.m. to 12.30 p.m., 3 to 6.30 p.m. and Sa 8 a.m. to 12
Banking:	Bank Austria University branch, Universitätsstraße 98
	Raiffeisen University branch, Universitätsstraße 33
Postoffice:	Universitätsstraße 92: open 8 a.m. to 1 p.m., 2.30 p.m. to 5:30 p.m.

Program – Sections review

Thursday, June 19th, 2003

- 17:45 Registration, Oman hall, z-129 by the main entrance
- 18:15 Informal welcome, central hall of main building

Friday, June 20th, 2003

8:15 Registration, Oman hall z-129 by the main entrance

Friday	HS 1	HS 2	HS 3	HS 4
09:00	Opening address, HS	1		
09:30-10:15	Plenary: Rosenberg			
	Coffee break			
11:00-11:30	Chajda	Wille	Pálfy	D. Artamonov
11:30-12:00	Eigenthaler	Schweigert	Wiesenbauer	N. Artamonov
12:00-12:30	Denecke	Kartashova	Winkler	V. Artamonov
	Lunch			
14:00-14.45	Plenary: Kowol			
15:00-15.30	Graczyñska	Riecanova	Frisch	Romanowska
	Coffee break			
16:00-16:30	Länger	Halas	Galuszka	Dorninger
16:30-17:00	Márki	Radeleczki	Glazek	Kautschitsch
17:00-17:30	Pinsker	Dorfer	Aichinger	Bodirsky
17:30-18:00	Saeid	Jenca	Ecker	Pech

Saturday, June 21st, 2003

Saturday	HS 1	HS 2	HS 3
09:00-09.45	Plenary: Wiegandt		
10:00-10:30	Goldstern	Ponjavic	Bell
	Coffee break		
11:00-11:30	Pöschel	Pilitowska	Wendt
11:30-12:00	Reilly	Paseka	Kühr
12:00-12.30	Zadori	Kwuida	Usenko
	Lunch		
14:00-14:45	Plenary: Willard		
15:00-15:30	Slapal	Bhavanari	Gasparyan
	Coffee break		
16:00-16:30	Katsov		Bican
16:30-17:00	Ricci		Pham
17:00-17:30	Stanovsky		
17:45	Farewell, HS 1		
19:30	19:30 Conference dinner: Mensa building		

Scientific program – Plenary sessions

Gerhard Kowol, Austria **Polynomial Functions on Groups – a Survey** Friday 14:00, HS 1

Ivo G. Rosenberg, Canada **Uniformly delayed algebras; theory and the completeness problem** Friday 9:30, HS 1

Richárd Wiegandt, Hungary **Radical theory and its interpretation in various categories** Saturday 9:00, HS 1

Ross Willard, Canada **The finite basis problem** Saturday 14:00, HS 1

Scientific progam – Detailed timetable

Friday, June 20th, 2003

Friday 9:30 – 10:15

HS 1 Plenary **Uniformly delayed algebras; theory and the completeness problem** Ivo G. Rosenberg, Canada

Friday 11:00 – 11:30

Section 1 – HS 1 **Deductive systems in Universal Algebra** Ivan Chajda, Czech Republic

Section 2 – HS 2 **An Order-theoretic Mathematization of Linear Continuum Structures** Rudolf Wille, Germany

Section 3 – HS 3 **Prime divisors of character degrees** Péter P. Pálfy, Hungary

Section 4 – HS 4 **Free cochains with locally constant coefficients** Dmitry Artamonov, Russia

Friday 11:30 – 12:00

Section 1 – HS 1 **Congruence classes in universal algebra** Günther Eigenthaler, Austria

Section 2 – HS 2 **On distributive semi near lattice** Dietmar Schweigert, Germany

Section 3 – HS 3 **Über Probleme der Vertauschbarkeit in Kompositionshalbgruppen** Johann Wiesenbauer, Austria

Section 4 – HS 4 Localization of spectrum for polynomials over C*-algebras Nikita Artamonov, Russia

Friday 12:00 – 12:30

Section 1 – HS 1 Identities of Clones Klaus Denecke, Germany

Section 2 – HS 2 Lattices of topologies of unary algebras Anna Kartashova, Russia

Section 3 – HS 3 Maximal abelian subgroups of Aut(R,<) Reinhard Winkler, Austria

Section 4 – HS 4 Algebraic theory of quasicrystals Viatcheslav Artamonov, Russia

Friday 14:00 – 14:45

HS 1 Plenary **Polynomial Functions on Groups – a Survey** Gerhard Kowol, Austria

Friday 15:00 – 15:30

Section 1 – HS 1 **On P-compatible identities** Ewa Graczyńska, Poland

Section 2 – HS 2 **Topological effect algebras** Zdenka Riecanova, Slovakia

Section 3 – HS 3 **Integral closure and minimal polynomials of matrices** Sophie Frisch, Austria

Section 4 – HS 4 Feasible sets of finite posets Anna Romanowska, Poland

Friday 16:00 – 16:30

Section 1 – HS 1 Determined congruence classes Helmut Länger, Austria

The 66th International Conference on General Algebra | June 19-21, 2003 | University of Klagenfurt

Section 2 – HS 2 **Distributive lattices with sectionally antitone involutions** Radomir Halas, Czech Republic

Section 3 – HS 3 **Totally commutative idempotent groupoids** Jan Galuszka, Poland

Section 4 – HS 4 **Chebyshev polynomials related to molecular graphs** Dietmar Dorninger, Austria

Friday 16:30 – 17:00

Section 1 – HS 1 **To be announced** László Márki, Hungary

Section 2 – HS 2 Linear orders on general algebras Sándor Radeleczki, Hungary

Section 3 – HS 3 General independence notions Kazimierz Glazek, Poland

Section 4 – HS 4 **Polynomialrings and the Feed-Back-Cyclization Property** Hermann Kautschitsch, Austria

Friday 17:00 – 17:30

Section 1 – HS 1 **Clones on the natural numbers** Michael Pinsker, Germany

Section 2 – HS 2 Ordering convex directed subsets of a poset and congruences Gerhard Dorfer, Austria

Section 3 – HS 3 **Lower Bounds on the number of polynomial functions** Erhard Aichinger, Austria

Section 4 – HS 4 **The Polymorphism Clones of omega-Categorical Structures** Manuel Bodirsky, Germany

Friday 17:30 – 18:00

Section 1 – HS 1 **Quotient of Hyper BCK-algebras** Arsham Borumand Saeid, Iran

Section 2 – HS 2 **Orthocomplete homogeneous effect algebras** Gejza Jenca, Slovakia

Section 3 – HS 3 **1-affine complete Frobenius groups** Jürgen Ecker, Austria

Section 4 – HS 4 Algebraic Moore-Machines (an interplay between algebraic- and coalgebraic automata theory) Christian Pech, Germany

Saturday, June 21st, 2003

Saturday 09:00 - 09:45

HS 1 Plenary **Radical theory and its interpretation in various categories** Richárd Wiegandt, Hungary

Saturday 10:00 – 10:30

Section 1 – HS 1 **The Galois connection between relations and automorphisms** Martin Goldstern, Austria

