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Zusammenfassung

In jüngerer Zeit durchgeführte experimentelle Studien von Kondensationsphänomenen in getrie-
ben-dissipativen Quantenvielteilchensystemen bringen die Frage auf, welche Art von neuem univer-
sellem Verhalten unter Nicht-Gleichgewichtsverhältnissen auftreten kann. Wir untersuchen verschie-
dene Aspekte von Universalität in diesem Kontext. Unsere Resultate haben Relevanz für zahlreiche
offene Quantensysteme, von Exziton-Polariton-Kondensaten bis zu kalten atomaren Gasen.

In Teil I charakterisieren wir das dynamische kritische Verhalten am Bose-Einstein-Kondensati-
ons-Phasenübergang in getriebenen offenen Quantensystemen in drei räumlichen Dimensionen. Ob-
wohl sich thermodynamische Gleichgewichtsverhältnisse bei niedrigen Frequenzen einstellen, wird
die Annäherung an dieses thermalisierte Regime niedriger Frequenzen durch einen kritischen Ex-
ponenten beschrieben, der kennzeichnend für den Nicht-Gleichgewichts-Übergang ist und diesen
außerhalb der Standardklassifikation von dynamischem kritischem Verhalten im Gleichgewicht ein-
stuft. Unser theoretischer Ansatz beruht auf der funktionalen Renormierungsgruppe im Rahmen der
Keldysh-Nicht-Gleichgewichts-Feldtheorie, welche äquivalent zu einer mikroskopischen Beschrei-
bung der Dynamik des offenen Systems in Form einer Quantenvielteilchen-Mastergleichung ist.

Universelles Verhalten der Kohärenzeigenschaften von getrieben-dissipativen Kondensaten in
reduzierten Dimensionen wird in Teil II untersucht. Wir zeigen, dass getriebene zweidimensiona-
le Bose-Systeme keine algebraische Ordnung wie im thermodynamischen Gleichgewicht aufweisen
können, sofern sie nicht hinreichend anisotrop sind. Dennoch finden wir Hinweise, dass sogar isotro-
pe Systeme einen endlichen superfluiden Anteil haben können. In eindimensionalen Systemen sind
Nicht-Gleichgewichtsbedingungen im Verhalten der Autokorrelationsfunktion nachweisbar. Wir er-
zielen diese Resultate durch eine Abbildung der Dynamik des Kondensats auf langen Wellenlängen
auf die Kardar-Parisi-Zhang-Gleichung.

In Teil III zeigen wir, dass Systeme in thermodynamischem Gleichgewicht eine besondere Sym-
metrie haben, welche sie von allgemeinen getriebenen offenen Systemen unterscheidet. Das neuartige
universelle Verhalten, welches in den Teilen II und III beschrieben wird, kann auf das Fehlen dieser
Symmetrie außerhalb des Gleichgewichts zurückgeführt werden. Von einem praktischen Standpunkt
aus bietet diese Symmetrie einen effizienten Test für das Vorliegen von thermodynamischen Gleich-
gewichtsbedingungen und macht die explizite Berechnung von Fluktuations-Dissipations-Relationen
unnötig. Im klassischen Grenzfall finden wir die bekannte Gleichgewichtssymmetrie der stochasti-
schen Dynamik klassischer, an thermische Bäder gekoppelter Systeme wieder.





Abstract

Recent experimental investigations of condensation phenomena in driven-dissipative quantum
many-body systems raise the question of what kind of novel universal behavior can emerge under
non-equilibrium conditions. We explore various aspects of universality in this context. Our results are
of relevance for a variety of open quantum systems on the interface of quantum optics and condensed
matter physics, ranging from exciton-polariton condensates to cold atomic gases.

In Part I we characterize the dynamical critical behavior at the Bose-Einstein condensation phase
transition in driven open quantum systems in three spatial dimensions. Although thermodynamic
equilibrium conditions are emergent at low frequencies, the approach to this thermalized low-frequency
regime is described by a critical exponent which is specific to the non-equilibrium transition, and
places the latter beyond the standard classification of equilibrium dynamical critical behavior. Our
theoretical approach is based on the functional renormalization group within the framework of Keldysh
non-equilibrium field theory, which is equivalent to a microscopic description of the open system dy-
namics in terms of a many-body quantum master equation.

Universal behavior in the coherence properties of driven-dissipative condensates in reduced di-
mensions is investigated in Part II. We show that driven two-dimensional Bose systems cannot exhibit
algebraic order as in thermodynamic equilibrium, unless they are sufficiently anisotropic. However,
we find evidence that even isotropic systems may have a finite superfluid fraction. In one-dimensional
systems, non-equilibrium conditions are traceable in the behavior of the autocorrelation function. We
obtain these results by mapping the long-wavelength condensate dynamics onto the Kardar-Parisi-
Zhang equation.

In Part III we show that systems in thermodynamic equilibrium have a specific symmetry, which
makes them distinct from generic driven open systems. The novel universal behavior described in
Parts I and II can be traced back to the absence of this symmetry out of equilibrium. From a practi-
cal viewpoint, this symmetry provides an efficient check for thermodynamic equilibrium conditions,
making the explicit calculation of fluctuation-dissipation relations unnecessary. In the classical limit
we recover the known equilibrium symmetry of the stochastic dynamics of classical systems coupled
to thermal baths.
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Chapter 1

Introduction

In this chapter we introduce the main topics of the thesis and put them into a broader context.
We begin with a brief overview of the field of quantum many-body systems out of thermodynamic
equilibrium in Sec. 1.1, which motivates the questions that are addressed in subsequent chapters. In
particular, we shall be interested in universal aspects of condensation phenomena in driven-dissipative
systems. The notion of universality is briefly discussed in Sec. 1.2. Studying this problem theoreti-
cally requires specific tools, and the development of an appropriate formalism has been a major part
of the work that is documented in this thesis. This aspect is touched upon in Sec. 1.3. Finally, an
outline of the following chapters is given in Sec. 1.4.

1.1 Quantum Many-Body Systems out of Equilibrium

In recent years, the field of quantum many-body systems out of thermodynamic equilibrium has
gained strong and ever-growing interest. Various aspects have been studied, e.g., thermalization or
the absence of thermalization in the unitary dynamics of closed systems following a quench [1, 2].
On the other hand, a crucial feature that has been explored in open systems is the interplay between
coherent and driven-dissipative dynamics. In fact, while dissipation has often been perceived merely
as a hindrance for investigating, in particular, quantum aspects of experimental setups, studies showed
that it can actually be turned into a powerful resource for applications such as state preparation and
quantum computation in various contexts, including cold atoms [3–5] and photons [6]. In these
studies, the key idea is to design the time evolution of the system, using Hamiltonian and dissipative
contributions as basic building blocks of the generator of the dynamics in such a way that in the
long-time limit the system reaches a non-equilibrium stationary state with the desired qualities, e.g.,
specific forms of order [7–10] or topological properties [11, 12]. The topics studied in subsequent
chapters are to a large extent situated in the field of quantum many-body systems out of equilibrium.
Let us, therefore, in the following briefly review some of the recent theoretical and experimental
highlights in this area of physics, and the questions that arise in this context.

The prime candidates for studying dynamics in closed quantum systems [1, 2] are experiments
with cold atoms, which provide excellent control over all relevant parameters during all steps of an
experimental sequence [13]. In particular, the time evolution of the system under study can be engi-
neered, since on the one hand the Hamiltonian governing the dynamics is known precisely (which is
often not the case, e.g., in solid state systems), and on the other hand the parameters in this Hamil-
tonian can be tuned on demand, e.g., using Feshbach resonances [14]. This puts cold atoms in an
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ideal position to address questions such as whether the dynamics of a closed quantum system fol-
lowing a quench, i.e., a sudden or slow change in the parameters of the Hamiltonian of the system,
leads to a thermal stationary state. Spectacular experiments have shown the absence of thermalization
in integrable systems [15, 16], in which an extensive number of local integrals of motion strongly
constrain the precise form of the stationary state. As a result, the latter is not a Gibbs thermal state,
but rather described by what is known as generalized Gibbs ensemble [17–19]. Adding a small non-
integrable contribution to the Hamiltonian causes the system to eventually thermalize, however, only
after passing through a quasistationary pre-thermal regime [20], which was observed in a series of
experiments performed by the group of Jörg Schmiedmayer [21–23]. While integrability is trivially
guaranteed in non-interacting systems, generic interactions often break integrability. However, even
interacting quantum many-body systems can under certain conditions be prevented from thermalizing
by subjecting them to sufficiently strong disorder, which causes them to enter a many-body localized
phase (for a review see Ref. [24]). This has been demonstrated in a recent experiment with cold atoms
carried out by the group of Immanuel Bloch [25].

A crucial aspect for the experiments with cold atoms mentioned above is the almost perfect iso-
lation of the sample from the enclosing environment. Indeed, the introduction of a coupling between
the system and its surroundings in a controlled manner opens up the possibility to study a plethora
of entirely new and intriguing phenomena. For example, by immersing a Bose-Einstein condensate
into a high-finesse optical cavity, strong matter-light coupling has been achieved, which led to the
realization of open Dicke models [26–28]. The leakage of photons out of the cavity requires contin-
uous replenishment in the form of laser driving. As a result the system reaches a steady state that is
not thermodynamic equilibrium but rather characterized by the dynamical balance between pumping
and losses. Therefore, this system is an instance of a qualitatively new class of quantum matter far
from thermodynamic equilibrium, which challenges traditional boundaries between different areas of
physics such as quantum optics, statistical physics, and condensed matter physics.

Since its very beginning, the field of quantum optics (for an introduction see, e.g., [29]) was
concerned with the study of inherently lossy systems. This is due to the omnipresent continuum of
modes of the electromagnetic field, which is responsible for the finite linewidth of transitions between
different atomic or ionic states, and also cavity modes. The dynamics of these systems is thus bound
to be decay to the vacuum, unless an externally imposed field such as a laser beam provides for a
continuous source of energy. In experimental and theoretical studies in this field, focus is often put on
carving out just what is quantum about quantum optics and thus comes as a surprise to a mindset that is
used to walk the beaten paths of classical electrodynamics. An example for distinctly quantum aspects
of the light field are Fock states or number states, in particular those containing only a small number
of excitations, which should be contrasted with coherent states, characterized by occupation numbers
that are so high that the addition or removal of a single excitation is but a negligible disturbance—this
can be regarded as the very definition of a classical state of the electromagnetic field, and is realized,
e.g., in the output of a laser. The qualitative difference between classical and quantum states of light
is revealed in their coherence properties: while the intensity correlations of a thermal light source
exhibit photon bunching (this is known as the Hanbury Brown and Twiss effect) and those of a laser
are completely flat, photon antibunching was observed for single-photon sources, which is considered
a clear signature of the quantumness of such a source. In other words, the question whether a given
state of the electromagnetic field is quantum or not is decided by considering the statistics of the
photon number distribution.

A different notion of statistics is commonly employed in statistical physics, which is the study of
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systems with a large number of degrees of freedom. However, concepts of this field can also be im-
portant for quantum optics, e.g., in the context of the Bose-Einstein condensation (BEC) of photons
in an optical microcavity shown in a recent experiment performed by the group of Martin Weitz [30].
An example for such a concept is the idea that conserved quantities, due to a lack of knowledge of
the microstate, are fixed in the description of the macrostate only on average by means of Lagrangian
multipliers—in the case of the number of particles, this Lagrangian multiplier is just the chemical
potential. Concerning photons, it is far from obvious how a finite and perhaps even externally tun-
able chemical potential can be realized in practice (a cleverly devised scheme was recently proposed
in [31]). This, however, is a prerequisite for achieving a BEC: in the textbook problem of blackbody
radiation, i.e., radiation in thermal equilibrium with the walls of the confining cavity, upon lower-
ing the temperature photons simply disappear instead of piling up in the ground state as would be
the signature of BEC. In the experiment [30], the solution to this problem was found by placing the
photon gas inside a high-finesse optical microcavity, which acts as a “white-wall box,” and filling
the cavity with a droplet of dye, thus providing the non-linear medium necessary for the photons to
thermalize. At the point where non-linearities – or interactions – enter the game, a new source of
correlations, qualitatively different from those due to the statistics of the constituent particles leading,
e.g., to the effects of photon bunching and antibunching discussed above, is introduced, and the venue
of condensed matter physics is entered.

These considerations highlight one of the main challenges in the study of quantum many-body
systems out of equilibrium: it is a highly interdisciplinary field and calls for the merging of ideas,
concepts, and both theoretical and experimental techniques from a wide range of areas of physics. In
order to corroborate this point, let us consider some further examples.

In experiments with trapped ions [32], the number of particles involved has been scaled up over
the years, and these systems are now at the verge of acquiring a true many-body character. In par-
ticular, trapped ions can be utilized as digital or analog quantum simulators [33], allowing for the
realization, e.g., of spin models such as the two-dimensional Ising model [34]. While the dynamics
of a single ion interacting with the electromagnetic field is clearly an atomic physics and quantum op-
tics problem, as soon as the number of these elementary building blocks is increased to tens or even
hundreds [34] and they are made to interact, considerations of condensed matter physics start to play
a role. Another experimental platform that started out in the past with the study of small systems and
is now being extended to include a larger number of constituents, are optomechanical setups [35–37],
in which mechanical degrees of freedom are coupled to the light field, e.g., by allowing one of the
mirrors that form a cavity to oscillate. A third example in which the elementary constituents of a sys-
tem with many interacting degrees of freedom involve quantum optical building blocks are arrays of
microcavities coupled to superconducting circuits [38–42]. Here a single site of the array, i.e., a basic
circuit-quantum electrodynamical element, is described by the Jaynes-Cummings model—again an
ubiquitous textbook problem in quantum optics [29]. The combination of many of these elements in
a lattice, however, realizes a dissipative Bose-Hubbard model, the closed system version of which has
become paradigmatic in condensed matter physics.

Let us reiterate that all of these examples are generically open systems, for the simple reason that
excited states of ions and photons trapped in a cavity cannot be decoupled from the surrounding elec-
tromagnetic field and thus have only a finite lifetime. The latter is also true of quasiparticle excitations
such as magnons, which nevertheless have been reported to exhibit BEC [43] in a non-equilibrium
regime where losses are compensated by pumping. This gives confidence that BEC out of equilibrium
might also be reached in other systems, e.g., excitons in semiconductors. Even cold atoms might be
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made to condense in this intriguing non-equilibrium regime if three-body losses are counteracted by
continuous loading [44]. However, at present the prime example exhibiting condensation phenom-
ena in a non-equilibrium steady state are exciton-polaritons in semiconductor microcavities. Indeed,
these systems seem to be the most promising when it comes to realizing the physics discussed in
subsequent chapters of this thesis. Let us, therefore, review briefly some of their properties [45–47].

Microcavity polaritons are hybrid quasiparticles, composed of matter and light. The matter com-
ponent is a Wannier-Mott exciton, and is coupled strongly to a photon confined in a semiconductor
microcavity. An exciton is an excitation above the vacuum state of a semiconductor, which is created
when an electron from the filled valence band absorbs enough energy to enter the empty conduction
band and forms – under the influence of the attractive Coulomb force – a bound state with the hole
that is left in the valence band upon removal of the electron, in close analogy to a hydrogen atom con-
sisting of a bound electron-proton pair. However, the Bohr radius of an exciton is about 10 − 100 Å,
i.e., it is much larger than that of the hydrogen atom, and extends over tens of atomic sites in the
crystal. Nevertheless, excitons can still be considered as elementary bosonic objects as long as their
mean distance is larger than the exciton Bohr radius [46]. When excitons are confined in a quantum
well (QW) to a thin layer with a thickness comparable to the exciton Bohr radius, their motion along
the (transverse) confinement direction is quantized. Then, QW excitons behave as two-dimensional
quasiparticles if the spacing between the lowest and the first excited state of the transverse motion is
large enough to ensure that only the ground state is populated.

The positive and negative charges of the hole and electron, respectively, form a dipole that can
interact with the electromagnetic field, and indeed the enhanced spatial overlap of the bound pair
forming the exciton as compared to an unbound electron and hole results in an increase of the matter-
light coupling. However, strong coupling (in a sense to be defined below) can be achieved only if in
addition the photon is confined in the direction perpendicular to the QW by means of a microcavity.
In typical experiments, the latter is formed by two distributed Bragg reflectors, i.e., alternating layers
of high and low refractive index, which act as high-reflectance mirrors. Around the center of the
cavity, where the electromagnetic field is concentrated, its amplitude is increased by a factor of up to
20 [46], and the QW is placed precisely in such an antiode of the light field. The regime of strong
coupling is reached when the time scale associated with the coupling strength between photons and
excitons becomes much faster than both the rate at which photons are lost from the cavity due to
mirror imperfections and the non-radiative decay rate of excitons. Under these conditions, excitons
and photons hybridize to form new bosonic quasiparticles called exciton-polaritons. In particular,
excitons in the QW couple to photons with exactly the same in-plane momentum, creating two modes
known as upper and lower polaritons. The fractions at which matter and light components contribute
to the polaritons are referred to as the Hopfield coefficients, X and C, respectively. As a result of this
specific mixture, polaritons inherit properties from both of their constituents, as we describe in the
following.

The transverse (i.e., along the cavity axis) confinement leads for small momenta to a quadratic
dispersion relation regarding the in-plane motion of the photons. In other words, the photons acquire
an effective mass, which is typically of the order of mphoton ≈ 10−5me, where me is the mass of
the electron, and thus much smaller than the mass of QW excitons, which is mexciton ≈ 104mphoton.

Since the sum of the inverse exciton and photon masses, weighted by the corresponding Hopfield
coefficients, determines the mass of lower polaritons, the latter is approximately given by mLP ≈
mphoton/ |C|2 , i.e., it is of the same order of magnitude as the photon mass. The decay rates of excitons
and photons, on the other hand, add up linearly to yield the decay rate of the lower polariton. However,
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since typically photons have a much shorter lifetime, which is of the order of 1 ps to several 10 ps in
contrast to the excitonic lifetime of typically 1 ns, again the value corresponding to the photonic
component essentially determines the lifetime of the lower polaritons, and the strong coupling regime
is characterized by the exciton-photon coupling being much bigger than this value.

While single-particle properties of lower polaritons are mainly inherited from the photons, the
interactions between polaritons stem primarily from the screened Coulomb interactions between elec-
trons and holes forming the excitons [45]. In fact, the binary photon-photon interactions, which are
due to third-order nonlinearities proportional to the χ(3) nonlinear polarizability of the material from
which the QW is made, are much weaker than the Coulomb interactions. The latter, in the low-energy
scattering regime where relative wave vectors are much smaller than the exciton Bohr radius, can
again be described accurately by a two-body contact interaction. Another effective quartic interaction
channel originates from the Pauli exclusion principle for electrons and holes, which excludes that an
additional exciton can be created at a distance shorter than the Bohr radius from an existing exciton
with the same spin. However, typically this contribution is significantly smaller than the one from
the electrostatic interaction [45]. An intriguing possibility is to exploit the fact that polaritons ex-
ist in distinct spin states in order to realize a polaritonic Feshbach resonance, as was demonstrated
experimentally in Ref. [48].