Section 2 – HS 2 On long chains in the partially ordered set of traces of maximal clones Maja Ponjavic, Serbia and Montenegro (at present Germany)

Section 3 – HS 3 Some center-like subsets of rings Howard Bell, Canada

Saturday 11:00 – 11:30

Section 1 – HS 1 **Can algebras and homomorphisms in a quasivariety be reduced to unary algebras?** Reinhard Pöschel, Germany

Section 2 – HS 2 **About new examples of bilattices** Agata Pilitowska, Poland

Section 3 – HS 3 A result on planar rings and matrix rings and generalisations to near-rings Gerhardt Wendt, Austria

Saturday 11:30 – 12:00

Section 1 – HS 1 Varieties generated by completely 0-simple semigroups Norman Reilly, Canada

Section 2 – HS 2 **Conjunctivity in distributive quantales** Jan Paseka, Czech Republic

Section 3 – HS 3 **Spectra of dually residuated lattice-ordered monoids** Jan Kühr, Czech Republic

Saturday 12:00 – 12:30

Section 1 – HS 1 **Finite posets in locally finite varieties** Laszlo Zadori, Hungary

Section 2 – HS 2 **Congruences of concept algebras** Leonard Kwuida, Germany

Section 3 – HS 3 **The Double-Semigroups Categories** Vitaliy M. Usenko, Ukraina

Saturday 14:00 – 14:45

HS 1: Plenary **The finite basis problem** Ross Willard, Canada

Saturday 15:00 – 15:30

Section 1 – HS 1 **Diagonality and powers of general algebraic systems** Josef Slapal, Czech Republic

Section 4 – HS 2 *f*-prime radical in gamma near-rings Satyanarayana Bhavanari, India

Section 3 – HS 3 **Poly-Grassmann Algebras and Polydeterminants** Armenak Gasparyan, Russia

Saturday 16:00 – 16:30

Section 1 – HS 1 **Toward Homological Characterization of Semirings: Serre's Conjecture and Bass's Perfectness in a Semiring Context** Yefim Katsov, USA

Section 3 – HS 3 **Torsionfree precovers** Ladislav Bican, Czech Republic

Saturday 16:30 – 17:00

Section 1 – HS 1 **Universal transformations between Menger systems and between analytic monoids** Gabriele Ricci, Italy

Section 3 – HS 3 **On Leavitt Algebras** Anh Ngoc Pham, Hungary

Saturday 17:00 – 17:30

Section 1 – HS 1 Equational theory of group conjugation David Stanovsky, Czech Republic

Abstracts

Erhard Aichinger, Austria	Friday 17:00
Lower Bounds on the number of polynomial functions	HS 3
Section 3 (Classical Algebra)	

We give a lower bound for the number of unary polynomial functions on certain subdirectly irreducible algebras. We will use these bounds to show that there is an algorithm that tells whether a given finite zero-symmetric near-ring is the near-ring of zero-preserving polynomial functions of some group.

Dmitry Artamonov, Russia	Friday 11:00
Free cochains with locally constant coefficients	HS 4
Section 4 (Applications of Algebra)	

The abstract is concerned with applications of algebraic methods in algebraic topology. The Massey's definition of a cochain group is generalized to locally constant coefficient systems. The Massey's cochain group of a locally compact topological space in a constant coefficient system is a subgroup of Alexander-Spanier cochains that can be represented by functions with finite images. If the group of coefficients is a group of integers the Massey's cochain group is a free abelian group. The same result can be proved for the group of Massey's cochains with compact support. Similar to Massey's cohain group one can introduce cochains for locally constant coefficient systems. It is proved that these groups are also free abelian groups. The idea of the proof is based on the fact that new groups are isomorphic to the groups of cochains for constant coefficient systems.

Nikita Artamonov, Russia	Friday 11:30
Localization of spectrum for polynomials over C*-algebras	HS 4
Section 4 (Applications of Algebra)	
The abstract is concerned with spectral theory for C*-algebras. Localization in	half-plane of spectrum
for some classes of second-order polynomials over a C*-algebra is established.	It's a generalization of
the Routh-Hurwitz conditions for roots of polynomial over C being in the let	ft half-plane. There are
given some applications of this result in the theory of partial differential equation	ons.

Viatcheslav Artamonov, Russia	Friday 12:00
Algebraic theory of quasicrystals	HS 4
Section 4 (Applications of Algebra)	
A quasicrystal is a discrete subset in an Euclidean space of positions that could	be occupied by atoms.
It is assumed that the set satisfies some additional properties of symmetry. In	n my talk I will give a
mathematical definition of quasicrystal which is related to a lattice (a free add	itive abelain subgroup)
in the Euclidean space and show some properties of quasicrystals. A structu	re of the group and of
inverse semigroup of symmetries will be discussed. It will be shown that the th	eory of quasicrystals is
related to some problems in algebraic group theory, algebraic number theory, co	oding theory etc.

Howard Bell, Canada	Saturday 10:00
Some center-like subsets of rings	HS 3
Section 3 (Classical Algebra)	
Define the Freiman center $Fr(R)$ of the ring R to be the set of all elements of R	R with the property that
for each element x of R, the set $\{aa, ax, xa, xx\}$ has at most three elements. W	e investigate properties
of $Fr(R)$ and provide sufficient conditions for $Fr(R)$ to be the center of R.	We also mention some
related center-like subsets.	

Satyanarayana Bhavanari, India	Saturday 15:00
<i>f</i> -prime radical in gamma near-rings	HS 2
Section 4 (Applications of Algebra)	

Ladislav Bican, Czech Republic	Saturday 16:00
Torsionfree precovers	HS 3
Section 3 (Classical Algebra)	

It is well-known that injective and relatively injective modules play an important role in the theory of torsionfree precovers related to a given hereditary torsion theory for the category of (left) modules over an associative ring with the identity element. We are going to present some conditions concerning the existence of (relatively) torsionfree precovers of (relatively) injective modules which are equivalent to the existence of torsionfree precovers in general. Furthermore, we shall relate the existence of torsionfree precovers to the existence of precovers with respect to coproducts of relatively injective and relatively exact modules.

Manuel Bodirsky, Germany	Friday 17:00
The Polymorphism Clones of omega-Categorical Structures	HS 4
Section 4 (Applications of Algebra)	
Motivated by constraint satisfaction problems in theoretical computer science, we study the local	
clones of polymorphisms of relational structures whose first order theory has up to isomorphism only	

one countable model.

Ivan Chajda, Czech Republic	Friday 11:00
Deductive systems in Universal Algebra	HS 1
Section 1 (Universal Algebra)	
It is known that in a variety V which is permutable at 0, every congruence kernel in an algebra A of V	
can be characterized as the so-called ideal (introduced formerly by A. Ursini). If V is moreover weakly	
regular, this ideal can be characterized by a finite number of the so-called ideal terms. We will show	
that if the assumption of permutability at 0 is dropped, then it is still possible to characterize	
congruence kernels as the so-called deductive systems. Description of a deductive system and its	
properties will be treated in the talk.	

Klaus Denecke, Germany	Friday 12:00
Identities of Clones	HS 1
Section 1 (Universal Algebra)	
There is a well-known connection between hyperidentities of an algebra and id	entities satisfied by the
clone of the algebra. The clone of an algebra is a heterogeneous algebra, a	nd the correspondence
between hyperidentities and clone identities is rather complicated to work with	
study this correspondence in a restricted setting, that of hyperidentities of n-a	•
fundamental operations have the same arity n) and identities in the clone of its	· ·
This clone is just an algebra of type $(n+1, 0, \dots, 0)$, usually called the transition	•
algebra. The correspondence is an important one in automata theory, since any	e
regarded as a tree automaton. In this paper we study the correspondence betwee	een hyperidentities and
clone identities in this special case of n-ary algebras and transition clones.	

Gerhard Dorfer, Austria	Friday 17:00
Ordering convex directed subsets of a poset and congruences	HS 2
Section 2 (Lattice Theory)	

Section 2 (Lattice Theory) In the paper [G. Dorfer, Lattice-extensions by means of convex sublattices, Contr. to General Algebra 9 (1995), 127-123] we described the congruences of a lattice L by means of some specific order on the convex sublattices of L. With appropriate modification this result can be adapted to semilattices. Moreover we generalize this to directed posets and characterize kernels of maps that preserve upper and lower bounds using that order on convex directed subsets. (Joint work with Radomir Halas)

Dietmar Dorninger, Austria	Friday 16:00
Chebyshev polynomials related to molecular graphs	HS 4
Section 4 (Applications of Algebra)	
Studying recursive procedures to find the characteristic polynomials of me	U
vertices and edges are both weighted by real numbers (corresponding to C	
integrals of the underlying chemical compounds) Chebyshev polynomials of the first and second kind	
occur. In order to describe the influence of atoms or atomic groups that are added to a given	
compound or substitute atoms of this compound factors of the characteristic po	olynomial of the arising
compound are of interest that do not depend on the weights of the newly intro	oduced atoms and their
bonds. These factors turn out to be common divisors of the Chebyshev polyno	mials which contribute
to the characteristic polynomial and are therefore investigated in detail. (Joint w	ork with H. Länger)
to the characteristic porynomial and are therefore investigated in detail. (Joint w	(Ork with 11. Langer)

Jürgen Ecker, Austria	Friday 17:30
1-affine complete Frobenius groups	HS 3
Section 3 (Classical Algebra)	
If every k-ary function on an algebra that respects all congruences of the algebra is polynomial, we	
call the algebra k-affine complete. We give a simple necessary and sufficient condition for a group	
with a distributive minimal normal subgroup to be 1-affine complete. As an application we describe	
the k-affine complete finite Frobenius groups.	

Günther Eigenthaler, Austria	Friday 11:30
Congruence classes in universal algebra	HS 1
Section 1 (Universal Algebra)	
In the talk, a new book with the same title will be presented, written by th	e authors Ivan Chajda,
Günther Eigenthaler and Helmut Länger, published by the Heldemann Verlag, Lemgo (Germany),	
2003, as Volume 26 of the series.	

Sophie Frisch, Austria Integral closure and minimal polynomials of matrices	Friday 15:00 HS 3
Section 3 (Classical Algebra)	

We construct minimal polynomials of matrices with certain prescribed coefficients and obtain a characterization of integrally closed domains and of commutative rings that are integrally closed in their total ring of quotients.

Jan Galuszka, Poland	Friday 16:00
Totally commutative idempotent groupoids	HS 3
Section 3 (Classical Algebra)	

A groupoid is totally commutative if each its essentially binary term operation is commutative. Some aspects of the algebraic structure and some constructions of the idempotent totally commutative groupoids are presented.

Armenak Gasparyan, Russia	Saturday 15:00
Poly-Grassmann Algebras and Polydeterminants	HS 3
Section 3 (Classical Algebra)	

One of innovations in XIX century was introduction of exterior products by German Grassmann in its "Die Ausdehnungslehre". Grassmann introduced an algebra of multiple extensive quantities containing as particular cases the vectors, bivectors (oriented areas), trivectors (oriented volumes) etc. Later the Grassmann algebra played a fundamental role for many directions of mathematics and physics in their development.

We focuse our attention on the fact that the Grassmann algebra gives an excellent background to the determinant theory, defining determinants as coordinates of decomposable polyvector.

In our paper we represent a two-side development of both ideas one of which is the idea of exterior multiplications, and second one is the determining of corresponding determinants. We introduce the poly-Grassmann algebras as wide generalization of proper Grassmann algebra. In accordance with this we propose a new look on the determinants of arbitrary dimensionality and arbitrary signatures as coordinates of decomposable elements from corresponding algebras. This allows us to extend and unifying suitably the notion of determinant and to build at same time a general theory of (newly generalized) multidimensional determinants. We name they generally polydeterminants.

Some space is devoted to relations of considered formal constructions with real objects in the study of which they may be playing a crucial role.

ſ	Kazimierz Glazek, Poland	Friday 16:30
	General independence notions	HS 3
	Section 3 (Classical Algebra)	

In 1958 E. Marczewski introduced a general notion of independence, which contained as special cases majority of independence notions used in various branches of mathematics. A non-empty set I of the carrier A of an algebra A = (A; IF) is called *M*-independent if equality of two operations f and g of the considered algebra on any finite system of different elements of I implies f=g in A. There are several interesting results on this notion of independence. However the important scheme of *M*-independence is not enough wide to cover the stochastic independence, the independence in projective spaces and some others. This is why some notions weaker than the *M*-independence were developed. The notion of independence with respect to family Q of mappings (defined on subsets of A) into A, *Q*-independence for short, is a common way of defining almost all known notions of independences. There exists an interesting Galois correspondence between families Q of mappings and families of Q-independent sets. In our talk after a brief survey of these topics we will mainly concentrate on a few easily formulated and interesting results.

Martin Goldstern, Austria	Saturday 10:00
The Galois connection between relations and automorphisms	HS 1
Section 1 (Universal Algebra)	
Consider the Galois connection induced by the relation "the permutation p is a	n automorphism for the
relation R " (i.e., preserves R and its complement). The Galois-closed sets on the Galois-cl	he permutation side are
easily described. On the relational side, it is clear that any Galois-closed set is closed under	
intersections, and is a Krasner algebra (closed under all logical operations). For finite or countable	
base sets, also the inverse holds. I will mainly discuss the case of uncountable sets. I will explain the	
background of the problem, given a plausible conjecture that attempts to characterize all Galois-closed	
sets, sketch a counterexample to the conjecture, and formulate the correct characterization. (Joint work	
with Ferdinand Börner and Saharon Shelah)	
Ewa Graczyńska, Poland	Friday 15:00
On P-compatible identities	HS 1

Section 1 (Universal Algebra)

We present a continuation of my AAA65 talk on externary compatible identities in lattices of type (2,2) presented on 21 of March 2003 at AAA65 and announced at:

http://at.yorku.ca/cgi-bin/amca/cake-06

We presented there a simple syntactic proof of the following:

THEOREM 1. Given a variety V of lattices of type (2,2). Then the lattice L(Ex(V)) is isomorphic to the direct product of the lattice L(V) and a three-element chain.