From an experimental point of view, a very attractive feature of microcavity polaritons is their
high optical accessibility [46]. In fact, when a polariton decays, a photon with the same in-plane mo-
mentum and total energy is emitted from the cavity, providing directly measurable information on the
polariton field: from near and far field measurements, the real-space and momentum-space densities,
respectively, can be extracted, while interferometric measurements yield the coherence properties of
the polariton field. On the other hand, the finite decay rate of polaritons makes it necessary to con-
tinuously feed the system with energy in order to maintain a finite polariton population in steady
state. In experiments, different pumping schemes have been realized. A first option is to inject energy
coherently into the cavity, i.e., to resonantly drive a lower polariton state with a specific momentum
and energy. In this way, high occupations of this particular state can be achieved, or in other words,
a polariton condensate at a finite momentum can be created. Even more intriguingly, in the coherent
pumping scheme the phase – and hence coherence – of the driving laser field is imprinted on the
polariton field. This can be utilized to create on demand, e.g., finite angular momentum states of the
polariton field by using Laguerre-Gauss beams as has been shown in experiments conducted by the
group of Alberto Bramati [49]. The drawback of the coherent pumping scheme is that the phase ro-
tation symmetry of the dynamics of the polariton field, which is crucial for many aspects in the study
of condensation physics with polaritons, is broken explicitly. An alternative approach is to use a laser
that is far blue-detuned from the bottom of the lower polariton band. During the relaxation of the
thus created high-energy excitations, which is caused by phonon-polariton and stimulated polariton-
polariton scattering, coherence is quickly lost. The effective dynamics of the low-momentum com-
ponent of the lower polariton field can be described by a phenomenological model that is introduced
in Ref. [50] and involves a dissipative Gross-Pitaevskii equation for the condensate dynamics that is
coupled to a rate equation for the reservoir of high-energy excitations. A crucial aspect of this model
is that the equations are invariant under phase rotations of the polariton field, which opens the pos-
sibility of spontaneous symmetry breaking in a condensation transition out of equilibrium [51–55].
An intriguing question that arises naturally in this context and to which major parts of this thesis are
devoted is which kind of new universal behavior can emerge under such conditions. To make this
question more precise, let us move on to discuss the notion of universality.
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1.2 Universality in Non-Equilibrium Stationary States

In a broad sense, universality means that very distinct physical systems can – under specific conditions
– show exactly the same behavior. To be more precise, the dependence of certain observables on the
scale at which the system is viewed, is found to be given by power laws with exponents that take
the same values for all systems belonging to the same universality class. However, this power-law
dependence is found only on large scales, i.e., at scales on which the dynamics of the system is
best described in a coarse-grained picture by, e.g., slowly fluctuating order parameter fields, rather
than by keeping track of individual collisions of atoms or the like. Such microscopic processes are
washed out if the system is viewed on larger scales, and the question arises which, if any, properties
of the underlying microscopic dynamics survive the process of coarse graining and determine the
observable behavior of the system on macroscopic scales. The remarkable answer to this question
is that in systems with short-range interactions, the symmetries of the microscopic dynamics and
the spatial dimensionality completely determine the universality class, which might thus comprise a
large number of vastly different physical systems. This in turn indicates that the number of different
universality classes is low. Therefore, each instance of novel universal behavior should definitely be
considered as a remarkable discovery.

At present, various conditions are known under which universal scaling behavior can be observed.
The most prominent example is certainly the tuning of system parameters close to a second order
phase transition [56, 57], at which a mass scale vanishes, leading to diverging perturbative corrections.
Critical scaling behavior at such a transition has been investigated extensively in thermodynamic
equilibrium in classical and quantum systems, and a full classification of dynamical critical behavior
in the classical case has been given already in the 1970s [58]. Associated with such static phase
transitions in equilibrium are often dynamical out-of-equilibrium transitions, which become apparent
in the dynamics of the system following a quench across a critical point, both at short [59, 60] and
long times [61–63], and also in this case universal scaling behavior can be observed. An example for a
non-equilibrium phase transition that does not have a counterpart in thermodynamic equilibrium is the
roughening transition in the Kardar-Parisi-Zhang (KPZ) equation in d ≥ 3 spatial dimensions [64] (for
reviews see [65] and [66]). The KPZ universality class has become paradigmatic in non-equilibrium
statistical mechanics, since it might be considered as the simplest model leading to non-trivial non-
equilibrium scaling behavior. Unlike dynamical critical behavior at a second ordered phase transition,
which is induced by the vanishing of a mass scale, in the case of the KPZ equation scaling behavior
at long scales and long times is realized generically, i.e., even away from the critical point in the
stable phases, since it is a massless model. This is to some extent similar to ordered phases that
spontaneously break continuous symmetries: according to the Goldstone theorem, the symmetry
breaking leads to the appearance of massless modes. The existence of a Goldstone mode in the low-
temperature phase of the two-dimensional XY-model results in scaling behavior of spatial correlations
in the whole phase, i.e., from zero temperature up to the critical one. Another example of universal
scaling behavior in out-of-equilibrium dynamics is given by the non-thermal fixed points investigated
in Refs. [67–75].

A major part of this thesis is dedicated to the study of non-equilibrium dynamical critical be-
havior at a driven-dissipative condensation transition in three spatial dimensions and the universal
long-distance and long-time scaling behavior of correlations in the condensed phase in one and two-
dimensional systems. Originally, non-equilibrium universal behavior has been found in several clas-
sical systems, examples including models with spatially anisotropic temperature distributions [76],
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the driven-diffusive lattice gas [77], reaction-diffusion systems [78–81], the problems of directed per-
colation [82, 83] and self-organized criticality [84], and surface roughening phenomena, which are
described by the KPZ equation.

As pointed out above, the universality class of a system with short-range interactions is deter-
mined solely by the spatial dimension and symmetries. Interestingly, also the difference between
equilibrium and non-equilibrium stationary states can be traced back to a particular symmetry, which
has been studied in the context of classical dynamical models in the past [85–88] and is extended to the
quantum case in Chapter 7 below. As we show there, the absence of the symmetry in non-equilibrium
stationary states is due to the different and completely independent physical origin of coherent and
driven-dissipative dynamics: while the former is generated by the system Hamiltonian, the latter – in
the case we consider in Parts I and II – encodes particle loss and pumping. In addition, these processes
break the phase-rotation symmetry associated with particle number conservation, which is present in
microscopic models of BEC in thermodynamic equilibrium, described by model F in the standard
classification [58]. The combination of the breaking of equilibrium and phase-rotation symmetries
lies at the heart of the universal non-equilibrium behavior studied in this thesis.

As anticipated in the previous section, exciton-polaritons in semiconductor microcavities are the
prime experimental implementation of non-equilibrium BEC physics. Indeed, in these systems losses
and pumping are naturally present due to the decay of cavity photons and laser driving. The specific
driving scheme used in an experiment, however, has to ensure that the effective pumping of lower
polaritons with small in-plane momentum is incoherent: only when the coherence of the laser is not
forced onto the polariton field, is there still a specific kind of phase rotation symmetry intact, which is
as we discuss in Chapter 5 different from the one associated with particle number conservation, and
allows for a second order condensation transition that involves the spontaneous breaking this symme-
try. The main challenge in exploring the physics discussed theoretically in this thesis experimentally
in exciton-polariton systems lies in the fact that the large scales at which scaling behavior sets in
are hard to reach in such experiments. This is partly due to difficulties associated with extending
the effective system size, which is delimited by the laser pumping spot, while avoiding the overheat-
ing of the sample. In addition, disorder that hinders polariton condensation [45, 89, 90] cannot be
eliminated completely. Strategies to circumvent these problems are discussed in Chapters 4 and 6.
Apart from exciton-polaritons, there are various other experimental platforms in which the univer-
sal physics of driven-dissipative BEC could be studied. For the example of microcavity arrays, an
incoherent pumping scheme has been proposed recently [91].

Thus, the experimental prospects for observing universality out of equilibrium seem promising.
Making precise predictions, e.g., for the parameter regime an experiment should encompass and the
observables that should be considered, requires sophisticated theoretical methods. The development
of such tools has been an integral part of the work documented in this thesis, and we proceed to
discuss this aspect in the following section.

1.3 Non-Equilibrium Field Theory and the Functional Renormaliza-
tion Group

Since the pioneering work of Kenneth G. Wilson [92], the theoretical investigation of universal be-
havior in condensed matter physics has been the success story of renormalization group methods.
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Modern variants of the latter are often based on the formalism of quantum field theory, and accord-
ingly a substantial part of this thesis is concerned with developing a description of open Markovian
quantum many-body systems in terms of the Keldysh functional integral technique (for an introduc-
tion see, e.g., Refs. [93] or [94]). Here we briefly summarize our advances in this area and point out
relations to the existing literature.

We have already remarked in Sec. 1.1 that dynamics which results from the combination of coher-
ent and driven-dissipative contributions is ubiquitous in quantum optics, and researchers in this field
have come up with various ideas to tackle such problems theoretically. One paradigmatic approach is
the use of quantum master equations, formulated in terms of second-quantized operators [29]. In this
framework, we devise a simple model for a driven-dissipative condensate in Part I of this thesis. The
crucial step that makes this model accessible to renormalization group techniques, and thus allows us
to address universal critical phenomena, is to translate the resulting master equation into an equivalent
Keldysh functional integral. This approach may be further generalized and applied to a large variety
of other non-equilibrium situations [95–97].

In Parts I and II of this thesis we show that in order to describe the long-wavelength dynamics of
a driven-dissipative condensate it is sufficient to consider the classical limit of the Keldysh action. In
this limit the Keldysh formalism is reduced to the Martin-Siggia-Rose technique (for an introduction
see, e.g., Ref. [98]), which was originally devised as an efficient description of the stochastic dynamics
of classical systems in thermodynamic equilibrium. To deal with such problems the Martin-Siggia-
Rose formalism allows to derive perturbation theory in the compact notation of Feynman diagrams,
and it lends itself naturally to the application of renormalization group techniques such as the func-
tional renormalization group (for reviews see Refs. [99–103]) based on the Wetterich equation [104].
We employ this method in the study of dynamical critical behavior at the driven-dissipative conden-
sation transition in Chapters 2 and 3. The results we report in these chapters were fully confirmed and
further developed in a recent complementary perturbative field theoretical study [105]. In the past, the
functional renormalization group has already been used in combination with the Keldysh and Martin-
Siggia-Rose formalisms to study dynamical critical behavior in classical systems in [106, 107] and
out of thermodynamic equilibrium [81, 108–113], as well as to characterize stationary transport so-
lutions corresponding to non-thermal fixed points [67, 68], to derive dynamical equations [114], and
to calculate transport properties [115–117]. A short introduction to this technique in the context of
dynamical critical behavior at the driven-dissipative condensation transition is provided in Chapter 3.

Apart from providing a suitable framework for applying renormalization group techniques, a
description of open Markovian quantum many-body systems based on Keldysh non-equilibrium field
theory has the additional advantage of allowing for an efficient discussion of symmetries and their
consequences. In particular, the thermalization at low frequencies we find in the course of our analysis
of dynamical critical behavior in the driven-dissipative BEC transition in three-dimensional systems
in Part II is reflected in the emergence of the equilibrium symmetry that distinguishes thermodynamic
equilibrium from non-equilibrium conditions mentioned in the previous section. To be precise, the
long-wavelength effective action at the critical point turns out to be invariant under the form of the
symmetry transformation suitable for classical statistical mechanical systems. In Part III of this
thesis we derive – again relying on peculiarities of the Keldysh formalism at crucial points – the
corresponding equilibrium symmetry transformation for quantum systems, and we show that it is
equivalent to the Kubo-Martin-Schwinger condition for thermodynamic equilibrium [118–120]. By
contrast, in the classical context [85–88] the symmetry transformation is commonly regarded as a
manifestation of time-reversal invariance. Thus, we establish a surprising link between the Kubo-
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Martin-Schwinger condition and time-reversal invariance in classical statistical systems. Moreover,
we establish a connection between different forms of the symmetry and the problem of thermalization
of closed quantum systems mentioned in Sec. 1.1.

1.4 Outline of this Thesis

In large part, this thesis is a collection of articles which have already been published in peer-reviewed
journals or which are available as preprints on arXiv.org. The reprints differ slightly from the orig-
inally published articles for editorial reasons. At the beginning of each chapter, a footnote points out
the contributions by the author of the present thesis. Chapters 5 and 7 contain additional unpublished
material.

This thesis is divided into three parts. In Part I we explore the nature of the driven-dissipative BEC
transition in three spatial dimensions using a functional renormalization group approach formulated in
terms of the Keldysh non-equilibrium field theory. We find that at the point of the transition the equi-
librium symmetry mentioned in Sec. 1.3 is emergent at low-frequencies, and as a result the dynamics
in this regime follows a classical fluctuation-dissipation relation. Consequently, the common static
exponents as well as the dynamical critical exponent are the same as in the corresponding equilibrium
model without particle number conservation termed model A* [121, 122]. The non-equilibrium con-
ditions are encoded in an additional independent critical exponent, which describes decoherence and
the approach to effective equilibrium at low frequencies. These results are presented in Chapter 2,
which is a reprint of the publication

• Dynamical Critical Phenomena in Driven-Dissipative Systems
L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl
Phys. Rev. Lett., 110, 195301 (2013).

Details of the theoretical approach as well as numerical solutions to the renormalization group flow
equations are reported in Chapter 3. The content of this chapter is also available as the journal article

• Nonequilibrium functional renormalization for driven-dissipative Bose-Einstein condensation
L. M. Sieberer, S. D. Huber, E. Altman, and S. Diehl
Phys. Rev. B, 89, 134310 (2014).

In Part II of the thesis, we turn our attention to driven-dissipative systems in reduced dimensions,
which is the scenario most relevant for experiments with exciton-polaritons. Then, the same non-
equilibrium fluctuations that drive critical behavior at the condensation transition in three dimensions
have much more profound implications: indeed, already in homogeneous two-dimensional Bose sys-
tems in equilibrium, long-range order in the low-temperature phase is destroyed by fluctuations of the
Goldstone mode, and correlations decay algebraically instead of approaching a constant value at large
distances as in three spatial dimensions. More drastically, under non-equilibrium conditions such fluc-
tuations lead to stretched-exponential or potentially even faster decay of the static correlations, and a
phase with algebraic order can only be observed in a strongly anisotropic driven-dissipative system.
These results are derived by mapping the long-wavelength condensate dynamics to the anisotropic
KPZ equation as discussed in Chapter 4, which is a reprint of the article

http://www.arxiv.org
http://link.aps.org/doi/10.1103/PhysRevLett.110.195301
http://link.aps.org/doi/10.1103/PhysRevB.89.134310
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• Two-Dimensional Superfluidity of Exciton-Polaritons Requires Strong Anisotropy
E. Altman, L. M. Sieberer, L. Chen, S. Diehl, and J. Toner
Phys. Rev. X, 5, 011017 (2015).

The contents of Chapters 2, 3, and 4 will be reviewed in a chapter of the book “Universal Themes of
Bose-Einstein Condensation,” edited by David Snoke, Nikolaos Proukakis, and Peter Littlewood [123].

While the order parameter vanishes in the low-temperature phase of a two-dimensional homoge-
neous Bose system in thermodynamic equilibrium, such a system is nevertheless superfluid. Thus,
a natural question is whether the same is true of a driven-dissipative condensate. In Chapter 5, we
show that in spite of the absence of algebraic order a finite superfluid density, which we identify by
means of the retarded current-current response, may still survive under non-equilibrium conditions.
Our approach does not take into account topological defects in the phase of the condensate and is thus
valid only when the density of the latter is sufficiently low. The intriguing question whether there is
a vortex-unbinding transition out of equilibrium goes beyond the scope of this thesis. To answer this
question, one would have to explicitly incorporate topological defects in a renormalization group ap-
proach, which has shown to be difficult since the KPZ equation for the phase of the order parameter
is non-linear. Alternatively, one could numerically simulate the complex Ginzburg-Landau equation,
which describes the long-wavelength condensate dynamics. Results of such simulations – as a first
step only for one-dimensional systems though – are presented in Chapter 6, which is also available
on arXiv.org as

• Scaling properties of one-dimensional driven-dissipative condensates
L. He, L. M. Sieberer, E. Altman, and S. Diehl
arXiv:1412.5579 (2014),

and at the time of writing being reviewed for publication. The numerical investigations of coherence
properties of the condensate field and its phase presented in this chapter fully confirm the expecta-
tions based on the mapping of the long-wavelength dynamics of the condensate to the KPZ equation.
In particular, they show that KPZ physics should be accessible to current experimental setups with
exciton-polaritons.

We are leaving the field of driven-dissipative condensates and move on to consider a property
present only in systems that reside in thermodynamic equilibrium in Part III. To be specific, we give
an extensive discussion of the equilibrium symmetry already mentioned above regarding the Keldysh
action describing a quantum many-body system in thermodynamic equilibrium. This includes a
derivation of the symmetry transformation, which is shown to be equivalent to the Kubo-Martin-
Schwinger condition [118–120]. Moreover, we demonstrate that the fluctuation-dissipation relations
characterizing the linear response of a system to external perturbations at equilibrium can be derived
as a consequence of this symmetry. This means that the symmetry provides an efficient check for
thermodynamic equilibrium conditions, making the explicit calculation of fluctuation-dissipation re-
lations unnecessary. The results presented in this chapter form the basis for a preprint that is currently
being written.
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[108] L. Canet, H. Chaté, and B. Delamotte, “Quantitative Phase Diagrams of Branching and Anni-
hilating Random Walks,” Phys. Rev. Lett. 92, 255703 (2004).
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We explore the nature of the Bose condensation transition in driven open quantum systems,
such as exciton-polariton condensates. Using a functional renormalization group approach for-
mulated in the Keldysh framework, we characterize the dynamical critical behavior that governs
decoherence and an effective thermalization of the low frequency dynamics. We identify a critical
exponent special to the driven system, showing that it defines a new dynamical universality class.
Hence critical points in driven systems lie beyond the standard classification of equilibrium dy-
namical phase transitions. We show how the new critical exponent can be probed in experiments
with driven cold atomic systems and exciton-polariton condensates.