The theorem generalizes corollary 4.2 of [1].

We improve Theorem 2.1 of [1] in the following way:

THEOREM 2. The lattice L(Ex(t)) of all subvarieties of the variety defined by all externary compatible identities of a given type t is isomorphic to the direct product of the dual lattice to the lattice of all partitions of F with additional greatest element 1, where F is the set of fundamental operation symbols of a given type t.

Theorem 2 is an important lemma for constructing the lattice L(Ex(K)) in case of idempotent varieties K. We apply it for an abelian group cases obtaining a generalization of theorem 4.1 of [1]. A similar method can be applied for some varieties of algebras with zeros.

We present a syntactic proof of the fact above and formulate some further properties of P-compatible identities invented by J. Plonka. Among them is the generalization of corollary 4.1 of [1] (cf. [3]):

THEOREM 3. If K is a variety of algebras of any type with only one operation symbol, satisfying a not-normal identity, then the lattice L(Ex(K)) is isomorphic to the direct product of the lattice L(K) and a two-element chain. Moreover, in that case Ex(K)=N(K).

We show the role of externary compatible identities by the following:

THEOREM 4. Given an idempotent variety K, defined by a base of identities. Then the word problem for K is solvable if and only if it solvable for Ex(K).

References: [1] K. Halkowska, Lattices of equational theories of P-compatible varieties, in Logic at Work, pp. 587-595, ed.: E. Orlowska, Physica-Verlag, 1999.

[2] E. Graczyńska, Universal algebra via tree operands, Oficyna Wydawnicza Politechniki Opolskiej, 2000.

Radomir Halas, Czech Republic	Friday 16:00
Distributive lattices with sectionally antitone involutions	HS 2
Section 2 (Lattice Theory)	
We characterize distributive lattices with sectionally antitone involutions.	

Gejza Jenca, Slovakia	Friday 17:30
Orthocomplete homogeneous effect algebras	HS 2
Section 2 (Lattice Theory)	

An effect algebra is a positive cancellative unital partial abelian monoid. We examine certain class of effect algebras, called homogeneous effect algebras. Every homogeneous effect algebra is a union of maximal sub-effect algebras satisfying Riesz decomposition property, called blocks. We prove, that for every orthocomplete homogeneous effect algebra, blocks are closed with respect to certain special infinite sums. We apply this result to show that every orthocomplete homogeneous effect algebra is sharply dominating.

Anna Kartashova, Russia	Friday 12:00
Lattices of topologies of unary algebras	HS 2
Section 2 (Lattice Theory)	
We describe lattices of topologies of algebra. We show that the analog of M	IcKenzie's theorem for

congruence lattices of unary algebras is true for the class of lattices of topologies of unary algebras.

Yefim Katsov, USA	Saturday 16:00
Toward Homological Characterization of Semirings:	HS 1
Serre's Conjecture and Bass's Perfectness in a Semiring Context	
Section 1 (Universal Algebra)	

In the modern homological theory of modules over rings, the results characterizing rings by properties of modules and/or suitable categories of modules over them are of great importance and sustained interest. Inspired by this, quite a few results related to this genre have been obtained in different non-additive settings during the last three decades. Just to mention some of these settings, we note that a very valuable collection of numerous interesting results on characterizations of monoids by properties and/or by categories of acts over them, i.e. on so-called homological classification of monoids, can be found in a recent handbook by M. Kilp, U. Knauer and A. V. Mikhalev, Monoids, Acts and Categories (Walter de Gruyter, Berlin, New York, 2000); and, for the results on homological classification of distributive lattice, one may consult the survey by T. S. Fofanova, Polygons over distributive lattices, in B. Csakany et al (eds.): Universal Algebra, Colloq. Math. Soc. Janos Bolyai # 29 (North Holland, Amsterdam, 1982).

This talk will deal with homological characterization in a semiring setting, or, more precisely, with homological characterization of additively regular semirings. Our special interest in additively regular semirings is motivated, among other things, by the following observations. The class of additively regular semirings – semirings whose additive reducts are semilattices of abelian groups – constitutes a very interesting and natural class of semirings that includes rings, additively idempotent semirings, and, therefore, bounded distributive lattices as well. Moreover, as it has been shown in [Y. Katsov, Tensor products and injective envelopes of semimodules over additively regular semirings are injectively complete and all these semimodules have injective envelopes; and therefore, they form a very promising non-additive setting in which to further homological algebra, that may give a new perspective on "classical" homological algebra in the additive environment.

In the talk, among other results on homological characterization of semirings, we will present a wide class of additively regular semirings, containing all commutative "proper" (i.e., not rings) semirings, over which free semimodules constitute a proper subclass of the class of projective semimodules. As a consequence of this result, we establish that in the general context of additively regular semirings, Serre's conjecture on coincidence of the classes of free and projective semimodules over polynomial semirings is true only when the polynomial semirings are, in fact, polynomial rings over fields. Then,

we will show that for the same class of additively regular semirings, the projective semimodules constitute a proper subclass of the class of flat semimodules; and as a consequence of this, we conclude that among commutative additively regular semirings only rings are perfect in Bass's sense. Also, in the talk, there will be demonstrated some quite interesting (and even unexpected) applications of homological theory of semimodules over additively regular semirings, as well as formulated some open problems and directions for further investigations.

Hermann Kautschitsch, Austria	Friday 16:30
Polynomialrings and the Feed-Back-Cyclization Property	HS 4
Section 4 (Applications of Algebra)	

The Feed-back-cyclization property is a stronger form of the pole-assignability property in commutative rings. Still up today it is not known, if the polynomials over the complex numbers have this property. In the talk some new necessary and also sufficient conditions are given, but unfortunately they still do not work in the case of complex numbers.

Gerhard Kowol, Austria	Friday 14:00
Polynomial Functions on Groups – a Survey	HS 1
Dianary talk	

As is well known, polynomials and polynomial functions in arbitrarily many indeterminates can be defined over algebras of any variety. First problems concerning these objects for the variety of groups have been raised and investigated in the 50s of the last century; the solvability of polynomial equations over groups, a key-word being algebraically closed groups (W. R. Scott, B. H. Neumann), and the structure of the near-ring generated by the inner automorphism (A. Fröhlich). Whereas the first problem evidently is simply an analogue of the corresponding one in the classical theory of polynomials over commutative rings and can be considered also for arbitrary varieties, the second one makes sense for the variety of groups only. This duality runs through the whole theory and will also be reflected in the lecture, where among others the following topics will be presented: various notices of polynomial completeness; interpolation and approximation; the group of invertible polynomial functions over a group *G* and its structural interplay with *G* itself; polynomial automorphisms; endomorphism near-rings; *n*-abelian and semi-*n*-abelian groups, equations over groups.

Jan Kühr, Czech Republic	Saturday 11:30
Spectra of dually residuated lattice-ordered monoids	HS 3
Section 3 (Classical Algebra)	
Dually residuated lattice-ordered monoids (DRI-monoids, for short) generalize lattice-ordered groups	
and include also some algebras closely related to fuzzy logic. For instance,	GMV-algebras can be
viewed as a particular kind of bounded DRI-monoids. We define the notion of	
monoid and study the set of all proper prime ideals endowed with the spectral to	opology.