Recent years have seen major advances in the exploration of many-body systems in which matter
is strongly coupled to light [1]. Such systems include for example polariton condensates [2], super-
conducting circuits coupled to microwave resonators [3, 4], cavity quantum electrodynamics [5] as
well as ultracold atoms coupled to high finesse optical cavities [6]. As in traditional quantum optics
settings, these experiments are subject to losses, which may be compensated by continuous drive,
yet they retain the many-body character of condensed matter. This combination of ingredients from
atomic physics and quantum optics in a many-body context defines a qualitatively new class of quan-
tum matter far from thermal equilibrium. An intriguing question from the theoretical perspective is
what new universal behavior can emerge under such conditions.
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involved in preparing the manuscript together with the other authors.

http://link.aps.org/doi/10.1103/PhysRevLett.110.195301


22 Publication: Dynamical Critical Phenomena in Driven-Dissipative Systems

A case in point are exciton-polariton condensates. Polaritons are short lived optical excitations
in semiconductor quantum wells. Continuous pumping is required to maintain their population in
steady state. But in spite of the non-equilibrium conditions, experiments have demonstrated Bose
condensation [2] and, more recently, have even observed the establishment of a critical phase with
power-law correlations in a two dimensional system below a presumed Kosterlitz-Thouless phase
transition [7]. At a fundamental level however there is no understanding of the condensation transition
in the presence of loss and external drive, and more generally of continuous phase transitions under
such conditions.

In this letter we develop a theory of dynamical critical phenomena in driven-dissipative systems
in three dimensions. Motivated by the experiments described above we focus on the case of Bose
condensation with the following key results. (i) Low-frequency thermalization – The microscopic
dynamics of a driven system is incompatible with an equilibrium-like Gibbs distribution at steady
state. Nevertheless a scale independent effective temperature emerges at low frequencies in the uni-
versal regime near the critical point, and all correlations in this regime obey a classical fluctuation-
dissipation relation (FDR). Such a phenomenon of low frequency effective equilibrium has been iden-
tified previously in different contexts [8–14]. (ii) Universal low-frequency decoherence – In spite of
the effective thermalization, the critical dynamics is significantly affected by the non-equilibrium con-
ditions set by the microscopic theory. Specifically we show that all coherent dynamics, as measured
by standard response functions, fades out at long wavelengths as a power-law with a new universal
critical exponent. The decoherence exponent cannot be mimicked by any equilibrium model and
places the critical dynamics of a driven system in a new dynamical universality class beyond the
Halperin-Hohenberg classification of equilibrium dynamical critical behavior [15].

Open system dynamics– A microscopic description of driven open systems typically starts from a
Markovian quantum master equation or an equivalent Keldysh action (see Supplementary Information
(SI)). However, the novel aspects in the critical dynamics of driven dissipative systems discussed
below can be most simply illustrated by considering an effective mesoscopic description of the order
parameter dynamics using a stochastic Gross-Pitaevskii equation [16]

i∂tψ =
[
− (A − iD)∇2 − µ + iχ + (λ − iκ) |ψ|2

]
ψ + ζ. (2.1)

As we show below, this equation can be rigorously derived from a fully quantum microscopic descrip-
tion of the condensate when including only the relevant terms near the critical point. The different
terms in (2.1) have a clear physical origin. χ =

(
γp − γl

)
/2 is the effective gain, which combines

the incoherent pump field minus the local single-particle loss terms. κ, λ > 0 are respectively two-
body loss and interaction parameters. The diffusion term D is not contained in the original micro-
scopic model, and is not crucial to describe most non-universal aspects of, e.g., exciton-polariton
condensates [17–20] (but see [21, 22]). In a systematic treatment of long-wavelength universal criti-
cal behavior, however, such term is generated upon integrating out high frequency modes during the
renormalization group (RG) flow, irrespective of its microscopic value. We therefore include it at
the mesoscopic level with a phenomenological coefficient. Finally ζ is a Gaussian white noise with
correlations 〈ζ∗(t, x)ζ(t′, x′)〉 = γδ(t− t′)δ(x−x′) where γ = γp +γl. Such noise is necessarily induced
by the losses and sudden appearances of particles due to pumping.

The dGP describes a mean field transition from a stationary condensate solution with density
|ψ|2 = χ/κ for χ > 0 to the vacuum state when χ crosses zero. Dynamical stability [23] determines
the chemical potential as µ = λ|ψ|2. Similar to a temperature, the noise term in Eq. (2.1) can drive a
transition at finite particle density, thereby inducing critical fluctuations.
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As the equation of motion is cast in Langevin form, one might suspect that it can be categorized
into one of the well-known models of dynamical critical phenomena classified by Hohenberg and
Halperin [15]. However, this is not true in general. Crucially coherent (real parts of the couplings
in Eq. (2.1)) and dissipative (imaginary parts) dynamics have different physical origins in driven-
dissipative systems. In particular, the dissipative dynamics is determined by the intensity of the pump
and loss terms, independently of the intrinsic Hamiltonian dynamics of the system. Equilibrium
models [15], on the other hand, are constrained to have a specific relation between the reversible
and dissipative terms to ensure a thermal Gibbs ensemble in steady state [24, 25] (see below). The
unconstrained dynamics in driven systems is the key feature that can lead to novel dynamic critical
behavior.

Microscopic Model – Having illustrated the nature of the problem with the effective classical
equation (2.1) we turn to a fully quantum description within the Keldysh framework. Our starting
point is a non-unitary quantum evolution described by a many-body master equation in Lindblad form,
or equivalently by the following dissipative Keldysh action (see SI for details of the correspondence)

S =

∫

t,x

{(
φ∗c, φ

∗
q

) ( 0 PA

PR PK

) (
φc

φq

)
+ i4κφ∗cφcφ

∗
qφq −

[
(λ + iκ)

(
φ∗2c φcφq + φ∗2q φcφq

)
+ c.c.

]}
. (2.2)

Here φc, φq are the ”classical” and ”quantum” fields, defined by the symmetric and anti-symmetric
combinations of the fields on the forward and backward parts of the Keldysh contour [26, 27]. The
microscopic inverse Green’s functions are given by PR = i∂t + A∇2 + µ − iχ, PA = PR†, PK = iγ.

The importance of the various terms in the microscopic action (2.2) in the vicinity of the critical
point can be inferred from canonical power counting, which serves as a valuable guideline for the
explicit evaluation of the problem. Vanishing of the mass scale χ defines a Gaussian fixed point
with dynamical critical exponent z = 2 (ω ∼ kz, k a momentum scale). Canonical power counting
determines the scaling dimensions of the fields and interaction constants with respect to this fixed
point: At criticality, the spectral components of the Gaussian action scale as PR/A ∼ k2, while the
Keldysh component generically takes a constant value, i.e., PK ∼ k0. Hence, to maintain scale
invariance of the quadratic action, the scaling dimensions of the fields must be [φc] = d−2

2 and [φq] =
d+2

2 . From this result we read off the canonical scaling dimensions of the interaction constants. This
analysis shows that in the case of interest d = 3, local vertices containing more than two quantum
fields or more than five classical fields are irrelevant. For the critical problem, the last terms in both
lines of Eq. (2.2) can thus be skipped, massively simplifying the complexity of the problem. The
only marginal term with two quantum fields is the Keldysh component of the single-particle inverse
Green’s function, i.e., the noise vertex. In this sense, the critical theory is equivalent to a stochastic
classical problem [28, 29], as previously observed in [8, 30]. But as noted above it cannot be a
priori categorized in one of the dynamical universality classes [15] subject to an intrinsic equilibrium
constraint.

Functional RG – In order to focus quantitatively on the critical behavior we use a functional RG
approach formulated originally by Wetterich [31] and adapted to the Keldysh real time framework in
Refs. [32, 33] (see SI for details). At the formal level this technique provides an exact functional flow
equation for an effective action functional ΓΛ[φc, φq], which includes information on increasingly
long wavelength fluctuations (at the microscopic cutoff scale ΓΛ0 ≈ S). In practice one works with
an ansatz for the effective action and thereby projects the functional flow onto scaling equations
for a finite set of coupling constants. For the description of general equilibrium [34–39] and Ising
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dynamical [40] critical behavior the functional RG gave results that are competitive with high-order
epsilon expansion and with Monte Carlo simulations already in rather simple approximation schemes.

Our ansatz for the effective action is motivated by the power counting arguments introduced
above. We include in ΓΛ all couplings that are relevant or marginal in this scheme:

ΓΛ =

∫

t,x

{(
φ∗c, φ

∗
q

) ( 0 iZ∂t + K̄∇2

iZ∗∂t + K̄∗∇2 iγ̄

) (
φc

φq

)
−

(
∂Ū
∂φc

φq +
∂Ū∗

∂φ∗c
φ∗q

)}
. (2.3)

The dynamical couplings Z and K̄ have to be taken complex valued in order to be consistent with
power counting, even if the respective imaginary parts vanish (or are very small) at the micro-
scopic scale: Successive momentum mode elimination implemented by the RG flow generates these
terms due to the simultaneous presence of local coherent and dissipative couplings in the micro-
scopic model. The fact that the spectral components of the effective action depend only linearly
on φq allowed us to introduce an effective potential Ū determined by the complex static couplings.
Ū(ρc) = 1

2 ū (ρc − ρ0)2 + 1
6 ū′ (ρc − ρ0)3 is a function of the U(1) invariant combination of classical

fields ρc = φ∗cφc alone. It has a mexican hat structure ensuring dynamical stability. With this choice
we approach the transition from the ordered side, taking the limit of the stationary state condensate
ρ0 = φ∗cφc|ss = φ∗0φ0 → 0.

All the parameters appearing in (2.3) including the stationary condensate density ρ0 are functions
of the running cutoff Λ. Hence, the functional flow of ΓΛ is reduced by means of the approxi-
mate ansatz to the flow of a finite number of couplings g =

(
Z, K̄, ρ0, ū, ū′, γ̄

)T
determined by the

β-functions Λ∂Λg = βg(g) (see SI). The critical system is described by a scaling solution to these flow
equations. It is obtained as a fixed point of the flow of dimensionless renormalized couplings, which
we derive in the following. First we rescale couplings with Z,

K = K̄/Z, u = ū/Z, u′ = ū′/Z, γ = γ̄/ |Z|2 . (2.4)

Coherent and dissipative processes are encoded, respectively, in the real and imaginary parts of the
renormalized coefficients K = A + iD, u = λ + iκ, and u′ = λ′ + iκ′.

We define the first three dimensionless scaling variables to be the ratios of coherent to dissipative
coefficients: rK = A/D, ru = λ/κ, and ru′ = λ′/κ′. Another three dimensionless variables are defined
by rescaling the loss coefficients κ and κ′ and the condensate density ρ0:

w =
2κρ0

Λ2D
, κ̃ =

γκ

2ΛD2 , κ̃′ =
γ2κ′

4D3 . (2.5)

The flow equations for the couplings r = (rK , ru, ru′)T and s = (w, κ̃, κ̃′)T form a closed set,

Λ∂Λr = βr(r, s), Λ∂Λs = βs(r, s) (2.6)

(see SI for the explicit form). As a consequence of the transformations (2.4) and (2.5), these β-
functions acquire a contribution from the running anomalous dimensions ηa(r, s) = −Λ∂Λ ln a asso-
ciated with a = Z,D, γ.

Critical properties – The universal behavior near the critical point is controlled by the infrared
flow to a Wilson-Fisher like fixed point. The values of the coupling constants at the fixed point,
determined by solving βs(r∗, s∗) = 0 and βr(r∗, s∗) = 0, are given by:

r∗ = (rK∗, ru∗, ru′∗) = 0,
s∗ =

(
w∗, κ̃∗, κ̃′∗

) ≈ (0.475, 5.308, 51.383) .
(2.7)
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Figure 2.1. Flow in the complex plane of dimensionless renormalized couplings. (a)
The microscopic action determines the initial values of the flow. Typically, the coher-
ent propagation will dominate over the diffusion, A � D, while two-body collisions
and two-body loss are on the same order of magnitude, λ̃ ≈ κ̃, with a similar relation
for the marginal complex coupling ũ′. The initial flow is non-universal. (b) At critical-
ity, the infrared (IR) flow approaches a universal linear domain encoding the critical
exponents and anomalous dimensions. In particular, this regime is independent of the
precise microscopic initial conditions. (c) The Wilson-Fisher fixed point describing
the interacting critical system is purely imaginary.

The fact that r∗ = 0 implies that the fixed point action is purely imaginary (or dissipative), as in
Model A of Hohenberg and Halperin [15], cf. Fig. 2.1 (c). We interpret the fact that the ratios of
coherent vs. dissipative couplings are zero at the fixed point as a manifestation of decoherence at
low frequencies in an RG framework. The coupling values s∗ are identical to those obtained in an
equilibrium classical O(2) model from functional RG calculations at the same level of truncation [34].

Let us turn to the linearized flow, which determines the universal behavior in the vicinity of the
fixed point. We find that the two sectors corresponding to s and r decouple in this regime, giving rise
to a block diagonal stability matrix

∂

∂ ln Λ

(
δr
δs

)
=

(
N 0
0 S

) (
δr
δs

)
, (2.8)

where δr ≡ r, δs ≡ s − s∗, and N, S are 3 × 3 matrices (see SI).

The anomalous dimensions entering this flow are found by plugging the fixed point values r∗, s∗
into the expressions for ηa(r, s). We obtain the scaling relation between the anomalous dimensions
ηZ = ηγ̄, valid in the universal infrared regime. This leads to cancellation of ηZ with ηγ̄ in the static
sector S (see SI). The critical properties in this sector, encoded in the eigenvalues of S , become
identical to those of the standard O(2) transition. This includes the correlation length exponent ν ≈
0.716 and the anomalous dimension η ≈ 0.039 associated with the bare kinetic coefficient K̄. These
values are in good agreement with more sophisticated approximations [41].

The equilibrium-like behavior in the S sector can be seen as a result of an emergent symme-
try. Locking of the noise to the dynamical term implied by ηZ = ηγ̄ leads to invariance of the
long wavelength effective action (times i) under the transformation Φc(t, x) → Φc(−t, x),Φq(t, x) →
Φq(−t, x) + 2

γσ
z∂tΦc(−t, x), i → −i with Φν = (φν, φ∗ν)T , ν = (c, q), σz the Pauli matrix. It generalizes

the symmetry noted in Refs. [42, 43] to models that include also reversible couplings. The presence
of this symmetry implies a classical FDR with a distribution function F = 2Teff/ω, governed by
an effective temperature Teff = γ̄/(4 |Z|). This quantity becomes scale independent in the universal
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critical regime where γ̄ ∼ k−ηγ̄ and Z ∼ k−ηZ cancel. We interpret this finding as an asymptotic low-
frequency thermalization mechanism of the driven system at criticality. The thermalized regime sets
in below the Ginzburg scale where fluctuations start to dominate, for which we estimate perturbatively
χG = (γκ)2 /

(
16π2D3

)
(see SI). The values entering here are determined on the mesoscopic scale, and

we specify them for exciton-polariton systems in the SI based on Ref. [21, 22]. Above the scale χG,
no global (scale independent) temperature can be defined in general. We note that, unlike Hohenberg-
Halperin type models, here the symmetry implied by ηZ = ηγ̄ is not imposed at the microscopic level
of the theory, but rather is emergent at the critical point.

The key new element in the driven-dissipative dynamics is encoded in the decoupled “drive”
sector (the 3 × 3 matrix N in our case). It describes the flow towards the emergent purely dissipative
Model A fixed point (see Fig. 2.1 (b)) and thus reflects a mechanism of low frequency decoherence.
This sector has no counterpart in the standard framework of dynamical critical phenomena and is
special to driven-dissipative systems. In the deep infrared regime, only the lowest eigenvalue of this
matrix governs the flow of the ratios. This means that only one new critical exponent ηr ≈ −0.101 is
encoded in this sector. Just as the dynamical critical exponent z is independent of the static ones, the
block diagonal structure of the stability matrix ensures that the drive exponent is independent of the
exponents of the other sectors.

The fact that the inverse Green’s function in Eq. (2.3) is specified by three real parameters,
Re K̄, Im K̄, and |Z| (the phase of Z can be absorbed by a U(1) transformation) allows for only three
independent anomalous dimensions: ηD, ηZ and the new exponent ηr. Hence the extension of critical
dynamics described here is maximal, i.e., no further independent exponent will be found. Moreover
this extension of the purely relaxational (Model A) dynamics leads to different universality than an
extension that adds reversible couplings compatible with relaxation towards a Gibbs ensemble. The
latter is obtained by adding real couplings to the imaginary ones with the same ratio of real to imag-
inary parts for all couplings [44–47]; in this case the above symmetry is present, while absent in the
general non-equilibrium case. The compatible extension adds only an independent 1 × 1 sector N
to the purely relaxational problem, for which we find ηR = −0.143 , ηr. This proves that the in-
dependence of dissipative and coherent dynamics defines indeed a new non-equilibrium universality
class with no equilibrium counterpart. It is rooted in different symmetry properties of equilibrium
vs. non-equilibrium situation.

Experimental detection – The novel anomalous dimension identified here leaves a clear fin-
gerprint in single-particle observables accessible with current experimental technologies on differ-
ent platforms. For ultracold atomic systems this can be achieved via RF-spectroscopy [48] close
to the driven-dissipative BEC transition. In exciton-polariton condensates, the dispersion relation
can be obtained from the energy- and momentum resolved luminescence spectrum as demonstrated
in [49]. Using the RG scaling behavior of the diffusion and propagation coefficients D ∼ D0Λ−ηD ,
A = DrK ∼ A0Λ−ηr−ηD , we obtain the anomalous scaling of the frequency and momentum re-
solved, renormalized retarded Green’s function GR(ω,q) = (ω − A0 |q|2−ηr−ηD + iD0 |q|2−ηD)−1, with
A0 and D0 non-universal constants. Peak position and width are implied by the complex dispersion
ω ≈ A0 |q|2.22 − iD0 |q|2.12. The energy resolution necessary to probe the critical behavior is again set
by the Ginzburg scale χG (see above).

Conclusions – We have developed a Keldysh field theoretical approach to characterize the critical
behavior of driven-dissipative three dimensional Bose systems at the condensation transition. The
main result presents a hierarchical extension of classical critical phenomena. First, all static aspects
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are identical to the classical O(2) critical point. In the next shell of the hierarchy a sub-class of the
dynamical phenomena is identical to the purely dissipative Model A dynamics of the equilibrium crit-
ical point. Finally we identify manifestly non-equilibrium features of the critical dynamics, encoded
in a new independent critical exponent that betrays the driven nature of the system.

Acknowledgements – We thank J. Berges, M. Buchhold, I. Carusotto, T. Esslinger, T. Gasenzer,
A. Imamoglu, J. M. Pawlowski, P. Strack, S. Takei, U. C. Täuber, C. Wetterich and P. Zoller for useful
discussions. This research was supported by the Austrian Science Fund (FWF) through the START
grant Y 581-N16 and the SFB FoQuS (FWF Project No. F4006-N16). Institut für Quanteninformation
GmbH.

2.A Open system dynamics

Open system dynamics with local particle loss and gain can be modeled microscopically by a many-
body quantum master equation (~ = 1)

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+L[ρ̂]. (2.9)

The dynamics of the system density matrix ρ̂ has both a coherent contribution due to the standard
Hamiltonian for bosons of mass m (

∫
x =

∫
d3x)

Ĥ =

∫

x
ψ̂†(x)

(
− ∆

2m
− µ

)
ψ̂(x) + λ

∫

x
ψ̂†(x)2ψ̂(x)2, (2.10)

and a dissipative one that is incorporated by the Liouville operator

L[ρ̂] = γp

∫

x

(
ψ̂†(x)ρ̂ψ̂(x) − 1

2

{
ψ̂(x)ψ̂†(x), ρ̂

})
+ γl

∫

x

(
ψ̂(x)ρ̂ψ̂†(x) − 1

2

{
ψ̂†(x)ψ̂(x), ρ̂

})

+ 2κ
∫

x

(
ψ̂(x)2ρ̂ψ̂†(x)2 − 1

2

{
ψ̂†(x)2ψ̂(x)2, ρ̂

})
. (2.11)

Local Lindblad operators ψ̂†(x) and ψ̂(x), respectively, correspond to the processes of incoherent
pumping and loss of single particles; ψ̂(x)2 describes the simultaneous loss of two particles. Associ-
ated rates are γp, γl, and 2κ.

The investigation of critical phenomena at the stationary state phase transition exhibited by this
model is facilitated by a formulation in terms of a Keldysh partition function [26, 27]Z =

∫
Dψ+Dψ− eiS,

which can be subject to renormalization group methods. This partition function is fully equivalent to
the master equation (2.9) and defined in terms of a Keldysh action S = SH + SD with two contri-
butions corresponding to the commutator with the Hamiltonian (from now on we will be using units
such that 2m = 1;

∫
t,x =

∫
dt

∫
dx),

SH =
∑

σ=±
σ

∫

t,x

[
ψ∗σ (i∂t + ∆ + µ)ψσ − λ (

ψ∗σψσ
)2
]
, (2.12)

and the dissipative Liouvillian,

SD = −iγp

∫

t,x

[
ψ∗+ψ− −

1
2

(
ψ+ψ

∗
+ + ψ−ψ∗−

)] − iγl

∫

t,x

[
ψ+ψ

∗
− −

1
2

(
ψ∗+ψ+ + ψ∗−ψ−

)]

− i2κ
∫

t,x

{(
ψ+ψ

∗
−
)2 − 1

2

[(
ψ∗+ψ+

)2
+

(
ψ∗−ψ−

)2
]}
. (2.13)
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Expressing the Keldysh action in terms of classical and quantum fields, which are defined as

φc =
1√
2

(ψ+ + ψ−) , φq =
1√
2

(ψ+ − ψ−) , (2.14)

we recover Eq. (2) of the main text.

2.B Functional Renormalization group equation

Our approach to studying critical dynamics is based on the Wetterich functional renormalization
group [31] adapted to the Keldysh framework (see [34–39] for reviews on the equilibrium formu-
lation). Central to this method is the functional ΓΛ[φc, φq] defined by 1

eiΓΛ[φc,φq] =

∫
DδφcDδφq eiS[φc+δφc,φq+δφq]+i∆SΛ[δφc,δφq]. (2.15)

Here ∆SΛ is a regulator function which suppresses contributions to the above path integral from
modes with spatial wave-vector below the running cutoff Λ. Thus ΓΛ interpolates between the classi-
cal action S, when Λ equals the UV cutoff Λ0, and the effective action functional Γ[φc, φq] [50] when
Λ→ 0. The latter includes the effects of fluctuations on all scales. The equation

∂ΛΓΛ =
i
2

Tr
[(

Γ
(2)
Λ

+ RΛ

)−1
∂ΛRΛ

]
(2.16)

describes the flow of the interpolating functional as a function of the running cutoff Λ. In the following
sections we first discuss the objects appearing in (2.16), namely the second functional derivative Γ

(2)
Λ

and the cutoff function RΛ. Then we explain how a closed set of flow equations for a finite number of
coupling constants can be obtained from the functional flow equation. Finally we detail the linearized
equations for the infrared flow to the Wilson-Fisher fixed point from which the critical properties are
inferred.

In suitable truncation schemes, results from high order epsilon expansion can be reproduced from
the exact flow equation (2.16). In our practical calculation, we approach the critical point from the
ordered phase. This allows us to calculate the anomalous dimensions at one-loop order, due to the
presence of a finite condensate during the flow. Results obtained in this way have proven to be
competitive with high-order epsilon expansion or Monte Carlo simulations, as referenced in the main
text.

2.C The second variational derivative

The second variation Γ
(2)
Λ

with respect to the fields is the full inverse Green’s function at the scale Λ,
which in the case of an interacting theory is field dependent. Practically we work in a basis of real
fields, related to the complex fields by

(
χν,1(Q)
χν,2(Q)

)
=

1√
2

(
1 1
−i i

) (
φν(Q)
φ∗ν(−Q)

)
, (2.17)

1This representation holds for the stationary states that obey δΓΛ

δφc
=

δΓΛ

δφq
= 0.
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where ν = c, q is the Keldysh index. We gather the resulting four independent field components in a
field vector,

χ(Q) =
(
χc,1(Q), χc,2(Q), χq,1(Q), χq,2(Q)

)T
. (2.18)

In this basis, Γ
(2)
Λ

is defined as

(
Γ

(2)
Λ

)
i j

(Q,Q′) =
δ2ΓΛ

δχi(−Q)δχ j(Q′)
, (2.19)

which is a matrix in the discrete field index i = 1, 2, 3, 4 and in the continuous momentum variable
Q = (ω,q) collecting frequency and spatial momentum. Accordingly, the trace in (2.16) involves
both an integration over momenta and a sum over internal indices.

Γ
(2)
Λ

(Q,Q′) is conveniently decomposed into a constant part and a fluctuation part. The latter is
a polynomial in momentum-dependent fields and, therefore, a non-diagonal matrix in momentum
space. In contrast, the constant part is obtained by (i) inserting spatially constant field configurations,
i.e., χ(Q) = χδ(Q) in momentum space, and (ii) evaluating them at their stationary state values in the
ordered phase. These read

χ(Q)
∣∣∣
ss =

( √
2ρ0, 0, 0, 0

)T
δ(Q). (2.20)

(Without loss of generality we choose the condensate amplitude to be real.) As a result, the constant
part is diagonal in momentum space,

PΛ(Q)δ(Q − Q′) ≡ Γ
(2)
Λ

(Q,Q′)
∣∣∣
ss, (2.21)

and is structured into retarded, advanced, and Keldysh blocks,

PΛ(Q) =

(
0 PA(Q)

PR(Q) PK

)
. (2.22)

(For notational simplicity, we suppress the scale index Λ for the different blocks and their respective
entries.) The retarded and advanced blocks are mutually hermitian conjugate (we decompose Z and
K̄ into real and imaginary parts, Z = ZR + iZI , K̄ = Ā + iD̄),

PR(Q) =

(−iZIω − Āq2 − 2 Re(ū)ρ0 iZRω − D̄q2

−iZRω + D̄q2 + 2 Im(ū)ρ0 −iZIω − Āq2

)
,

PA(Q) =
(
PR(Q)

)†
. (2.23)

Note that det PR(Q = 0) = det PA(Q = 0) = 0; the existence of a gapless mode associated to the
broken U(1) symmetry is thus ensured in our truncation at all scales Λ. For the Keldysh block we
have

PK = iγ̄1. (2.24)

2.D The regulator function

The cutoff contribution ∆SΛ is used in Eq. (2.15) to generate the effective action ΓΛ from the micro-
scopic action S by suppressing contributions from momenta below Λ. Its second functional derivative
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RΛ = ∆S(2)
Λ

enters the exact flow equation (2.16). We choose an optimized cutoff function [51] of the
form

RΛ(Q) =
(
q2 − Λ2

)
θ(Λ2 − q2)

(
0 RR

RA 0

)
, (2.25)

where

RR =

(−Ā −D̄
D̄ −Ā

)
, RA =

(
RR

)T
. (2.26)

Due to the θ-function in (2.25), in the regularized inverse Green’s function

G−1
Λ = PΛ + RΛ, (2.27)

momenta q2 smaller than the running scale Λ2 acquire an effective mass∝ Λ2 and we have det G−1
Λ

(Q =

0) , 0, which ensures that momentum integrals over Green’s functions are infrared convergent. Note
that it is sufficient for RΛ to modify only the retarded and advanced blocks (i.e., the spectrum) of
the inverse Green’s function. The choice of a frequency-independent cutoff allows us to perform
frequency integrals analytically.

The interpolation property of ΓΛ between the classical action S and the effective action Γ is
guaranteed by the limiting behavior [33]

lim
Λ2→Λ2

0

RΛ ∼ Λ2
0, lim

Λ2→0
RΛ = 0. (2.28)

2.E Flow of the effective potential

In equilibrium problems, an important object for practical calculations is the effective potential. It
describes the homogeneous part of the effective action and is obtained by evaluating the full effec-
tive action at spatially homogeneous field configurations, Ū = Γ/Ω

∣∣∣
χ(Q)=χδ(Q) (Ω is the quantization

volume). In the framework of a derivative expansion, a closed flow equation can be derived for this
object, which serves as a compact generating functional for the flow of all local couplings to arbi-
trarily high order. Here we provide the Keldysh analog of this construction, where the key difference
roots in the occurrence of two field variables φc, φq, in contrast to a single field in equilibrium. How-
ever, for a theory which obeys the power counting discussed in the main text, we can parameterize
the homogeneous part of the effective action as

V̄ =
∂Ū
∂φc

φq +
∂Ū∗

∂φ∗c
φ∗q + iγ̄φ∗qφq, (2.29)

with Ū = Ū(φ∗cφc) dependent on the U(1) invariant combination of classical fields only, this function
thus being the direct counterpart of the effective potential. A flow equation can be derived for the
auxiliary object V̄ , which reads (we introduce a dimensionless scale derivative ∂` ≡ Λ∂Λ)

∂`V̄ = − i
2

∫

Q
tr [GΛ(Q)∂`RΛ(Q)] . (2.30)

Here, the inverse of GΛ is obtained from the full second functional variation by evaluating it at ho-
mogeneous field configurations (step (i) above Eq. (2.20)), however without inserting the stationary
state values (step (ii)): G−1

Λ
= Γ

(2)
Λ

∣∣∣
χ(Q)=χδ(Q) + RΛ. GΛ is then diagonal in momentum space, and so
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the trace in Eq. (2.16) reduces to a single momentum integration, giving rise to the above compact
form. In contrast to G−1

Λ
, G−1

Λ
has a non-vanishing upper left block PH . However, it vanishes when

the background fields are set to their stationary state values, PH
∣∣∣
ss = 0, which is a manifestation of

causality in the Keldysh formalism [26, 27].

From this equation we obtain the β-functions for the momentum-independent couplings by eval-
uating appropriate derivatives with respect to the U(1) invariants

ρc = φ∗cφc, ρcq = φ∗cφq = ρ∗qc, ρq = φ∗qφq. (2.31)

at their stationary state values ρc|ss = ρ0, ρcq|ss = ρqc|ss = ρq|ss = 0. Specifically, we use the projection
prescriptions

∂`ρ0 = βρ0 = −1
u

[
∂ρcq∂`V̄

]
ss
,

∂`ū = βū = ū′∂`ρ0 +
[
∂2
ρcρcq

∂`V̄
]
ss
,

∂`ū′ = βū′ =
[
∂2
ρc
∂ρcq∂`V̄

]
ss
,

∂`γ̄ = βγ̄ = iρ0
[
∂2
ρcqρqc

∂`V̄
]
ss
.

(2.32)

Calculation of the explicit expressions here and below is largely automatized using Mathematica.

2.F Flow of the inverse propagator

While the flow equation for the effective potential (2.30) generates β-functions for all momentum-
independent couplings, the flow of the complex dynamic Z and kinetic K̄ couplings, which constitute
the momentum-dependent part of the effective action (3), is determined by the flow equation for the
inverse propagator. We obtain the latter by taking the second variational derivative of the exact flow
equation (2.16) and setting the background fields to their stationary state values Eq. (2.20),

∂`PΛ,i j(Q) =
i
2

∫

Q′
tr

[
G2

Λ(Q′ − Q)∂`RΛ(Q′ − Q)γiGΛ(Q′)γ j + GΛ(Q′ − Q)γiG2
Λ(Q′)∂`RΛ(Q′)γ j

]
,

(2.33)
where

γi, jlδ(P − P′ + Q) =
δΓ(2)

Λ, jl(P, P
′)

δχi(Q)

∣∣∣∣∣
ss
. (2.34)

In Eq. (2.33) we omit tadpole contributions ∝ Γ
(4)
Λ

, which do not depend on the external momentum
Q and hence do not contribute to the flow of Z or K̄. For these we use the projection prescriptions

∂`Z = βZ = −1
2
∂ωtr

[(
1 + σy

)
∂`PR(Q)

]∣∣∣∣
Q=0

,

∂`K̄ = βK̄ = ∂q2

[
∂`PR

22(Q) + i∂`PR
12(Q)

]∣∣∣∣
Q=0

.
(2.35)

The β-functions (2.32) and (2.35) constitute the components of βg =
(
βZ , βK̄ , βρ0 , βū, βū′ , βγ̄

)T
.
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2.G Rescaled flow equations

We write the flow equation for the complex dynamic coupling Z in the form

∂`Z = −ηZZ. (2.36)

The anomalous dimension ηZ is an algebraic function of the rescaled couplings (6) and ρ0. The same
applies to the β-functions of the latter,

∂`K = βK = ηZK +
1
Z
βK̄ ,

∂`u = βu = ηZu +
1
Z
βū,

∂`u′ = βu′ = ηZu′ +
1
Z
βū′ ,

∂`γ = βγ =
(
ηZ + η∗Z

)
γ +

1

|Z|2 βγ̄.

(2.37)

In particular, the very right expressions in these equations (βK̄/Z etc.) are functions of the rescaled
couplings alone. In terms of these variables, therefore, all explicit reference to the running coupling Z
is gone, and we have effectively traded the differential flow equation for Z for the algebraic expression
for its anomalous dimension ηZ .

All couplings except for γ are complex valued. Taking real and imaginary parts of the β-functions
for K, u, and u′ yields the flow equations for A, D, λ, κ, λ′, and κ′ respectively,

∂`A = βA = Re βK , ∂`D = βD = Im βK ,

∂`λ = βλ = Re βu, ∂`κ = βκ = Im βu,

∂`λ
′ = βλ′ = Re βu′ , ∂`κ

′ = βκ′ = Im βu′ .

(2.38)

The β-functions for the ratios r = (rK , ru, ru′)T are then

∂`rK = βrK =
1
D
βA − rK

D
βD,

∂`ru = βru =
1
κ
βλ − ru

κ
βκ,

∂`ru′ = βru′ =
1
κ′
βλ′ − ru′

κ′
βκ′ .

(2.39)

The number of flow equations can be further reduced by introducing anomalous dimensions for D
and γ,

∂`D = −ηDD,

∂`γ = −ηγγ.
(2.40)

As for the dynamic coupling Z in terms of the rescaled variables K, u, u′, γ and ρ0, all explicit
reference to D and γ drops out, and we obtain for the couplings s = (w, κ̃, κ̃′)T defined in Eq. (5)

∂`w = βw = − (2 − ηD) w +
w
κ
βκ +

2κ
Λ2D

βρ0 ,

∂`κ̃ = βκ̃ = −
(
1 − 2ηD + ηγ

)
κ̃ +

γ

2ΛD2 βκ,

∂`κ̃
′ = βκ̃′ = −

(
−3ηD + 2ηγ

)
κ̃′ +

γ2

4D3 βκ
′ .

(2.41)
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In summary, the transformations (4) and (5) result in the closed system (6) for r and s with βr =(
βrK , βru , βru′

)T
given by Eq. (2.39) and βs = (βw, βκ̃, βκ̃′)T given by Eq. (2.41). The flows of Z,

D, and γ are decoupled and determined by the anomalous dimensions (2.36) and (2.40), which are
themselves functions of r and s.

2.H Critical properties

For the analysis of critical behavior, we need to find a scaling solution to the flow equations for the
bare couplings or, equivalently, a fixed point r∗, s∗ of the flow of dimensionless rescaled couplings,

βr(r∗, s∗) = βs(r∗, s∗) = 0. (2.42)

This non-linear algebraic set of equations has a non-trivial solution given by Eq. (7). In order to
characterize the infrared flow in the vicinity of the fixed point (encoding the critical exponents we are
interested in here), we study the flow of the couplings linearized around the fixed point, cf. Eq. (8).
The stability matrices N and S in this equation read explicitly

N = ∇T
r βr

∣∣∣r=r∗,s=s∗
=


0.0525 0.0586 0.0317
−0.0002 −0.0526 0.1956
0.4976 −2.3273 1.9725

 , (2.43)

S = ∇T
s βs

∣∣∣r=r∗,s=s∗
=


−1.6204 0.0881 0.0046
−3.1828 0.2899 0.0363
−15.3743 −42.2487 2.1828

 , (2.44)

without coupling between r and s sectors. At present we cannot rule out that an extended truncation
would couple them. However, since we already include all relevant and marginal couplings, we expect
the decoupling to be robust or at least approximately valid to a good accuracy.

The infrared flow of Z, D, and γ is determined by the values of the respective anomalous dimen-
sions at the fixed point. Equations (2.36) and (2.40) imply the scaling behavior

Z ∼ Λ−ηZ , D ∼ Λ−ηD , γ ∼ Λ−ηγ (2.45)

for Λ → 0. While ηD and ηγ describe the flow of real quantities and are, therefore, themselves real
by definition, ηZ is in general a complex valued function of r and s. At the fixed point, however, the
imaginary part vanishes,

Im ηZ = 0, (2.46)

which ensures scale invariance of the full effective action at the critical point.