Leonard Kwuida, Germany	Saturday 12:00
Congruences of concept algebras	HS 2
Section 2 (Lattice Theory)	

Helmut Länger, Austria	Friday 16:00
Determined congruence classes	HS 1
Section 1 (Universal Algebra)	
General dependences between congruence classes are investigated by	considering suitable
generalizations of the notions of regularity, n-permutability, congruence modu	larity and coherence of
algebras and varieties. The obtained results include many "classical" results as s	special cases.

László Márki, Hungary	Friday 16:30
To be announced	HS 1
Section 1 (Universal Algebra)	

Péter P. Pálfy, Hungary	Friday 11:00
Prime divisors of character degrees	HS 3
Section 3 (Classical Algebra)	
It is a share in the second state of the secon	(1') . f

It is a classical result in the representation theory of finite groups that the degree (dimension) of every irreducible representation is a divisor of the order of the group. Conversely, a prime p divides the degree of some irreducible representation of the group, unless the Sylow p-subgroup is normal and abelian. We study which pairs of primes can divide a character (representation) degree simultaneously. We express the results using the concept of the character degree graph introduced by Manz, Willems, and Wolf. For example, for solvable groups any three vertices of the character degree graph span at least one edge.

Jan Paseka, Czech Republic	Saturday 11:30
Conjunctivity in distributive quantales	HS 2
Section 2 (Lattice Theory)	

This work is intended as a step towards the development of the non-commutative topology using the approach of the theory of (involutive) quantales developed by C. J. Mulvey, J. W. Pelletier and J. Rosick and others. Quantales are certain partially ordered algebraic structures which generalize frames (pointless topologies) as well as various lattices of multiplicative ideals from ring theory and functional analysis (C*-algebras, von Neumann algebras). The relations on a set, under the operation of relational composition, also form an involutive quantale.

In this lecture we shall study the conjunctivity condition in the settings of distribute quantales. The main motivation for the research is the fact that the quantale of closed left (right) ideals of a unital C^* -algebra is a compact conjunctive distributive quantale such that any its element is a meet of dual atoms.

Christian Pech, Germany	Friday 17:30
Algebraic Moore-Machines (an interplay between algebraic- and	HS 4
coalgebric automata theory)	
Section 4 (Applications of Algebra)	
We introduce algebraic Moore-machines as a common tool to model many types of automata like	
deterministic, non-deterministic, alternating, or weighted automata in a unified way - as some kind of	
acalgebras. We describe their behaviour and give some bints have methods for	com algobraia automata

deterministic, non-deterministic, alternating, or weighted automata in a unified way – as some kind of coalgebras. We describe their behaviour and give some hints how methods from algebraic automata theory may be used to examine algebraic Moore-machines.

Anh Ngoc Pham, Hungary	Saturday 16:30
On Leavitt Algebras	HS 3
Section 3 (Classical Algebra)	
A representation of inverse limits of Leavitt algebras as direct limits of ultramatricial algebras is given.	

Agata Pilitowska, Poland Saturday 11:00

About new examples of bilattices

Saturday 11:00 HS 2

Section 2 (Lattice Theory)

J. Jakubik and M. Kolibiar have shown that there is a 1-1 correspondence between semilattice operation o in a lattice (L, \lor, \land) such that o is distributive with \lor and \land , and pairs of certain congruence relations in (L, \lor, \land) . Similar methods can be used to show that there is certain correspondence between some pairs of congruence relations of a lattice (L, \lor, \land) and a semilattice operation o, such that (L, \land, o) is a quasi-lattice with additional properties. (A bisemilattice (L, \land, o) is a quasilattice if the natural partial order relation determined by \land is compatible with o and vice versa.) The result is then used to provide new examples of bilattices (algebras with two bounded lattice structures). Moreover, a new class of bilattices which originate from complex semilattices is presented.

Michael Pinsker, Austria/Germany	Friday 17:00
Clones on the natural numbers	HS 1
Section 1 (Universal Algebra)	
We consider clones on a countably infinite set X. If we take X to be equippe	d with the order of the

We consider clones on a countably infinite set X. If we take X to be equipped with the order of the natural numbers, then we can define so-called median functions of all odd arities. It turns out that a clone contains either all median functions or none, that is, the median functions generate each other. Next we show that one of the two maximal clones containing all unary functions is generated by a median function plus a single binary function over the unary functions. This provides an explicit description.

Maja Ponjavic, Serbia and Montenegro (at present Germany)	Saturday 10:00
On long chains in the partially ordered set of traces of maximal	HS 2
clones	
Section 2 (Lattice Theory)	
This talk is an initial step in the investigation of the structure of the partiall	y ordered set of traces
(= unary parts) of maximal clones on a finite set. By considering endomorphisms of central relations	
in comparison to endomorphisms of other Rosenberg relations we show that the width of this poset is	
at least 2 ⁿ -2 and that there exist unrefinable chains of length n-1, where n is the cardinality of the	
underlying set.	

Reinhard Pöschel, Germany	Saturday 11:00
Can algebras and homomorphisms in a quasivariety	HS 1
be reduced to unary algebras?	
Section 1 (Univeral Algebra)	
We consider algebras A belonging to a quasivariety ISP(M) generated by a	a fixed algebra M and
homomorphisms f from A to M (motivated by natural dualities). It will be shown how such A and f	
can be characterized via unary algebras.	

Sándor Radeleczki, Hungary	Friday 16:30
Linear orders on general algebras	HS 2
Section 2 (Lattice Theory)	
We answer the question, when a partial order in a partially ordered alg compatible linear extension. The finite extension property enables us to show, extension, then it is caused by a certain finite subset in the direct square consequence, we prove that a partial order can be linearly extended if and or extended on every finitely generated subalgebra. Using a special equivalence direct square, we obtain a further property of linearly extendible partial orders. the lattice of compatible quasi orders, the number of linear orders can be do approach yields new results even in the case of semigroups and groups.	that if there is no such of the base set. As a nly if it can be linearly e relation on the above Imposing conditions on

Norman Reilly, Canada	Saturday 11:30
Varieties generated by completely 0-simple semigroups	HS 1
Section 1 (Universal Algebra)	

Completely 0-simple semigroups are one of the basic building blocks for semigroups and their structure was completely determined in the 1930s by Rees and Sushkevich. They are easily constructed from any group together with two nonempty sets. With such a simple structure, it was not surprising that basic features such as congruences and homomorphisms were quickly characterized and it was natural to assume that all questions regarding completely 0-simple semigroups would be easily answered by resorting to the Rees matrix representation. However, recent results have shown that these semigroups have some quite remarkable properties in regard to certain decidability questions and in regard to the lattice of varieties that they generate.

Gabriele Ricci, Italy	Saturday 16:30
· · · · · · · · · · · · · · · · · · ·	
Universal transformations between	HS 1
Menger systems and between analytic monoids	
Section 1 (Universal Algebra)	

Given any two bases, possibly with different cardinalities, within the same (universal) algebra or of two algebras, one can transform the universal matrices and the elements of the algebra(s) in much the same way as of Linear Algebra. Hence, both the computational advantages of changing reference frames and the theoretical ones of exploiting Klein's groups might carry over the universal case.