As is indicated in the main text, the emergence of O(2) model critical properties in the sector s is
due to the scaling relation ηZ = ηγ̄, which ensures that these anomalous dimensions compensate each
other in the β-functions for the couplings s. (The anomalous dimensions ηγ̄ and ηγ associated with
the bare and renormalized noise vertices, respectively, are related via ηγ = ηγ̄ − 2 Re ηZ , as follows
from Eq. (4) in the main text.) This can be seen most simply by expressing, e.g., κ̃ in terms of bare
quantities,

κ̃ =
γ Im(u)

2Λ Im(K)2 =
γ Im(ū/Z)

2Λ Im(K̄/Z)2
. (2.47)
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In this form it is apparent that the scaling ∼ Λ−ηZ which applies to both Z and 1/γ drops out. Similar
arguments hold for w and κ̃′. Alternatively, the cancellation of ηZ and ηγ in the β-functions can be seen
explicitly by inserting Eqs. (2.37) and (2.38) in (2.41). What remains is a dependence on η ≡ ηD + ηZ

which is just the anomalous dimension associated with the bare kinetic coefficient K̄.

2.I Ginzburg Criterion

We estimate the extent of the universal critical domain governed by the linearized regime of the
Wilson-Fisher fixed point, which provides us with an estimate of both the extent of the thermalized
regime as well as the energy resolution necessary to probe the critical behavior. This is done by
calculating the Ginzburg scale, i.e., the distance from the phase transition where fluctuations on top
of the quadratic Bogoliubov-type theory become dominant [50]: We equate the bare distance from
the phase transition χ to the corresponding one-loop correction, yielding

χG =
1

D3

(
γκ

4π

)2
. (2.48)

Here, the parameters γ, κ, and D are those appearing in the mesoscopic description of the system.
In the case of exciton-polariton condensates, γ and κ can thus be read off from the dGPE and the
noise correlator [16, 17, 20]. The parameter D typically does not appear explicitly in this description.
However, it is included effectively in a complex prefactor of the time derivative in the dGPE (mLP is
the mass of the lower polariton)

i (1 + i∆Z) ∂tψ =

(
− 1

2mLP
∇2 + · · ·

)
ψ. (2.49)

Such a term results from two physical mechanisms. First, it describes the leading frequency de-
pendence of the pumping process [21]. To account for this effect, a convenient parameterization is
∆Z = P/ (2ΩK) which is proportional to the pumping strength P, and where ΩK is the gain cutoff fre-
quency. Second, it results from energy relaxation due to scattering of the lower polaritons with high
frequency photons and excitons [22]. These processes are captured by the form ∆Z = κn̄/2 scaling
linearly with the time averaged density n̄, and a phenomenological relaxation constant κ.

Dividing the dGPE (2.49) by 1 + i∆Z leads to an effective kinetic term − 1−i∆Z
1+∆Z2

∇2

2mLP
ψ, resulting in

a mesoscopic coherent propagation coefficient A = 1
1+∆Z2

1
2mLP

and an effective mesoscopic diffusion
constant D = ∆Z

1+∆Z2
1

2mLP
entering Eq. (1) in the main text, and the above Ginzburg criterion.

Finally, we would like to contrast the Ginzburg scale to a scale identified in [16, 17, 20, 21].
This scale indicates a crossover between a sonic and a purely diffusive excitation spectrum within the
symmetry broken phase, and takes the value ωc = κρ0.

The Ginzburg scale identifies the frequency scale below which critical fluctuations become more
dominant than the “bare” terms, which occur in Bogoliubov theory. It is therefore only meaningful
– and makes a statement about – the physics close to the phase transition, where the order parameter
goes to zero.

Instead, the crossover scale in [16, 17, 20, 21] is determined within the symmetry broken phase
and is obtained within Bogoliubov theory, without the need of a calculation of fluctuation corrections.
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This is justified, because within the symmetry broken phase there are no critical fluctuations and mean
field plus Bogoliubov theory are valid.

As implied by this comparison, these two scales are not directly related to each other and ad-
dress different physical questions. In particular, the crossover scale in [16, 17, 20, 21] tends to zero
when approaching the phase transition by construction, ρ0 → 0. Therefore, in the vicinity of the
critical point, the discussion of diffusive vs. coherent dynamics is a more subtle issue. How it works
quantitatively is addressed by the calculation of the critical exponents, with the key finding of univer-
sal decoherence: The coherent dynamics fades out faster than the dissipative one, measured by the
critical exponent ηr.
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[18] J. Keeling, P. R. Eastham, M. H. Szymańska, and P. B. Littlewood, Phys. Rev. Lett. 93, 226403
(2004).

[19] M. H. Szymańska, J. Keeling, and P. B. Littlewood, Phys. Rev. Lett. 96, 230602 (2006).

[20] J. Keeling and N. G. Berloff, Phys. Rev. Lett. 100, 250401 (2008).

[21] M. Wouters and I. Carusotto, Phys. Rev. Lett. 105, 020602 (2010).

[22] M. Wouters, T. C. H. Liew, and V. Savona, Phys. Rev. B 82, 245315 (2010).
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dynamics occur on an equal footing. An equivalent Keldysh real time functional integral refor-
mulation opens up the problem to a practical evaluation using the tools of quantum field theory. In
particular, we develop a functional renormalization group approach to quantitatively explore the
universality class of this stationary non-equilibrium system. Key results comprise the emergence
of an asymptotic thermalization of the distribution function, while manifest non-equilibrium prop-
erties are witnessed in the response properties in terms of a new, independent critical exponent.
Thus the driven-dissipative microscopic nature is seen to bear observable consequences on the
largest length scales. The absence of two symmetries present in closed equilibrium systems –
underlying particle number conservation and detailed balance, respectively – is identified as the
root of this new non-equilibrium critical behavior. Our results are relevant for broad ranges of
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3.1 Introduction

In recent years, there has been tremendous progress in realizing systems with many degrees of free-
dom, in which matter is strongly coupled to light [1]. This concerns vastly different experimental
platforms: In ensembles of ultracold atoms, the immersion of a Bose-Einstein condensate (BEC) into
an optical cavity has allowed to achieve strong matter-light coupling, and lead to the realization of
open Dicke models [2–4]; In the context of semiconductor quantum wells in optical cavities, non-
equilibrium Bose condensation has been achieved [5–7] – here the effective degrees of freedom, the
exciton-polaritons, result from a strong hybridization of cavity light and excitonic matter degrees of
freedom [1, 8, 9]. Further promising platforms, which are at the verge of the transition to true many-
body systems, are arrays of microcavities [10–13] or trapped ions [14, 15], as well as optomechanical
setups [16–18].

Those systems have three key properties in common. First, they are strongly driven by external
fields, such as lasers, placing them far away from thermodynamic equilibrium even under stationary
conditions. Equilibrium detailed balance relations therefore are not generically present. Second,
they exhibit the characteristics of quantum optical setups, in that coherent and dissipative dynamics
occur on an equal footing, but at the same time are also genuine many-body systems. Finally, a
third characteristic is the absence of the conservation of particle number. In particular, the admixture
of light opens up strong loss channels for the effective hybrid light-matter degrees of freedom, and
it becomes necessary to counterpoise these losses by continuous pumping mechanisms in order to
achieve stable stationary flux equilibrium states. The pumping mechanisms can be either coherent or
incoherent. In the latter case, e.g., single particle pumping directly counteracts the incoherent single
particle loss; once it starts to dominate over the losses, a second order phase transition results on the
mean-field level, in close analogy to a laser threshold.

At this point a clear difference between the quantum optical single mode problem of a laser and
a driven-dissipative many-body problem becomes apparent: While the inclusion of fluctuations in
the treatment of a laser smears out the mean-field transition, in a system with a continuum of spatial
degrees of freedom a genuine out-of-equilibrium second order phase transition with true universal
critical behavior can be expected. The theoretical challenge is then to understand the universal phe-
nomena that can emerge due to the many-body complexity in a driven non-equilibrium setting.

In this work we address this challenge, focusing on a key representative that shows all the above
characteristics: The driven-dissipative Bose condensation transition, relevant to experiments with
exciton-polariton condensates, or more generally to any driven-dissipative system equipped with a
U(1) symmetry of global phase rotations tuned to its critical point. We provide a comprehensive
characterization of the resulting non-equilibrium critical behavior in three dimensions, extending and
corroborating results presented recently [19]. A key finding concerns the existence of an additional,
independent critical exponent associated with the non-equilibrium drive. It describes universal de-
coherence at long distances, and is observable, e.g., in the single particle response, as probed in
homodyne detection of exciton-polariton systems [20]. This entails evidence that the microscopic
non-equilibrium character bears observable consequences up to the largest distances in driven Bose
condensation. Furthermore an asymptotic thermalization mechanism for the low frequency distribu-
tion function is found. Such a phenomenon has been observed previously in other contexts [21–29].
Here it is reflected in a symmetry that is emergent in the critical system on the longest scales.

By contrast, in systems at true thermal equilibrium, this symmetry is present at all scales as a
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microscopic symmetry. It then places severe restrictions on the relations between the noise and the
coherent and dissipative dynamics in the system [30, 31], leading to fluctuation dissipation relations
valid at all frequencies and wavelengths. This is the case, e.g., in the models for dynamical univer-
sality classes established by Hohenberg and Halperin (HH) [32]. Non-equilibrium perturbations to
these models that have been discussed in the literature concern, e.g., modifications of the noise term
by spatial anisotropies, violating fluctuation-dissipation relations on a microscopic scale. For mod-
els without conserved order parameter, such as model A (MA) of HH, it has been shown that this
does not lead to the existence of new universal critical behavior, but rather to a modification of non-
universal amplitude ratios [33, 34]. Genuinely non-equilibrium universal critical behavior has been
found in several classical, driven systems with different microscopic origins. Examples include mod-
els with conserved order parameter with spatially anisotropic temperature [33], the driven-diffusive
lattice gas, [35] reaction-diffusion systems [36–39], the problems of directed percolation [40, 41] and
self-organized criticality [42], or kinetic roughening phenomena such as described by the Kardar-
Parisi-Zhang equation [43–46].

At the technical level, the purpose of this paper is to lay out a general framework for addressing
universal critical phenomena in open markovian many-body quantum systems. This framework may
be further generalized and applied to a large variety of non-equilibrium situations, such as driven or
driven-dissipative systems with different symmetries [47–50], driven-dissipative systems with disor-
der [51], and even superfluid turbulence [52–55]. We start from a microscopic, second quantized
description of the system in terms of quantum master equations, and show how to translate the master
equation into a Keldysh real-time functional integral, which opens up the toolbox of well-established
techniques of quantum field theory. Next, we develop a functional renormalization group (FRG) ap-
proach based on the Wetterich equation [56], which allows us to compute both the dynamical critical
behavior as well as certain non-universal aspects of the problem. For example, in addition to deter-
mining critical exponents we can also extract a Ginzburg scale which marks the extent of the critical
fluctuation regime.

The paper is organized as follows. In the next section we present our key results and sketch
the resulting physical picture. Section 3.3 introduces to our model and provides the mapping of the
master equation to an equivalent Keldysh functional integral. Using this framework, in Sec. 3.4 we
reproduce the results from mean-field and Bogoliubov theory, and show how the physics of a semi-
classical driven-dissipative Gross-Pitaevskii equation emerges naturally as a low frequency limit of
the full quantum master equation. We highlight the additional challenges which arise from the need
to treat a continuum of spatial degrees of freedom in order to capture critical behavior, and show in
Sec. 3.5 how they are properly addressed by means of the FRG approach. The precise manifestation
of the non-equilibrium character of the problem is worked out in Sec. 3.6. A detailed comparison of
our non-equilibrium versus more conventional equilibrium models highlights a symmetry which is
only present in thermal equilibrium and expresses detailed balance. We summarize the computation
of the flow equations in Sec. 3.7 and explain the hierarchical structure of the universal critical behavior
implied by the flow. In Sec. 3.9 we discuss the numerical analysis of the flow equations. We conclude
in Sec. 3.10.

At this point, we remark that the physical picture described in this work, and summarized in
the following section, has been fully confirmed and further developed in a recent complementary
perturbative field theoretical study presented in Ref. [57]. There, in particular, analytical estimates
for the critical exponents are provided.
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3.2 Key Results and physical picture

Driven-dissipative Bose condensation transition – Driven open quantum systems are commonly
modeled microscopically by means of quantum master equations or in terms of Keldysh functional
integrals as shown below. Starting from such a microscopic model of a driven Bose condensate we
derive in Sec. 3.4.3 an effective long-wavelength description of the critical dynamics. The result, after
dropping all irrelevant terms in the sense of renormalization group (RG), is a stochastic equation of
motion for the order parameter, which may be cast in Langevin form,

i∂tψ =
[
− (A − iD) ∆ − µ − iκ1 + 2 (λ − iκ) |ψ|2

]
ψ + ξ. (3.1)

Such a dissipative stochastic Gross-Pitaevskii equation has been used as a model for exciton-polariton
condensates [58–63]. This equation includes terms describing coherent dynamics, as well as ones cap-
turing the dissipative processes and the drive. The coherent terms are the inverse mass A = 1/ (2m),
the chemical potential µ and the elastic two-body interaction λ, whereas dissipative contributions
include a kinetic coefficient D, the effective single-particle loss rate κ1 as the difference between
single-particle loss and pump rates, as well as two-body loss κ. The loss and gain processes induce
noise, which is taken into account by the Gaussian white noise source ξ of strength γ with zero mean,
〈ξ(t, x)〉 = 0, and correlations

〈ξ(t, x)ξ∗(t′, x′)〉 =
γ

2
δ(t − t′)δ(x − x′). (3.2)

Unlike the models of critical dynamics classified in Ref. [32], the coherent and dissipative terms
in a driven condensate stem from completely independent physical processes. In particular, this
implies that the steady state of the Langevin equation (3.1) is not characterized by a thermal (Gibbs)
distribution of the fields, and this leads to the distinct critical behavior analyzed in this paper.

Equation (3.1) admits a time-independent homogeneous mean-field solution |ψ0|2 = −κ1/ (2κ) if
the single-particle pump rate exceeds the corresponding loss rate, i.e., the effective single-particle loss
rate κ1 becomes negative, and the chemical potential is set to be µ = 2λ |ψ0|2. Thus at the mean-field
level a continuous transition is tuned by varying the single particle pump rate: ψ0 vanishes as κ1 goes
from negative values to zero. Mean-field theory, however, breaks down in the vicinity of the phase
transition as the inclusion of fluctuations may induce non-trivial scaling behavior or even render the
transition first order [64, 65]. In this paper we verify that the system described by (3.1) in three
spatial dimensions indeed has a critical point characterized by universal dynamics. We argue that
this dynamics is governed by a “Wilson-Fisher” like fixed point, but with another layer of dynamical
critical behavior that is not found in non-driven systems.

Universality and extent of the critical domain – Our main technical tool for the analysis is a
functional RG carried out for the dynamical problem. Emergence of a universal critical point is
evident from the flow of the coupling constants to a fixed point independent of the initial conditions,
as long as the system is tuned to the phase transition (cf. also Sec. 3.9). This is demonstrated in
Fig. 3.1 (a), showing the flow of the real and imaginary parts of the complex interaction parameter
ũ2 = λ̃ + iκ̃ (see Sec. 3.8.1). At the fixed point the real parts of all couplings vanish, which implies
that the effective long-wavelength dynamics is purely dissipative. Integrating out fast fluctuations in
the course of the RG flow, therefore, leads to a loss of coherence.
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An important aspect of the phase transition which we analyze in detail here concerns the extent
of the critical domain, which is delimited by the Ginzburg momentum scale kG. Knowledge of this
non-universal scale is important for assessing the requirements from experiments aimed at measuring
the critical phenomena. We find it to be given by (cf. Sec. 3.9)

kG = γΛκΛ/
(
2CD2

Λ

)
, (3.3)

where C ≈ 14.8 and γΛ, κΛ, and DΛ are, respectively, the noise-strength, two-body loss rate and
dissipative kinetic coefficient appearing in the description of the system at a mesoscopic scale Λ (see
Sec. 3.5.2). Here we confirm this behavior quantitatively by a full numerical solution of the flow
equations outside the critical domain, highlighting the capability of the FRG approach to compute
universal and non-universal physics in a single framework.

Asymptotic thermalization of the distribution function – An interesting result of the RG analysis
is that the distribution function of the order parameter field at the critical point effectively thermalizes
at long wavelengths and low frequencies. The effective thermalization is manifest as an emergent
symmetry of the equations of motion at the fixed point that is not present at the mesoscopic level, cf.
Sec. 3.6. For this reason the dynamical critical exponent z is the same as that of MA of the equilibrium
classification. The presence of this symmetry implies a fluctuation-dissipation theorem (FDT), or,
more physically speaking, a detailed balance condition valid at asymptotically long wavelengths.

In order to better understand this aspect, consider an equilibrium problem with detailed balance.
This means that all subparts of the system are in equilibrium with each other. In other words, temper-
ature is invariant under the system’s partition in such a state. This statement is easily translated into
a RG language: Natural system partitions are the momentum shells. Partition invariance of the tem-
perature thus becomes a scale invariance of temperature under renormalization, which successively
integrates out high momentum shells. The “equilibrium symmetry” expresses precisely this physical
intuition.

In a non-equilibrium problem such as the driven condensate we discuss, this symmetry is in
general absent at arbitrary momentum scales. In order to demonstrate how it emerges at long scales,
we compute the scale dependence of an effective temperature, entering the (non-equilibrium) FDT,
cf. Sec. 3.6. Indeed, we find scale dependent behavior at high momenta, which becomes universal
and scale independent within the critical region delimited by the Ginzburg scale, cf. Fig. 3.2.

We note that, in principle, it is conceivable that the system might allow for different stationary
scaling solutions far from equilibrium with different universal scaling behavior, not captured in the
present approach. Indeed, in two dimensions, such a scenario is realized [66]. In three dimensions,
however, such a behavior could be present only beyond a threshold value for the microscopic strength
of violation of detailed balance.

Hierarchical shell structure of non-equilibrium criticality – A key result of the RG analysis is
the hierarchical organization of the non-equilibrium criticality. This structure consists of three shells
of critical exponents. The innermost shell in this hierarchy contains the two independent exponents
ν, η describing the static (spatial) critical behavior of the classical O(2) model.1 We find that the

1The continuous planar rotations of O(2) reflect the continuous phase rotation symmetry U(1) � SO(2) of the driven
open Bose system.
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Figure 3.1. (Color online) Emergence of universality: (a) We show the flow of the
complex renormalized two-body coupling ũ2 = λ̃+iκ̃ (see Sec. 3.8.1) for various initial
values ũ2Λ. As a result of fine-tuning the initial values wΛ of the dimensionless mass
parameter close to criticality, all flow trajectories approach the Wilson-Fisher fixed
point ũ2∗ = i5.308 (indicated by the black dot) before eventually bending away. Shown
are numerical solutions to the flow equations for rKΛ = 10, ru3Λ = 1, κ̃3Λ = 0.01, and
values of ũ2Λ lying on a rectangle with sides λ̃ ∈ [0, 10], κ̃ = 2, 10 and λ̃ = 10, κ̃ ∈
[2, 10]. (See Sec. 3.8.1 for definitions of the parameters.) (b) Flow of κ̃ as a function of
the dimensionless infrared cutoff t = ln (k/Λ) for various starting values κ̃Λ. Dots on
the lines indicate the extent of the critical domain, which is set by the Ginzburg scale
Eq. (3.3). Initial values are the same as in (a), apart from κ̃Λ = 0.1, 1, 2, . . . , 10 and
ru2Λ = 10.
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Figure 3.2. (Color online) Scale dependence at criticality of the effective temperature
Teff = γ̄/ (4 |Z|), where γ̄ denotes the Keldysh mass and Z is the wave-function renor-
malization (see Secs. 3.5.2 and 3.8.1). For t → −∞ the effective temperature saturates
to a constant value. Initial values are the same as in Fig. 3.1 (b).

static exponents coincide with those of an ab initio computation of the classical O(2) exponents at the
same level of approximation. Thus the non-equilibrium conditions do not modify the static critical
behavior.

The intermediate shell contains the so-called dynamical exponent z which describes the dynamical
(temporal) critical behavior. This intermediate shell is already present in models for equilibrium
dynamical criticality. Crucially, it extends the static critical behavior but does not modify it. In fact
there is a certain dynamical fine structure: The same static universality class splits up into various
dynamical universality classes, classified in models A to J by HH [32]. Again, we find the dynamic
exponents to coincide with the one of an ab initio computation for one of HH’s models (MA) – the
non-equilibrium conditions do not modify the dynamical critical behavior either. A stronger physical
consequence of this finding is discussed in the next subsection.

The unique element found only in the driven system is the outer shell of the aforementioned
hierarchy. The related exponent ηr identified in Ref. [19], which we refer to as the “drive exponent”,
physically describes universal decoherence of the long-wavelength dynamics as explained above.
Crucially, ηr relates to the dynamical MA in the same way as MA relates to the classical O(2) model:
It adds a new shell, but does not “feed back” or modify the inner shells of the hierarchy. In Sec. 3.6
we argue that this exponent manifestly witnesses non-equilibrium conditions.

Independence of the drive exponent and maximality of the extension – It is important to demon-
strate the independence of the drive exponent: At a second order phase transition, many critical ex-
ponents can be defined, each characterizing a different observable. However, only few of them are
independent, i.e., cannot be expressed in terms of a smaller set by means of scaling relations.

The independence of the four critical exponents identified with our FRG approach is manifest
in the block diagonal structure of the linearized RG flow in the vicinity of the Wilson-Fisher fixed
point, cf. Sec. 3.8: There are two blocks, and the lowest eigenvalue of each of them determines an
independent critical exponent. In addition we have the independent anomalous dimension η and the
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dynamical exponent z.

A general way to determine the number of independent exponents and thereby see the need
for one and only one additional exponent in this system (as compared to equilibrium MA dynam-
ics) comes from the UV limit of the problem. Any independent critical exponent must be related
to a short-distance mass scale in the problem [67]. For example, this can be seen in the case of
the anomalous dimension associated with the spatial two-point correlation function. An anomalous
dimension η implies decay of the correlation function as 〈φ∗(x)φ(0)〉 ∼ |x|2−d+η. Since the phys-
ical units of this correlation are [L]2−d we require a microscopic scale a, to fix the units so that
〈φ∗(x)φ(0)〉 ∼ a−η |x|2−d+η ∼ [L]2−d. In the same way any non-trivial independent exponent requires
such a microscopic scale.

To determine the number of independent critical exponents in our problem we therefore need to
count the microscopic mass scales in the bare action. The corresponding quadratic part of the action
reads

σm =

∫
dtddx

[(
φ∗c, φ

∗
q

) ( 0 µ − iκ1
µ + iκ1 iγ

) (
φc

φq

)
+ f

(
j∗cφq + j∗qφc + c.c.

)]
, (3.4)

with real parameters µ, κ1, γ, f . κ1 and f , which describe the tuning parameter of the phase transition
and an external ordering field respectively, have direct counterparts in the equilibrium O(2) model.
They give rise to the two critical exponents ν, which characterizes the divergence of the correlation
length, and η, the anomalous dimension of the static two-point function. γ is introduced in the theory
of dynamical critical phenomena and is associated to the dynamical exponent in the purely relax-
ational MA of HH [32]. In the full non-equilibrium problem however, there is yet another mass scale
µ. This scale is at the origin of the additional independent exponent identified in Ref. [19].

From this discussion we conclude that the extension of the critical behavior at the condensation
transition is maximal, i.e., no more independent exponents can exist. This is due to general require-
ments on the mass matrix above: the off-diagonal elements must be hermitian conjugates; the lower
diagonal must be anti-hermitian; and the upper diagonal must be zero due to the conservation of
probability.

It is worth noting how this analysis would change if the critical point in question involved breaking
of a Z2 symmetry rather than a continuous O(N) symmetry as we discuss here. Such an Ising transition
in a driven system is relevant for the formation of a super-solid due to interaction of a BEC with the
modes of an optical cavity [2, 3]. In this case the reality of the Ising fields rules out an imaginary
mass term (κ1 = 0). Hence the maximal number of independent critical exponents is 3, which implies
that there can be no modification of MA dynamics.

Interpretation and observability of the drive exponent – The drive critical exponent describes the
universal flow behavior of all possible ratios of coherent vs. dissipative couplings (real vs. imaginary
parts, see Sec. 3.8.1) to zero upon moving to larger and larger distances. In the competition of
coherent and dissipative dynamics, loosely speaking dissipation always wins. Physically, this should
be interpreted as a universal mechanism of decoherence. The drive exponent therefore is subleading
and not observable in the correlation functions of the system. However, it is directly observable in the
single particle dynamical response (single particle retarded Green’s function).

The dynamical response can be measured with any probe that couples directly to the field operator
ψ̂(x), i.e., any probe that out-couples single particles from the system. This is the case, e.g., in the
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energy

momentum

absorption

Figure 3.3. (Color online) Illustration of the observability of the drive exponent:
The absorption peak for a measurement that observes the single particle dynamical
response. The drive exponent ηr reveals itself in a different scaling of the peak location
and peak-width as a function of the momentum.

angle-resolved detection of leakage photons in exciton-polariton systems [20], or in angle-resolved
radio-frequency spectroscopy in ultra-cold atoms [68] As we argue in Sec. 3.8.3., the excitation spec-
trum close to the critical point is given by (q = |q|)

ω(q) ∼ A0qz−ηr − iD0qz ∼ A0q2.223 − iD0q2.121, (3.5)

where A0 and D0 are non-universal constants. This excitation spectrum leads to a broadened signal
in the experiment, cf. Fig. 3.3. The drive exponent ηr can be observed due to the different scaling
with momentum of the location (∼ qz−ηr ) and the width (∼ qz) of the measured peak. We note here,
however, that technical noise and other uncertainties in the measurement setup will unavoidably also
lead to a broadening of the spectrum. The small value of ηr = −0.101 thus challenges experiments to
verify this prediction.

3.3 The Model

In this section we introduce a generic microscopic description of driven-dissipative Bose systems,
written in terms of a second quantized master equation. We then show how to translate this model
into the Keldysh functional integral framework, which provides a convenient starting point for ob-
taining the long wavelength universal properties of the system. Moreover we introduce the concept
of the effective action, which generalizes the action principle to include all quantum and statistical
fluctuations and is the key object for the formulation of the FRG.

3.3.1 Quantum Master equation

Our model with particle loss and pumping is described microscopically by a many-body master equa-
tion that determines the time evolution of the system density operator (units are chosen such that
~ = 1),

∂tρ̂ = −i
[
Ĥ, ρ̂

]
+L[ρ̂]. (3.6)
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This equation incorporates both coherent dynamics generated by the Hamiltonian Ĥ and dissipation
that is subsumed in the action of the Liouville operator L. The Hamiltonian Ĥ describes interacting
bosonic degrees of freedom of mass m and is given by (we use the shorthand

∫
x =

∫
ddx)

Ĥ =

∫

x
ψ̂†(x)

(
− ∆

2m

)
ψ̂(x) +

g
2

∫

x
ψ̂†(x)2ψ̂(x)2, (3.7)

where ψ̂(x) are bosonic field operators. Note that we do not explicitly introduce any system chemical
potential, as the density of the system will be fixed by the balance of pumping and losses. Two-body
interactions are described by a density-density interaction with coupling constant g. In the following
we shall be interested in dynamically stable systems which are characterized by a positive coupling
constant g > 0. This modeling of interactions is valid on length scales which are not sufficient to
resolve details of the microscopic interaction potential.

In our model, dissipative dynamics comes in the form of one-body pumping (p) and losses (l) as
well as two-body losses (t). Accordingly, the Liouville operator can be decomposed into the sum of
three terms L =

∑
αLα with α = p, l, t which have the common Lindblad structure

Lα[ρ̂] = γα

∫

x

(
L̂α(x)ρ̂L̂†α(x) − 1

2

{
L̂†α(x)L̂α(x), ρ̂

})
, (3.8)

with local Lindblad or quantum jump operators L̂α(x) that create (p) and destroy (l) single particles;
for α = t two particles are destroyed at the same instant in time, i.e., the quantum jump operators are
given by

L̂p(x) = ψ̂†(x), L̂l(x) = ψ̂(x), L̂t(x) = ψ̂(x)2. (3.9)

These processes occur at rates γp, γl, and γt, respectively.

The net effect of single-particle pumping and losses is determined by the relative size of the
respective rates: For γp > γl, there is an effective gain of single particles. Nevertheless, Eq. (3.6)
leads (in a suitably chosen rotating frame, as we will show below) to a stationary state ρ̂ss in which
the gain of single particles is balanced by two-body losses. In this situation, a finite condensate
amplitude builds up,

〈ψ̂(x)〉ss = tr
(
ψ̂(x)ρ̂ss

)
= ψ0 , 0, γp > γl. (3.10)

That is, in stationary state the system is in a condensed phase in which the symmetry of the dynamics
described by Eq. (3.6) under global U(1) transformations of the field operators ψ̂(x) 7→ ψ̂(x)eiφ is
broken. When the loss rate γl exceeds the pumping rate γp, on the other hand, no condensate emerges
in stationary state, and the expectation value of the bosonic field operator is zero,

〈ψ̂(x)〉ss = 0, γp ≤ γl. (3.11)

Equations (3.10) and (3.11) can be derived from the master equation (3.6) in mean-field approxima-
tion by making the ansatz of a coherent stationary state ρ̂ψ = |ψ〉〈ψ|, where we assume that the am-
plitude in |ψ〉 = 1

N exp
(
ψ

∫
x ψ̂
†(x)

)
|0〉 is spatially homogeneous but possibly time-dependent. Proper

normalization of the coherent state is ensured by the choice N = eV |ψ|2 with the system volume V .
The time-dependence of the condensate amplitude is determined by taking the time derivative on both
sides of the equality ψ = tr

(
ψ̂(x)ρ̂ψ

)
and using the master equation (3.6), which results in

i∂tψ =

[
g |ψ|2 +

i
2

(
γp − γl − 2γt |ψ|2

)]
ψ. (3.12)
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For γp > γl this equation allows for a solution of the form ψ = ψ0e−iµt, where the condensate density
is determined by the imaginary part of the term in brackets on the right-hand side (RHS) as

|ψ0|2 =
γp − γl

2γt
. (3.13)

The parameter µ is then given by µ = g |ψ0|2. We obtain the steady state density matrix of Eq. (3.10)
by means of a transformation to a rotating frame with the unitary operator Û = exp

(
iµN̂t

)
, where

the particle number operator is N̂ =
∫

x ψ̂
†(x)ψ̂(x): We have ρ̂ss = Ûρ̂ψÛ†, which is indeed time-

independent, and recover Eqs. (3.10) and (3.11). Under the transformation to this rotating frame,
the Hamiltonian acquires a contribution −µN̂, whereas the Liouvillian L remains invariant. In the
following we will always be working in the rotating frame.

In summary, the steady state phase diagram of our model exhibits two phases: A symmetric one
characterized by Eq. (3.11) and an ordered one where the global U(1) symmetry is broken by a finite
condensate amplitude Eq. (3.10) with definite phase. These two phases are separated by a continuous
phase transition with order parameter ψ0. The transition is crossed by tuning the single-particle
pumping rate from γp < γl in the “symmetric” to γp > γl in the “symmetry-broken” or “ordered”
phase.

In the following we shall be interested in the critical behavior that is induced by tuning γp − γl

to zero. Powerful tools for investigating critical phenomena at a second order phase transition are
provided by a multitude of variants of the RG. The particular flavor we employ here is the FRG in the
formulation of Wetterich [56] (for reviews see Refs. [69–74]), which builds upon the use of functional
integrals. Therefore, as a first step towards implementing a FRG investigation of our model, we will
reformulate the physics that is encoded in the quantum master equation (3.6) in terms of Keldysh
functional integrals [75, 76].

3.3.2 Keldysh functional integral

The Keldysh approach provides a means to tackle general non-equilibrium problems in the language
of functional integrals. For the model at hand, the dynamics described by the master equation (3.6)
can be represented equivalently as a Keldysh partition function (see App. 3.A): By Ψσ =

(
ψσ, ψ

∗
σ

)T

for σ = +,− we denote Nambu spinors of fields on the forward- and backward-branch of the closed
time contour, respectively. Then, collecting time and space in a single variable X = (t, x) and using
the abbreviation

∫
X =

∫
dt

∫
ddx, the Keldysh partition function reads

Z[J+, J−] =

∫
D[Ψ+,Ψ−] eiσ[Ψ+,Ψ−]+i

∫
X

(
J†+Ψ+−J†−Ψ−

)
. (3.14)

The fields Jσ =
(
jσ, j∗σ

)T are external sources inserted here for the purpose of calculating correlation
functions of the bosonic fields in the usual manner by means of functional differentiation. When
they are set to zero, J+ = J− = 0, the partition function reduces to unity [75, 76], i.e., we have the
normalization Z[0, 0] = 1. While the Keldysh approach can in principle be utilized to study time
evolution, here we are assuming translational invariance in time, as appropriate for the investigation
of steady state properties.

In complete analogy to the separation of coherent and dissipative contributions to the time evo-
lution of the density operator in Eq. (3.6), the action σ in the functional integral Eq. (3.14) can be
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decomposed as σ = σH + σD into a Hamiltonian part σH and a part σD corresponding to the dissi-
pative Liouvillian L in the master equation. The former is given by (from now on we will use units
such that 2m = 1)

σH =
∑

σ=±
σ

∫

X

[
ψ∗σ (i∂t + ∆ + µ)ψσ − g

2
(
ψ∗σψσ

)2
]
. (3.15)

As a general rule (see App. 3.A), normally ordered operators in Eq. (3.6) acting on the density matrix
ρ̂ from the left (right) result in corresponding fields on the σ = + (σ = −) contour. Consequently, the
commutator with the Hamiltonian in Eq. (3.6) is transferred into the two contributions to Eq. (3.15)
with a relative minus sign.

The same rule applies to the dissipative part in the master equation (3.6). Passing from the Li-
ouvillian L on to a dissipative action σD, quantum jump operators L̂α are replaced by corresponding
jump fields Lα,σ on the σ = + (σ = −) contour. (In App. 3.A we will discuss regularization is-
sues related to normal ordering of Lindblad operators.) As above we have the three contributions
σD =

∑
α σα that are due to single-particle pumping (p) and losses (l) as well as two-body losses (t).

The form of the jump fields can directly be inferred from Eq. (3.9) as

Lp,σ = ψ∗σ, Ll,σ = ψσ, Lt,σ = ψ2
σ. (3.16)

Then, for the dissipative parts of the action we find the expression

σα = −iγα

∫

X

[
Lα,+L∗α,− −

1
2

(
L∗α,+Lα,+ + L∗α,−Lα,−

)]
. (3.17)

As we can see, the transition from a description of a specific problem in terms of a master equation
to one in terms of Keldysh functional integrals reduces to the application of simple rules. For our
model, Eqs. (3.14), (3.15) and (3.17) provide us with a convenient starting point for the investigation
of the steady state phase transition described in the previous section.

While the translation rules from the master equation to the Keldysh functional integral are most
simply applied in a basis of fields ψ± that can be ascribed to the forward and backward branches of
the Keldysh contour, subsequently we will find it advantageous to introduce so-called classical and
quantum fields, given by the symmetric and anti-symmetric combinations

(
φc

φq

)
= M

(
ψ+

ψ−

)
, M =

1√
2

(
1 1
1 −1

)
. (3.18)

Condensation is described by a time-independent, homogeneous expectation value of the fields on the
σ = ± contours, 〈ψ+(X)〉 = 〈ψ−(X)〉 = ψ0, cf. Eq. (3.10). In the basis of classical and quantum fields,
this is expressed as 〈φc(X)〉 = φ0 =

√
2ψ0, 〈φq(X)〉 = 0, i.e., only φc can condense (and, therefore,

become a “classical” variable), whereas φq is a purely fluctuating field with zero expectation value by
construction.

By means of the transformation Eq. (3.18), the inverse propagator, determined by the quadratic
part of the action, is cast in the characteristic causality structure [75, 76] with retarded, advanced,
and Keldysh components PR, PA, and PK , respectively (in the following we will denote the two-body
coupling constant and loss rate by, respectively, λ = g/2 and κ = γt/2),

σ =

∫

X

{(
φ∗c, φ

∗
q

) ( 0 PA

PR PK

) (
φc

φq

)
+ i4κφ∗cφcφ

∗
qφq −

[
(λ + iκ)

(
φ∗2c φcφq + φ∗2q φcφq

)
+ c.c.

]}
. (3.19)
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The inverse retarded and advanced single-particle Green’s functions are given by PR = PA† = i∂t +

∆ + µ + iκ1 where κ1 =
(
γl − γp

)
/2. For the Keldysh component of the inverse propagator we have

PK = iγ, where γ = γl + γp is the sum of single-particle pumping and loss rates – both of them
increase the noise level in the system.

The spectrum of single-particle excitations is encoded in the poles of the retarded propagator in
frequency-momentum space or, equivalently, in the zeros of the inverse propagator. Solving PR(Q) =

0 for ω, where Q = (ω,q) collects the frequency and spatial momentum, we obtain the dispersion
relation

ω = q2 − µ − iκ1. (3.20)

For κ1 > 0 (i.e., γp < γl) the pole is located in the lower complex half-plane, and the effective loss rate
κ1 takes the role of an inverse lifetime. One has single-particle excitations that decay exponentially
in time, a situation that is well-known from the general theory of the analytic structure of correlation
functions [77]. As κ1 is tuned to negative values (i.e., as we cross the phase transition), however, the
pole Eq. (3.20) is shifted into the upper complex half-plane, signaling an instability. After crossing
this threshold, the system develops a condensate, and the proper analytical structure of the retarded
propagator is restored only by taking the tree-level shifts due to the condensate into account. We will
discuss the corresponding modifications of the dispersion relation Eq. (3.20) below in Sec. 3.4.1.