This finding comes from a triple characterization theorem. It concerns three notions of a transformation that naturally rise, when one considers three facets coming from the choice of a base: the determinations of the corresponding *Menger system, analystic monoid* and *endomorphism representation*.

The Menger system of a based algebra generalizes the product of a vector times a (square) matrix. As in based vector spaces, it is an algebra where each element indexes an operation taking the matrix columns.

Zdenka Riecanova, Slovakia	Friday 15:00
Topological effect algebras	HS 2
Section 2 (Lattice Theory)	
A model for an Effect Algebra is the standard effect algebra of positive	e self-adjoint operators
dominated by the identity on the Hilbert space. In general effect algebras are pa	rtial algebras satisfying
very simple axioms. Effect algebras, or equivalent in some sense D-posets, were	e introduced as carriers
of states or probability measures in the quantum, or fuzzy, probability theory. T	hus elements of these
algebraic structures represent quantum effects or fuzzy events which have yes	s-no character that may
be unsharp or imprecise. As in the probability theory on these structures the	convergence of nets of
their elements has an important task, the questions about the order convergence	and topological

convergence of nets are interesting. We show conditions under which the order convergence of nets of elements of some effect algebras (including MV-algebras) is topological or compact topological. Moreover algebraic properties of such effect algebras are shown.

Anna Romanowska, Poland	
Feasible sets of finite posets	
Section A (Applications of Algebra)	

Friday 15:00 HS 4

The feasible set of a finite poset is the set of probability distributions on the elements of the poset whose weights satisfy the order relationships specified by the poset. The feasible sets of the order structures on a given underlying set are precisely the convex unions of the primary simplices, the facets of the first barycentric subdivision of the simplex spanned by the elements of the set. The feasible sets will be described using both geometric tools (the first geometric subdivision of simplices) and algebraic tools (the theory of barycentric algebras). Some applications will be provided.

Ivo G. Rosenberg, Canada	Friday 9:30
Uniformly delayed algebras; theory and the completeness p	roblem HS 1
Plenary talk	

The output of a real gate, with the input and output finite alphabet *A*, reacts to changes on the gate's inputs with a certain delay d. Assuming that d is input independent, the behaviour of the gate can be modelled by a pair (*f*, d) where *f* is an operation over *A*. The tree-shaped circuits made up from such gates lead to the surprisingly rich theory of uniformly delayed structures situated between universal algebra and automata theory. Its composition-closed sets can be described by sets of countable sequences of the same arity relations on *A*. Under a very mild completeness concept, a general completeness criterion in terms of all maximal closed sets was given in 1962 for |A| = 2 and in 1978 for |A| = 3. We report on the rather complex general case. Using previous results we managed to reduce the search to a certain elimination problem among the periodic sequences of (i) equalence relations and (ii) binary central relations (joint work with T. Hikita, Meiji U.)

Arsham Borumand Saeid, Iran	Friday 17:30
Quotient of Hyper BCK-algebras	HS 1
Section 1 (Universal Algebra)	
First by considering a reflexive hyper BCK-ideal I of a hyper BCK-alg	ebra H, we define an
equivalence relation sim _I on H. Then we construct the quotient hyper BCK-al	gebra H/I on H via the
equivalence classes. After that we give some examples of this algebra and also	obtain some properties

equivalence relation sim_I on H. Then we construct the quotient hyper BCK-algebra H/I on H via the equivalence classes. After that we give some examples of this algebra and also obtain some properties of it, in particular we give some relationships between H and H/I. Finally we state and prove some isomorphism theorems, also we give an open problem.

Dietmar Schweigert, Germany	Friday 11:30
On distributive semi near lattice	HS 2
Section 2 (Lattice Theory)	

The aim of this note is to describe partially ordered sets by a two binary operations which are similar to lattices. We like to classify near lattices in the way of homomorphisms, subalgebras and direct products. We study the lower part of the lattice of varieties of near lattices. The atoms of this lattice are the variety of distributive lattice generated by the two-element-lattice and a subvariety of distributive near lattices generated by a two-element-near-lattice with incomparable elements. We analyse the near lattice with 3 and 4 elements and give the simple distributive near lattices. The variety of the distributive semi near lattice is congruence distributive. This paper is the continuation of the results in Math. Slovaca 32 (1982) no 3 313 u 317 and in Math. Slovaca 35 (1985) no 4 313 u 317.

Josef Slapal, Czech Republic	Saturday 15:00
Diagonality and powers of general algebraic systems	HS 1
Section 1 (Universal Algebra)	
We study the diagonality of relational systems with respect to powers of these systems. As particular	
cases, the diagonalities of partial algebras, hyperalgebras and total algebras	as are discussed. The
categorical meaning and possible applications of the results are mentioned.	

David Stanovsky, Czech Republic	Saturday 17:00
Equational theory of group conjugation	HS 1
Section 1 (Universal Algebra)	
Given a group, there is a natural operation of conjugation, defined by x*y=xyx	⁻¹ . We study the variety

generated by all G(*), G a group. In particular, we are concerned about the question, whether this variety has finitely based equations.

Vitaliy M. Usenko, Ukraina	Saturday 12:00
The Double-Semigroups Categories	HS 3
Section 3 (Classical Algebra)	
The categories of double-semigroups are determined. The universal and the free objects of the double-	
semigroups categories are described.	

Gerhardt Wendt, Austria	Saturday 11:00
A result on planar rings and matrix rings and	HS 3
generalisations to near-rings	
Section 3 (Classical Algebra)	
We show that the minimal left ideals of matrix rings over skew fields are pla	nar rings and we show
that every planar ring is isomorphic to some minimal left ideal of a matrix ring over a skew field. We	
generalize this result in order to get a description of all planar near-rings as subnear-rings of certain	
centralizer near-rings.	

Richárd Wiegandt, Hungary	Saturday 9:00
Radical theory and its interpretation in various categories	HS 1
Plenary talk	
Radical theory stems from ring theory (1930), its primary aim was to prove d	ecomposition theorems
by introducing concrete radicals. Based on common properties of concrete	radicals, the notion of
general (Kurosh-Amitsur) radicals were introduced (1952-1954). The stu	dy of general radical
properties provides a context for studying and comparing algebraic properties	via closure operations.
To distinguish distinct properties, the construction of certain "pathological" in	rings is required which
serves the better understanding of the structure of rings.	
Radical theory has interpretations in various algebraic and non-algebraic	e
universal algebraic theory of radicals was developed in 1988. The infiltration	on in other branches of
algebra has enriched the arsenal of investigations. Attention will be focused	to near-rings, modules,
acts, group automata, semigroups, semirings, semifields, lattice ordered gr	coups, linearly ordered
groups and idempotent algebras.	

Radical theory has a link also with coding theory.