Inversion of the 2 × 2 matrix in Eq. (3.19) yields the propagator with retarded, advanced, and
Keldysh components,

G =

(
GK GR

GA 0

)
. (3.21)

The components along with their respective usual diagrammatic representation [75, 76] are given by

GR(Q) = 1/PR(Q) = ,

GA(Q) = 1/PA(Q) = ,

GK(Q) = −PK/
(
PR(Q)PA(Q)

)
= ,

(3.22)

which shows that the poles of G(Q) are determined solely by the zeros of PR(Q) and PA(Q). The
Keldysh component PK of the inverse propagator enters the expression for GK(Q) multiplicatively.
Therefore, even in a situation where PK is a polynomial in frequency and/or momentum, it can not
give rise to further poles in the propagator G(Q).

In the Keldysh formalism elastic two-body collisions and two-body losses are treated on an equal
footing: Both appear in the action Eq. (3.19) as quartic vertices, however, with a real coupling constant
λ in the case of elastic collisions and a purely imaginary coupling constant iκ for two-body losses.
The vertices in Eq. (3.19) can further be distinguished by the number of quantum fields they contain:
We have the so-called classical vertex −

∫
X

[
(λ + iκ) φ∗2c φcφq + c.c.

]
which contains only one quantum

field and three classical fields, and two quantum vertices: The first one i4κ
∫

X φ
∗
cφcφ

∗
qφq containing two

and the second one −
∫

X

[
(λ + iκ) φ∗2q φcφq + c.c.

]
containing three quantum fields. Diagrammatically,

these vertices are depicted as

φ∗c

φq

φc

φ∗c

λ + iκ ,

φ∗q

φq

φc

φ∗c

iκ ,

φ∗q

φq

φc

φ∗q

λ + iκ . (3.23)
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The fact that there are no vertices consisting only of classical fields is a manifestation of causality
or conservation of probability in the Keldysh framework [75, 76]. Below we will find that only
the classical vertex is relevant (in the sense of the RG) once the system is tuned close to the phase
transition.

3.3.3 Effective action

Having established a description of our model in terms of a Keldysh functional integral, we pro-
ceed by introducing the concept of the effective action [78–80], which is central to the FRG. It is
also a convenient starting point for a discussion of the phase transition on the mean-field level (see
Sec. 3.4.1).

In equilibrium statistical physics the effective action Γ is related to the free energy as a functional
of a space-dependent order parameter, and the equilibrium state is determined as the order param-
eter configuration that minimizes Γ. However, in the present context of non-equilibrium statistical
physics we do not have a sensible notion of a free energy. In fact, already the Keldysh partition
function Eq. (3.14) reduces for vanishing external sources to a representation of unity Z[0, 0] = 1,
independently of the parameters that characterize the action [75, 76]. Still, the Keldysh effective
action, defined analogously to its equilibrium counterpart as the Legendre transform of the gener-
ating functional for connected correlation functions, is a very useful object. From Γ we can de-
rive, e.g., field equations that determine the stationary configurations of classical and quantum fields
Φν =

(
φν, φ

∗
ν

)T , ν = c, q. On a more formal level, Γ is the generating functional of one-particle ir-
reducible vertices [78–80]. Most importantly for our model, however, the FRG provides us with a
means of calculating critical exponents for the phase transition by studying the RG flow of Γ as a
function of an infrared cutoff k.

Our starting point for introducing the effective action is the generating functional Eq. (3.14) for
correlation functions, expressed in the basis of classical and quantum fields Φν, i.e., the action is given
by Eq. (3.19), and we introduce classical and quantum sources Jν =

(
jν, j∗ν

)T with ν = c, q according
to the Keldysh rotation (

jc
jq

)
= M

(
j+
j−

)
, (3.24)

where the matrix M is defined in Eq. (3.18). For the generating functionalW for connected correla-
tion functions andZ we have the relation

W[Jc, Jq] = −i lnZ[Jc, Jq]. (3.25)

The idea is now to express W, which is a functional of the external sources Jν, in terms of the
corresponding field expectation values Φ̄ν = 〈Φν〉|Jc,Jq = δW/δJν′ where ν′ = q for ν = c and vice
versa. Introducing these as new variables is accomplished by means of a Legendre transform:

Γ[Φ̄c, Φ̄q] =W[Jc, Jq] +

∫

X

(
J†c Φ̄q + J†qΦ̄c

)
. (3.26)

The difference between the in this way defined effective action Γ and the action σ consists in the
inclusion of both statistical and quantum fluctuations in the former. This becomes apparent in the
representation of Γ as a functional integral [69],

eiΓ[Φ̄c,Φ̄q] =

∫
D[δΦ̄c, δΦ̄q] eiσ[Φ̄c+δΦ̄c,Φ̄q+δΦ̄q], (3.27)
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which holds for the equilibrium states that obey δΓ/δΦ̄c = δΓ/δΦ̄q = 0 at vanishing external sources
Jc = Jq = 0. The most straightforward way of evaluating the functional integral Eq. (3.27) approxi-
mately is by performing a perturbative expansion around the configuration that minimizes the action
σ. To zeroth order this corresponds to mean-field theory, an approach we will discuss in the following
section. In the FRG, the fluctuations δΦ̄ν are included stepwise by introducing an infrared regulator
which suppresses fluctuations with momenta less than an infrared cutoff scale k. A short review of
this method, adapted to the Keldysh framework, is provided in Sec. 3.5.1. We will apply it to our
model in Sec. 3.7.

3.4 Preparatory Analysis

Here we carry out a basic analysis of the model in preparation for setting up a full functional RG
calculation used to obtain the critical properties at the phase transition. We summarize the mean-
field theory for the effective action and discuss the generic emergence of infrared divergences near a
critical point. Furthermore, using dimensional analysis we identify the important terms in the action
which are potentially relevant at the critical point. These terms are then included in the ansatz of
the effective action used to carry out the FRG calculation. Finally we contrast this ansatz with the
equilibrium dynamical models of HH [32].

3.4.1 Mean-field theory

In Sec. 3.3.1 we identified the precise balance between single-particle losses and pumping as the tran-
sition point, cf. Eqs. (3.10) and (3.11). Here we will derive this result from the Keldysh functional
integral Eq. (3.27), again employing a mean-field approximation. We will then proceed by calcu-
lating the excitation spectrum above the stationary mean-field by treating quadratic fluctuations in a
Bogoliubov (tree-level) expansion. While this issue, as well as going beyond the mean-field approx-
imation by perturbative methods, can equally well be addressed in the master equation formalism of
Sec. 3.3.1 [81], in performing a perturbative expansion at and below the critical point we encounter
infrared divergences. Proper treatment of these requires RG methods, which are well-established and
elegantly formulated in terms of functional integrals.

Mean-field theory corresponds to a saddle-point approximation of the functional integral in Eq. (3.27)
in which fluctuations around the classical fields are completely neglected. In the present context, by
classical fields we mean spatially homogeneous solutions to the classical field equations

δσ

δφ∗c
= 0,

δσ

δφ∗q
= 0. (3.28)

As already mentioned above, there are no terms in the action Eq. (3.19) that have zero power of both
φ∗q and φq, and the same is obviously true for δσ/δφ∗c. Therefore, the first equation (3.28) is solved by
φq = 0. Inserting this condition in the second equation (3.28), we have

[
µ + iκ1 − (λ − iκ) |φ0|2

]
φ0 = 0. (3.29)

The solution φc = φ0 is determined by the imaginary part of Eq. (3.29): For κ1 ≥ 0, in the symmetric
phase, the classical field is zero, ρ0 = |φ0|2 = 0, whereas for κ1 < 0 we have a finite condensate



54 Publication: Nonequilibrium functional renormalization . . .

density ρ0 = −κ1/κ. In a second step, the parameter µ is determined by the real part of Eq. (3.29) as
µ = −λκ1/κ.

Quadratic fluctuations around the mean-field order parameter can be investigated in a Bogoliubov
or tree-level expansion: We set φc = φ0 + δφc, φq = δφq in the action Eq. (3.19) and expand the
resulting expression to second order in the fluctuations δφν. The poles of the retarded propagator
(which is now a 2 × 2 matrix in the space of Nambu spinors δΦν =

(
δφν, δφ

∗
ν

)T ) are then [58]

ωR
1,2 = −iκρ0 ±

√
q2 (

q2 + 2λρ0
) − (κρ0)2. (3.30)

Real and imaginary parts of both branches are shown in Fig. 3.4 in panels (a) and (b), respectively.
Due to the tree-level shifts ∝ ρ0 the instability of Eq. (3.20) for κ1 < 0 is lifted: Both poles are
located in the lower complex half-plane, indicating a physically stable situation with decaying single-
particle excitations. For κ = 0, Eq. (3.30) reduces to the usual Bogoliubov result [82], where for
q → 0 the dispersion is phononic, ωR

1,2 = ±cq, with speed of sound c =
√

2λρ0 whereas particle-like
behavior ωR

1,2 ∼ q2 is recovered at high momenta. Here, due to the presence of two-body loss κ , 0,
the dispersion is strongly modified: While at high momenta the dominant behavior is still given by
ωR

1,2 ∼ q2, at low momenta we obtain purely dissipative non-propagating modesωR
1 ∼ −iλκq2 andωR

2 ∼
−i2κρ0. In particular, for q = 0 we have ωR

1 = 0: This is a dissipative Goldstone mode [27, 58, 60],
associated with the spontaneous breaking of the global U(1) symmetry in the ordered phase. The
existence of such a mode is not bound to the mean-field approximation but rather an exact property
of the theory guaranteed by the U(1) invariance of the effective action, even in the present case of a
driven-dissipative condensate.

3.4.2 Infrared divergences near criticality

The discussion of our model on the mean-field level has illustrated some of the benefits of the Keldysh
approach: Not only have we gained a simple physical picture of the phase transition as a condensation
instability in the retarded and advanced propagators, but we were able to investigate excitations in
both the symmetric and ordered phases quite straightforwardly. Mean-field theory, however, while
providing us with a good qualitative understanding of the stationary state physics of our model far
away from the phase transition, has major shortcomings when it comes to the discussion of critical
phenomena. In particular, the critical exponents that can be extracted from an analysis of quadratic
fluctuations around the mean-field configuration are not indicative of the universality class of the
phase transition, as they correspond to the RG flow in the vicinity of a non-interacting (or Gaussian)
fixed point. Critical behavior at the phase transition, however, is encoded in the RG flow in the vicinity
of an interacting (or Wilson-Fisher) fixed point.

In a many-body system, excitations and their interactions get dressed due to scattering from other
particles. The mean-field results of this section can be taken as the starting point for a calculation
of the effective dressed parameters in a perturbative expansion. In the functional integral Eq. (3.27),
diagrammatically this amounts to an expansion in the number of loops around the mean-field config-
uration. To lowest (one-loop) order, the correction ∆λ to the real part of the bare classical vertex (the



3.4. Preparatory Analysis 55

first diagram in Eq. (3.23)) reads (vd =
(
2d+1πd/2Γ(d/2)

)−1
)

∆λ = + · · ·

= −
vdγ
(
λ2 + κ2

)2

λκ

∫ ∞

qIR

dq
q5−d
,

(3.31)

where the elements appearing in the diagram are defined in Eqs. (3.31) and (3.22) (here, however,
lines correspond to propagators of fluctuations δΦν and acquire an additional 2×2 matrix structure in
Nambu space), and the ellipsis indicates that all diagrams with four external legs and one closed loop
corresponding to a single internal momentum integration have to be included. In the integrand we
have only kept the dominant contribution for q→ 0, and we have introduced an infrared cutoff qIR in
order to regularize the divergence at low momenta. Such infrared divergences, however, appear not
only in our specific example of the loop correction to λ, but rather are characteristic of perturbative
expansions in symmetry broken phases. They are due to the presence of a massless Goldstone mode,
which results in a pole of the retarded and advanced propagators at ω = q = 0. This problem is even
enhanced as we approach the phase transition: Then both modes become degenerate, with also the
second mode ωR

2 ∼ −i2κρ0 for q → 0 becoming massless. A method that allows us to go beyond
mean-field theory, therefore, has to provide for a proper treatment of infrared divergences. In the
FRG, this is achieved by effectively introducing a mass term ∝ k2 in the inverse propagators by hand.
In consequence, the integrand in Eq. (3.31) is replaced by

∫ ∞
qIR

dqqd−1/
(
q2 + k2

)2
and we may safely

set qIR to zero since the effective mass k2 acts as an infrared cutoff. The resulting loop-corrected
coupling is a function of this cutoff, λ = λ(k), and we obtain the fully dressed or renormalized
coupling by following the RG flow of the running coupling λ(k) for k → 0. This procedure can
be implemented efficiently by introducing the cutoff in the functional integral Eq. (3.27). We will
discuss how this is done in practice for the present non-equilibrium problem [83–90] in the following
section. Critical exponents can then be extracted from the flow of the critical system, i.e., when κ1 is
fine-tuned to zero.

So far we have discussed only corrections to the bare interaction vertices due to the inclusion of
loop diagrams. However, also the propagators appearing in these diagrams are themselves renormal-
ized. In particular, the inverse propagator can be written as P(Q) − Σ(Q), i.e., as the sum of the bare
inverse propagator P(Q) and a self-energy correction Σ(Q) [78–80]. The self-energy contribution at
one-loop order to the retarded propagator is represented diagrammatically as

ΣR(Q) = + . (3.32)

where effective cubic couplings, which are obtained upon expanding the interaction vertex around the
field expectation value, appear in the second diagram. Lines beginning and terminating in crosses
indicate that particles are scattered out of and into the condensate, respectively. Due to momentum
conservation, the first diagram does not depend on the external momentum Q = (ω,q) and gives a
correction to the constant part of the inverse propagator, i.e., the so-called mass terms. Since the
coupling λ + iκ associated with the vertex appearing in this diagram is complex, both the real and
imaginary masses, µ and κ1, are affected by the loop correction. The second diagram in Eq. (3.32)
gives a frequency- and momentum-dependent contribution to the self-energy. Symmetry under spatial
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rotations implies that it depends only on the modulus of the momentum and we may write ΣR(Q) =

ΣR(ω, q2). For small ω and q2 we can expand ΣR(ω, q2) ≈ ΣR(0, 0) + ω∂ωΣR(0, 0) + q2∂q2ΣR(0, 0).
Transforming back to the time domain and real space, the derivatives of the self-energy with respect
to frequency and momentum give corrections to the coefficients of ∂t and ∆ in the inverse propagators,
which are again complex valued. An imaginary part of the coefficient of the Laplacian corresponds
to an effective dissipative kinetic coefficient due to the interaction with other particles; A complex
prefactor of the time derivative, on the other hand, has significant consequences for the physical
interpretation of all other couplings, as we will discuss in detail in later sections.

3.4.3 Canonical power counting

While the proper theoretical approach to critical phenomena has to cope efficiently with the infrared
divergences discussed above, such systems also exhibit an important ordering principle, which is
provided by the classification of couplings according to their canonical scaling dimension. In the
following we will briefly review this procedure, often referred to as canonical power counting or
dimensional analysis. It lays the basis for a suitable choice of ansatz for the effective action that will
contain only couplings which are relevant or marginal according to this counting scheme [78–80].

At second order phase transitions, physical quantities exhibit scaling behavior, which means that
they depend on the distance from the phase transition (in our case this distance is measured by κ1) in
a power-law fashion ∼ κτ1, with a generally non-integer exponent τ. In order to study critical behavior
in the RG, we investigate the RG flow starting from the action fine-tuned to criticality, i.e., with
κ1 = 0, and approach the critical point by lowering k. Then, scaling behavior of a physical quantity
g shows up as power-law dependence g ∼ kθ on k for k → 0 with a critical exponent θ. In other
words, phase transitions are associated to scaling solutions of the RG flow (not all scaling solutions
correspond to phase transitions [91]), or – equivalently – fixed points of the flow of rescaled couplings
g̃ = k−θg. The dominant contribution to the exponent θ associated to a coupling g is determined by
its physical dimension measured in units of momentum k, i.e., the canonical scaling dimension or
engineering dimension [g] (we have [k] = 1). Anticipating that deviations from canonical scaling
will be small (see Sec. 3.8), let us study the flow of the dimensionless two-body elastic collision
coupling λ̃ = λ/k (we will see below that λ̃ is indeed dimensionless). In Sec. 3.4.1 we saw that the
flow of λ is generated by the loop diagrams Eq. (3.31). Then, to the flow of the dimensionless variable
λ̃ we have an additional contribution due to the engineering dimension,

∂tλ̃ = −λ̃ + loop diagrams, (3.33)

where we are taking the derivative with respect to the dimensionless logarithmic scale t = ln(k/Λ)
which is zero for k = Λ and goes to −∞ for k → 0. The loop contribution to the flow of λ̃ is of order
λ̃2, λ̃κ̃, κ̃2 and higher in the dimensionless two-body couplings λ̃, κ̃. We find, therefore, a trivial fixed
point ∂tλ̃ = 0 for λ̃∗ = κ̃∗ = 0. The flow for small λ̃ in the vicinity of this Gaussian fixed point is
determined by the canonical scaling contribution on the RHS of Eq. (3.33) and is directed towards
higher values of λ̃, i.e., the coupling λ̃ is relevant at the Gaussian fixed point. For increasing λ̃, the
loop contributions become important and balance canonical scaling at a second fixed point. This non-
trivial Wilson-Fisher fixed point at finite λ̃∗, κ̃∗ corresponds to the phase transition in the interacting
system, and for small deviations λ̃ − λ̃∗ the flow is attracted to λ̃∗.

The described scenario changes drastically for a coupling with negative canonical scaling dimen-
sion, i.e., when instead of the prefactor −1 for the first term on the RHS in Eq. (3.33) we had a positive
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integer. Such a coupling is irrelevant at the Gaussian fixed point, which means that its flow is attracted
to that fixed point. We can, therefore, as a starting point for a systematic expansion in the relevance
of couplings, set all irrelevant couplings to zero. Unlike perturbative expansions, the inclusion of ir-
relevant couplings in higher orders in the expansion in canonical scaling dimensions results not only
in enhanced quantitative accuracy, but rather refines our picture of the phase transition, as it involves
higher order vertices and a refined treatment of the momentum dependence of propagators [92].