Johann Wiesenbauer, Austria	Friday 11:30
Über Probleme der Vertauschbarkeit in Kompositionshalbgruppen	HS 3
Section 3 (Classical Algebra)	
In dem Vortrag wird zunächst ein einfacher Algorithmus zur effizier	nten Bestimmung des
Zentralisators Z(f) eines Elements f: $\{1,,n\}$ -> $\{1,,n\}$ einer symmetrischen H	albgruppe n-ten Grades
und dessen Implementierung in DERIVE angegeben. Daran anschließend wer	den für gewisse Typen
von Kompositionshalbgruppen jene Elemente a charakterisiert, für die der Ze	ntralisator Z(a) in dem
Sinn kleinstmöglich ist, als er bereits von a erzeugt wird.	

Ross Willard, Canada	Saturday 14:00
The finite basis problem	HS 1
Plenary talk	

A finite algebra of finite type (i.e., having just finitely many fundamental operations) is *finitely based* if the variety it generates can be axiomatized by just finitely many equations. The *finite basis problem* asks for an explicit characterization of the finite algebras of finite type which are finitely based. This is a ridiculously impossible problem, but an intriguing subproblem is the task of proving a conjecture of R. Park from 1976. Park's conjecture, motivated by K. Baker's celebrated finite basis theorem (for finite algebras in congruence distributive varieties) states that if a finite algebra of finite type generates a variety in which all subdirectly irreducible members are finite and of bounded size, then the algebra is finitely based. In this lecture I survey the current state of knowledge of Park's conjecture and related problems, and describe some extensions of Baker's theorem I wish I could prove.

Rudolf Wille, Germany	Friday 11:00
An Order-theoretic Mathematization of Linear Continuum	HS 2
Structures	
Section 2 (Lattice Theory)	
Aristotle's understanding that continua do not consists of points are order-theoretically mathematized	
in the linear case. The role of points as boundaries of continua are analysed via concept lattices of	
general ordinal scales based on the mathematized linear continuum structur	res. Ideas for an order-

theoretic theory of continua in general will be sketched.

Reinhard Winkler, Austria	Friday 12:00
Maximal abelian subgroups of Aut(R,<)	HS 3
Section 3 (Classical Algebra)	
There is a traditional interest in commuting mappings and therefore in maximal sets of pairwise	
commuting transformations of a set. Transformations which preserve some structure are of particular	

commuting transformations of a set. Transformations which preserve some structure are of particular interest. In this talk we give a classification (up to conjugacy) of all maximal abelian subgroups of the automorphism group of the real line, considered as an ordered set.

Laszlo Zadori, Hungary	Saturday 12:00	
Finite posets in locally finite varieties	HS 1	
Section 1 (Universal Algebra)		
The talk is a presentation of results obtained in a joint work with Benoit Larose. We prove that if a		
finite connected poset admits an order-preserving Taylor operation, then all of its homotopy groups		
are trivial. We use this to give new characterisations of locally finite varieties omitting type 1 in terms		
of the finite posets (or equivalently, finite topological spaces) in the variety. Similar variants of other		
omitting-type theorems are presented.		

Publication policy

1. Notice to all authors

The volume is planned to be published by Verlag Johannes Heyn, Klagenfurt, in 2003/2004. **Deadline for the manuscripts: July 19, 2003.**

All submitted papers will be refereed.

The editors only accept electronically submitted manuscripts in LaTeX2e using the AMS document class "amsart" meeting our layout guidelines given below. We refer to "Contributions to General Algebra 10" for the page layout.

Papers not meeting the given guidelines will be rejected.

Submit your paper by e-mail to: <u>aaa66@uni-klu.ac.at</u> with the subject: [aaa66paper] Name, where "Name" is the author responsible for correspondence.

Up-to-date information will be available during the conference and/or from <u>http://www.uni-klu.ac.at/AAA66/proceedings.html</u>

Download the requested "aaa66" package from <u>http://www.uni-klu.ac.at/AAA66/aaa66.sty</u> An example paper can be found under <u>http://www.uni-klu.ac.at/AAA66/aaa66ex.tex</u>

[continued on next page]

2. Mandatory paper structure:

```
\documentclass[11pt]{amsart}
% your optional definitions
8 ...
% mandatory AMS fields
author[]{}
\address{}
\email{}
\urladdr{}
\title[]{}
\subjclass{ }
\keywords{}
% optional AMS field
\lambda
% do not change the order of the following
\usepackage{aaa66}
\AAAsubmitted{June/July xx, 2003}
AAApage{1}
\begin{document}
\begin{abstract}
  The abstract goes here.
\end{abstract}
\maketitle
The paper goes here.
\begin{thebibliography}
\end{thebibliography}
\end{document}
```

3. Main rules:

Participants

First Name	Last Name	Country	E-Mail
Erhard	Aichinger	Austria	erhard@algebra.uni-linz.ac.at
Dmitry	Artamonov	Russia	artamon@uuws07.math.msu.su
Nikita	Artamonov	Russia	nikita@uuws07.math.msu.su
Viatcheslav	Artamonov	Russia	artamon@mech.math.msu.su
Srichan	Arworn	Thailand	srichan28@yahoo.com
Howard	Bell	Canada	hbell@spartan.ac.brocku.ca
Satyanarayana	Bhavanari	India	bhavanari2002@yahoo.co.in
Ladislav	Bican	Czech Republic	bican@karlin.mff.cuni.cz
Manuel	Bodirsky	Germany	bodirsky@informatik.hu-berlin.de
Ivan	Chajda	Czech Republic	chajda@risc.upol.cz
Nittaya Na	Chiangmai	Thailand	srichan28@yahoo.com
Gabor	Czedli	Hungary	czedli@math.u-szeged.hu
Klaus	Denecke	Germany	kdenecke@rz.uni-potsdam.de
Gerhard	Dorfer	Austria	g.dorfer@tuwien.ac.at
Dietmar	Dorninger	Austria	d.dorninger@tuwien.ac.at
Jürgen	Ecker	Austria	juergen.ecker@algebra.uni-linz.ac.at
Günther	Eigenthaler	Austria	g.eigenthaler@tuwien.ac.at
Owusu	Enock	Ghana	enock1979@yahoo.co.uk
Ervin	Fried	Hungary	efried@renyi.hu
Sophie	Frisch	Austria	frisch@blah.math.tu-graz.ac.at
Reiner	Fritzsche	Germany	fritzsche@mathematik.uni-halle.de
Jan	Galuszka	Poland	jagalusz@polsl.gliwice.pl
Armenak	Gasparyan	Russia	armen@math.botik.ru
Kazimierz	Glazek	Poland	kglazek@comsats.edu.pk
Prissana	Glubudom	Thailand	srichan28@yahoo.com
Martin	Goldstern	Austria	goldstern@tuwien.ac.at
Ewa	Graczyñska	Poland	egracz@po.opole.pl
Radomir	Halas	Czech Republic	halas@risc.upol.cz
Pawel	Idziak	Poland	idziak@ii.uj.edu.pl
Gejza	Jenca	Slovakia	jenca@kmat.elf.stuba.sk
Hans	Kaiser	Austria	h.kaiser@tuwien.ac.at
Anna	Kartashova	Russia	kartashov@vspu.ru
Tibor	Katrinak	Slovakia	katrinak@fmph.uniba.sk
Yefim	Katsov	USA	katsov@hanover.edu
Hermann	Kautschitsch	Austria	hermann.kautschitsch@uni-klu.ac.at
Gerhard	Kowol	Austria	gerhard.kowol@univie.ac.at
Jan	Kühr	Czech Republic	kuhr@inf.upol.cz
Leonard	Kwuida	Germany	kwuida@math.tu-dresden.de
Helmut	Länger	Austria	h.laenger@tuwien.ac.at
László	Márki	Hungary	marki@renyi.hu

Heinz	Mitsch	Austria	heinz.mitsch@univie.ac.at
Willi	More	Austria	willi.more@uni-klu.ac.at
Winfried	Müller	Austria	winfried.mueller@uni-klu.ac.at
Péter P.	Pálfy	Hungary	ppp@cs.elte.hu
Jan	Paseka	Czech Republic	paseka@math.muni.cz
Christian	Pech	Germany	pech@math.tu-dresden.de
Anh Ngoc	Pham	Hungary	anh@renyi.hu
Agata	Pilitowska	Poland	irbis@pol.pl
Günter	Pilz	Austria	guenter.pilz@jku.at
Michael	Pinsker	Austria / Germany	marula@gmx.at
Maja	Ponjavic	Serbia and Montenegro	maja@im.ns.ac.yu
Tiang	Poomsa-ard	Thailand	tiang@kku.ac.th
Reinhard	Pöschel	Germany	poeschel@math.tu-dresden.de
Sándor	Radeleczki	Hungary	matradi@gold.uni-miskolc.hu
Norman	Reilly	Canada	nreilly@cs.sfu.ca
Gabriele	Ricci	Italy	gabriele.ricci@unipr.it
Zdenka	Riecanova	Slovakia	zriecan@elf.stuba.sk
Anna	Romanowska	Poland	aroman@alpha.mini.pw.edu.pl
Ivo G.	Rosenberg	Canada	rosenb@dms.umontreal.ca
Arsham B.	Saeid	Iran	arsham@iauk.ac.ir
Johannes	Schoißengeier	Austria	johannes.schoissengeier@uni-klu.ac.at
Dietmar	Schweigert	Germany	dietmarschweigert@web.de
Josef	Slapal	Czech Republic	slapal@um.fme.vutbr.cz
David	Stanovsky	Czech Republic	stanovsk@karlin.mff.cuni.cz
Edith	Szabó	Hungary	szedit@math.klte.hu
Tadashi	Takahashi	Japan	takahasi@risc.uni-linz.ac.at
Vitaliy M.	Usenko	Ukraina	usenko@is.com.ua
Prapa	Vattanakeeree	Thailand	prapa@cs.sc.cmu.ac.th
Gerhard	Wendt	Austria	wendt@algebra.uni-linz.ac.at
Richárd	Wiegandt	Hungary	wiegandt@renyi.hu
Johann	Wiesenbauer	Austria	j.wiesenbauer@tuwien.ac.at
Ross	Willard	Canada	rdwillar@gillian.math.uwaterloo.ca
Rudolf	Wille	Germany	wille@mathematik.tu-darmstadt.de
Reinhard	Winkler	Austria	reinhard.winkler@tuwien.ac.at
László	Zadori	Hungary	zadori@math.u-szeged.hu
Anna	Zamojska-Dzienio	Poland	azamojsk@elka.pw.edu.pl
Aimin	Zhang	China	zhangaimin66@yahhoo.com

Social activities

Entrance to social activities is free to conference participants and accompanying persons. Food and beverages at informal welcome and conference dinner are included.

Informal welcome

Venue: Main hall, university – Thursday (June, 19th), 18:15

After registration conference organizers offer beverages and small snacks as an opportunity to get accustomed to the venue and to people.

Farewell HS 1 – Saturday (June, 21st), 17:45

Conference dinner

Mensa building, close to the university – Saturday (June, 21st), 19:30 to 23:00

Local information

Bus lines

There is a central bus station in the city, the Heiligengeistplatz, from where buses circulate to all directions. Line no 12 is next to the university, lines 10, 11, 20, 21 stop at Minimundus and Hotel Wörther See, close to university. Enclosed please find a map for the buses and a time schedule for lines 10, 11 and 12 which stop near university. There are time schedule for all buses in Klagenfurt in the registration office.

Food and beverages

During official coffee breaks, conference organizers offer coffee and refreshing drinks in main building. At other occasions you can find food at your cost at the following places:

Student's mensa (open Friday between 11.30 and 2.30 p.m.) Uniwirt, Nautilusweg at campus Uni Pizzeria, Universitätsstraße, opposite to mensa building Chinesischer Garten, Villacher Straße 221, chinese food Restaurant Lido, Friedelstrand 1, fine restaurant, close to Klagenfurt harbour Maria Loretto, Lorettoweg 54, fine restaurant, next to the beach Minimundus, Restaurant Cafe, Villacher Straße, at Minimundus Strandbad Restaurant Tischler, Metnitzstrand, at the Strandbad

The Klagenfurt Lindwurm

Whenever you come to Austria, visit Klagenfurt, the capital of Carinthia. There you will find the famous Lindwurm monument, which was erected by Ulrich Vogelsang in 1590. Although it represents a dragon, it can be regarded as the first palaeontologic reconstruction. In 1335 the cranium of a woolly rhinoceros from the iceage was found in a gravel pit near Klagenfurt. It was instantly interpreted as the

skull of a dragon or Lindwurm. This fossil, which is still at exhibition at the Landesmuseum für Kärnten, served as a model for the head of the Lindwurm.

However, the legend of a dragon haunting the surroundings of Klagenfurt is much older:

The name of the town can be read as "ford of lament". Floods repeatedly destroyed the crossings over the river Glan and many persons lost their lives. Thus the idea arose that a water dragon was responsible for all the lethal accidents at the ford and in the swamps near the river Glan. There he hid in eternal mists. During rain and thunderstorm people could hear him roar. To relieve the peasants from this creature, the Duke of Carinthia built a huge, strong tower at the limits of the swamps. Fearless knights hid there, and a stout bull tied to a chain with barbs was presented as a bait. Soon the winged Lindwurm appeared and devoured the bull - and hung wriggling on the chain like a fish on the hook. At once he was slain by the knights. Later the swamps were drained, and the tower was replaced by a castle. Thus the town Klagenfurt was founded. The city-arms still show tower and dragon to remind us of this heroic deed.

But also the Lindwurm itself underwent a metamorphoses: The oldest city seal shows a twolegged, winged dragon in front of a tower (which is thus similar to that of Laibach = Ljubljana). This image was used at least until 1609. But towards the end of the 16th century the idea of what a dragon should look like changed. From then on dragons used to have four legs, and the city-arms of 1669 show that type of Lindwurm. However, the Lindwurm of Klagenfurt was never depicted without wings. From September 1996 to July 1997 the Lindwurm was removed for restoration.

Ein Lindwurm gantz ungeheuer Wellicher verprent durchs Feuer Im Zollfelt sollicher da lag Drob menschen und auch vich vertzag In Wappen fierdt Clagenfurdt statt Davon sie iren namen hatt. [anonymus, 1608]

[Bus Time Table, 3 pages]