We proceed by determining the canonical dimensions of the couplings appearing in the action
Eq. (3.19). They are not uniquely fixed by the requirement that the action is dimensionless, [σ] = 0:
Still we have the freedom of assigning different scaling dimensions to the classical φc and quantum
fields φq. We exploit this freedom in order to impose a scaling dimension upon the Keldysh compo-
nent of the inverse propagator in Eq. (3.19) that is the same as in finite-temperature thermodynamic
equilibrium [75, 76], i.e., we require [γ] = 0. While this choice yields a consistent picture of the
driven-dissipative Bose condensation transition as detailed below, it is inappropriate for the investi-
gation of stationary transport solutions that define genuine nonequilibrium states with nonvanishing
flux which might be contained in our model. As already pointed out in Sec. 3.2, in two dimensions,
such a scenario indeed has been recently identified in Ref. [66], showing that the Kardar-Parisi-Zhang
non-equilibrium fixed point [43] governs the long wavelength behavior. In three dimensions, a similar
scenario is conceivable in principle, however only beyond a certain threshold value for the strength
of violation of detailed balance.

Denoting the dynamical exponent by [∂t] = z we find, from the quadratic part of the action and in
d dimensions,

z = [µ] = [κ1] = 2, [φc] =
d − 2

2
, [φq] =

d + 2
2

. (3.34)

The different scaling dimensions of classical and quantum fields result in different behavior of the
complex couplings associated with the classical and quantum vertices Eq. (3.23) under renormaliza-
tion, even though their values at k = Λ are the same. In particular, for a local vertex that contains nc

classical and nq quantum fields, the canonical scaling dimension of the corresponding coupling is
[
λnc,nq

]
= d + 2 − nc[φc] − nq[φq]. (3.35)

We observe that all couplings λnc,nq with nq > 2 (nq ≥ 1 is required by causality [75–77]) or nc > 5
are irrelevant. The coupling λ3,1 associated with the classical quartic vertex has canonical dimension
4 − d, i.e., its upper critical dimension is d = 4 and, in the case of interest d = 3, it is relevant with
canonical scaling dimension equal to unity. All other quartic couplings are irrelevant, as are sextic
couplings with nq > 1. The classical three-body coupling λ5,1 is marginal and we will include it (with
both real and imaginary parts) in our ansatz for the running effective action below, even though it is
not present in the action σ. Higher order couplings λnc,nq with nc + nq > 6 are irrelevant and we will
discard them.

3.4.4 Equilibrium symmetry

According to the canonical power counting scheme outlined in the previous section, in order to de-
scribe critical properties at the driven-dissipative Bose condensation transition we may disregard
quantum vertices in the action Eq. (3.19) – this corresponds to a semiclassical approximation [75–
77, 93], and the resulting simplified “mesoscopic” action has the same structure as the classical dy-
namical models considered in Ref. [32] inasmuch as it is linear in the quantum fields apart from the
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noise term which is quadratic. Therefore, like in the classical dynamical models, the functional in-
tegral with the mesoscopic action is equivalent to a Langevin equation for the classical field. This is
just the stochastic dissipative Gross-Pitaevskii equation Eq. (3.1) for a single non-conserved complex
field ψ and bears close resemblance to the equation of motion of MA of HH with N = 2 real com-
ponents. There are, however, two key differences: First the dynamics in MA is purely relaxational
whereas Eq. (3.1) contains both coherent and dissipative contributions. Second, and more impor-
tantly, dropping all coherent contributions on the RHS of Eq. (3.1) we find that it is invariant under
the transformation of the fields [90, 94, 95]:

ψ(t, x) 7→ ψ∗(−t, x),

ξ(t, x) 7→ −ξ∗(−t, x) − i2∂tψ
∗(t, x).

(3.36)

This symmetry of the dynamics implies a FDT for the retarded response and correlation functions. Its
absence in the driven-dissipative model (DDM), therefore, may be seen as indicating non-equilibrium
conditions. In Sec. 3.6 below we discuss a generalized version of the symmetry transformation
Eq. (3.36) and we are led to consider an extension of MA by coherent dynamics that then differs
from the DDM precisely in the obedience to this generalized symmetry. With regard to critical phe-
nomena, the difference in symmetries between equilibrium and non-equilibrium situations renders it
possible that novel universal behavior may be found in the latter case. We proceed to perform an FRG
analysis of the critical properties of both models in the following sections.

3.5 Functional Renormalization Group

3.5.1 FRG approach for the Keldysh effective action

The transition from the action σ to the effective action Γ consists in the inclusion of both statistical
and quantum fluctuations in the latter (see Eq. (3.27)). In the FRG, the functional integral over
fluctuations is carried out stepwise by introducing an infrared regulator which suppresses fluctuations
with momenta less than an infrared cutoff scale k [69]. This is achieved by adding to the action in
Eq. (3.14) a term

∆σk =

∫

X

(
φ∗c, φ

∗
q

) ( 0 Rk,K̄(−∆)
R∗

k,K̄
(−∆) 0

) (
φc

φq

)
(3.37)

with a cutoff function Rk,K̄ which will be specified below in Sec. 3.5.2. We denote the resulting cutoff-
dependent Keldysh partition function and generating functional for connected correlation functions
by, respectively,Zk andWk. The effective running action Γk is then defined as the modified Legendre
transform

Γk[Φ̄c, Φ̄q] =Wk[Jc, Jq] +

∫

X

(
J†c Φ̄c + J†qΦ̄q

)
− ∆σk[Φ̄c, Φ̄q]. (3.38)

Here the subtraction of ∆σk on the RHS guarantees that the only difference between the functional
integral representations for Γ and Γk is the inclusion of the cutoff term in the latter,

eiΓk[Φ̄c,Φ̄q] =

∫
D[δΦ̄c, δΦ̄q] eiσ[Φ̄c+δΦ̄c,Φ̄q+δΦ̄q]+i∆σk[δΦ̄c,δΦ̄q]. (3.39)

Physically, Γk can be viewed as the effective action for averages of fields over a coarse-graining
volume with size ∼ k−d.
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We choose the form of the cutoff term ∆σk such that it modifies the inverse retarded and advanced
propagators: Comparing Eqs. (3.19) and (3.37), we see that associated with the action σ+∆σk are the
regularized retarded and advanced inverse propagators PR(Q)+R∗

k,K̄
(q2) and PA(Q)+Rk,K̄(q2) respec-

tively, whereas the Keldysh part PK of the inverse propagator remains unchanged. In other words,
by introducing the cutoff ∆σk we manipulate the spectrum of single-particle excitations, which is en-
coded in the zeros of the inverse propagators PR/A(Q) or, equivalently, in the poles of the propagators
Eq. (3.22). At the transition, these poles are determined by Eq. (3.20) with κ1 = 0, i.e., we have a pole
at ω = q = 0, and as we have pointed out in the paragraph following Eq. (3.31), this leads to infrared
divergences that drive critical behavior. For the regularized propagators, on the other hand, we have
GR(ω = 0, q2 = 0) = 1/R∗

k,K̄
(0) and GA(ω = 0, q2 = 0) = 1/Rk,K̄(0) which are finite for

Rk,K̄(q2) ∼ k2, q→ 0. (3.40)

To regulate infrared divergences, it is sufficient to introduce the cutoff function in the retarded and
advanced inverse propagators, as becomes clear from the discussion following Eq. (3.22).

We have seen that the effective action Γk defined by Eq. (3.39) has an infrared-finite loop expan-
sion. Its main usefulness, however, lies in the fact that it interpolates between the action σ for k → Λ

where Λ is an ultraviolet cutoff scale, and the full effective action Γ for k → 0. This is ensured by the
requirements on the cutoff function [84]

Rk,K̄(q2) ∼ Λ2, k → Λ,

Rk,K̄(q2)→ 0, k → 0,
(3.41)

where under the condition that Λ exceeds all energy scales in the action by far, for k → Λ we may
evaluate the functional integral Eq. (3.39) in a stationary phase approximation. Then, to leading order
we find ΓΛ ∼ σ. The evolution of Γk from this starting point in the ultraviolet to the full effective
action in the infrared for k → 0 is described by the exact Wetterich flow equation [56, 69]

∂kΓk =
i
2

Tr
[(

Γ
(2̄)
k + R̄k

)−1
∂kR̄k

]
, (3.42)

where Γ
(2̄)
k and R̄k denote, respectively the second variations of the effective action and the cutoff ∆σk

and will be specified in Sec. 3.5.2; Tr denotes summation over internal field degrees of freedom as well
as integration over frequencies and momenta. The flow equation provides us with an alternative but
fully equivalent formulation of the functional integral Eq. (3.39) as a functional differential equation.
Like the functional integral, the flow equation can not be solved exactly. It is, however, amenable to
various systematic approximation strategies. Here we perform an expansion of the effective action Γk

in canonical scaling dimensions as outlined above in Sec. 3.4.3, keeping only those couplings which
are – in the sense of the RG – relevant or marginal at the phase transition.

3.5.2 Truncation

In three dimensional classical O(N)-symmetric models, already the inclusion of non-irrelevant cou-
plings gives a satisfactory description of critical phenomena [69]. As we will show below, static
critical properties of our non-equilibrium phase transition are described by such a model with N = 2.
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Therefore, in the following, we will as well restrict ourselves to the inclusion of relevant and marginal
couplings in the ansatz for the effective action, i.e., we choose a truncation of the form

Γk =

∫

X

[(
φ̄∗c, φ̄

∗
q

) ( 0 D̄A

D̄R iγ̄

) (
φ̄c

φ̄q

)
−

(
∂Ū
∂φ̄c

φ̄q +
∂Ū∗

∂φ̄∗c
φ̄∗q

)]
. (3.43)

(Here all couplings depend on the infrared cutoff scale k. However, for the sake of keeping the
notation simple, we will not state this dependence explicitly.) All terms involving derivatives are
contained in D̄R = iZ∗∂t + K̄∗∆ and D̄A = D̄R†. In contrast to the action Eq. (3.19), however, we allow
for complex coefficients Z = ZR + iZI and K̄ = Ā + iD̄: Due to the presence of complex couplings
λ+ iκ in the classical action, imaginary parts of Z and K̄ will be generated in the RG flow as indicated
at the end of Sec. 3.4.1, even though they are zero initially at k → Λ.

A complex prefactor Z of the time derivative – often referred to as wave-function renormalization
– obscures the physical interpretation of the other complex couplings: The field equation δΓk/δφ̄

∗
q = 0

contains iZ∗∂tφ̄c = −K̄∗∆φ̄c + · · · . The physical meaning of the gradient coefficient K̄ becomes clear
only after division by Z∗, i.e., in the form i∂tφ̄c = − (A − iD) ∆φ̄c + · · · where we introduced the
decomposition K = K̄/Z = A + iD into real and imaginary parts. In this form, the interpretation
of A and D as encoding coherent propagation and diffusive behavior of particles is apparent. Simi-
lar considerations hold for the other couplings in Eq. (3.43), and we will elaborate on this point in
Sec. 3.6.4.

In our truncation containing only non-irrelevant contributions, the only momentum-independent
couplings we keep are the Keldysh and spectral masses, γ̄ and ū1 = −µ̄ + iκ̄1, as well as the classical
quartic and sextic couplings (i.e., those vertices containing only one quantum field but three and five
classical field variables respectively). These are included in the part in Eq. (3.43) that involves the
potential Ū, which is a function of the U(1) invariant ρ̄c =

∣∣∣φ̄c
∣∣∣2 and given by

Ū(ρ̄c) = ū1 (ρ̄c − ρ̄0) +
1
2

ū2 (ρ̄c − ρ̄0)2 +
1
6

ū3 (ρ̄c − ρ̄0)3 , (3.44)

where both ū2 = λ̄ + iκ̄ and ū3 = λ̄3 + iκ̄3 are complex. In the symmetric phase, we keep ū1 , 0 as a
running coupling and set ρ̄0 = 0, whereas in the ordered phase we set the masses to zero, ū1 = 0, and
regard the condensate amplitude as a running coupling, ρ̄0 , 0. Then, the parameterization Eq. (3.44)
corresponds to an expansion of the potential around its minimum in both the symmetric and ordered
phases. It ensures that the field equations δΓk/δφ̄

∗
c = 0, δΓk/δφ̄

∗
q = 0 are solved by ρ̄c = 0 and ρ̄c = ρ̄0

in the symmetric and ordered phases respectively (in both cases we require φ̄q = φ̄∗q = 0) for all values
of k.

In what follows we will find it advantageous to introduce renormalized fields φc = φ̄c, φq =

Zφ̄q (the various symbols for bare/renormalized fields etc. are summarized in Tab. 3.1). With this
choice the complex wave-function renormalization Z that multiplies the time derivative in Eq. (3.43)
is absorbed in the field variables and we can write the effective action in the form (σz denotes the
Pauli matrix)

Γk =

∫

X
Φ†q

[
iσz

(
∂tΦc +

δUD

δΦ∗c

)
− δUH

δΦ∗c
+ i

γ

2
Φq

]
. (3.45)

The renormalized Keldysh mass is γ = γ̄/ |Z|2. For the variational derivatives with respect to the
classical fields we are using the notation δ/δΦ∗c =

(
δ/δφ∗c, δ/δφc

)T , and the renormalized potential
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ψ̂ field operator 3.3.1
ψσ, σ = ± fields on Keldysh contour 3.3.2

Ψσ =
(
ψσ, ψ

∗
σ

)T spinor of ±-fields 3.3.2
φν, ν = c, q classical and quantum fields 3.3.2

Φν =
(
φν, φ

∗
ν

)T spinor of c and q fields 3.3.3
Φ̄ν field expectation values/bare fields 3.3.3

Γ
(2̄)
k , R̄k derivatives WRT bare fields 3.5.1

φc = φ̄c, φq = Zφ̄q renormalized fields 3.5.2
χν,n, n = 1, 2 real fields 3.5.2

Γ
(2)
k ,Rk derivatives WRT renormalized fields 3.5.2

Z, K̄, ū1, ū2, . . . bare couplings 3.5.2
K, u1, u2, . . . renormalized couplings 3.5.2

Φ̃ν, Φ̂ν transformed bare fields 3.6
ũ1, ũ3, . . . dimensionless couplings 3.8.1

Table 3.1. Summary of notation. The columns are symbols, their meaning, and the
section in which they are introduced.

functionals that encode unitary and dissipative terms respectively, read

δUH

δΦ∗c
=

(
−A∆ + U′H

)
Φc,

δUD

δΦ∗c
=

(
−D∆ + U′D

)
Φc,

(3.46)

where A and D are the real and imaginary parts of the renormalized gradient coefficient K = K̄/Z =

A + iD. Primes denote derivatives with respect to ρc = |φc|2 of the real and imaginary parts of the
renormalized potential U = Ū/Z = UH + iUD, which is given by

U(ρc) = u1 (ρc − ρ0) +
1
2

u2 (ρc − ρ0)2 +
1
6

u3 (ρc − ρ0)3 (3.47)

with renormalized couplings u1 = ū1/Z = −µ + iκ1, u2 = ū2/Z = λ + iκ, and u3 = ū/Z = λ3 + iκ3. The
inclusion of the classical three-body coupling u3 adds the vertex

φc

φ∗cφq

φ∗c

φc φ∗c

λ3 + iκ3
(3.48)

to the building blocks Eqs. (3.22) and (3.31).

As we have already indicated, the first variational derivative of the effective action yields field
equations that determine the stationary state values of the classical and quantum fields. In the ordered
phase, these are constant in space and time and read φc|ss = φ∗c |ss =

√
ρ0 (our choice of a real

condensate amplitude does not cause a loss of generality) and φq|ss = φ∗q|ss = 0. Then, the scale-
dependent inverse connected propagator is given by the second variational derivative of the effective
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action [78–80], evaluated in stationary state. We will carry out this variational derivative in a basis
of real fields, which we introduce by decomposing the classical and quantum fields into real and
imaginary parts according to φν = 1√

2

(
χν,1 + iχν,2

)
for ν = c, q. The inverse propagator at the scale k

is then given by

Pi j(Q)δ(Q − Q′) =
δ2Γk

δχi(−Q)δχ j(Q′)

∣∣∣∣∣
ss
. (3.49)

Here the indices i, j enumerate the four components of the field vector

χ(Q) =
(
χc,1(Q), χc,2(Q), χq,1(Q), χq,2(Q)

)T
. (3.50)

Analogous to the inverse propagator in the action Eq. (3.19), the inverse propagator at the scale k is
structured into retarded, advanced, and Keldysh blocks,

P(Q) =

(
0 PA(Q)

PR(Q) PK

)
. (3.51)

However, here these blocks are themselves 2× 2 matrices. (This additional Nambu structure emerges
in the ordered phase.) We have explicitly

PR(Q) =

( −Aq2 − 2λρ0 iω − Dq2

−iω + Dq2 + 2κρ0 −Aq2

)
= PA(Q)†,

PK = iγ1.
(3.52)

These expressions can be used to deduce the dispersion relation for single-particle excitations. It is
determined by solving

det P(Q) = det
(
PR(Q)

)
det

(
PA(Q)

)
= 0 (3.53)

for ω. Due to the second relation Eq. (3.52), two of the four solutions to Eq. (3.53) are complex
conjugate. The zeros of the determinant of the retarded inverse propagator encode the two branches

ωR
1,2 = −iDq2 − iκρ0 ±

√
Aq2 (

Aq2 + 2λρ0
) − (κρ0)2, (3.54)

which differ from the mean-field expression Eq. (3.30) by the contribution −iDq2 due to the explicit
inclusion of a dissipative kinetic term in our truncation, and by the appearance of the scale dependent
gradient coefficient A. The dissipative Goldstone mode is now characterized by the low-momentum
behavior ωR

1 ∼ −i
(
D + Aλ

κ

)
q2, whereas for the “massive” (the mass is purely imaginary) mode we

reproduce the form of the mean-field expression ωR
2 ∼ −i2κρ0 – however, in a scale-dependent ver-

sion with all couplings running in the course of the RG. In this way, structural properties such as
Goldstone’s theorem are preserved during the flow. The dispersion relation Eq. (3.54) is depicted in
Fig. 3.4.

We proceed by specifying the cutoff function Rk,K̄ which appears in Eq. (3.37). We will work
with an optimized cutoff [96]

Rk,K̄(q2) = −K̄
(
k2 − q2

)
θ(k2 − q2), (3.55)

which obviously meets the requirements Eqs. (3.40) and (3.41). The regularized propagator, which
appears in the loop diagrams that generate the RG flow, reads

Gk(Q) = (P(Q) + Rk(Q))−1 , (3.56)
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Figure 3.4. (Color online) Dispersion relation of single-particle excitations in the
ordered phase. Frequencies and momenta are measured in units of the healing length
ξ = 1/

√
λρ0. (a) and (b): The Goldstone and massive modes Eq. (3.30), obtained

in mean-field approximation, are shown as, respectively, dashed and solid lines for
κ = λ/2. For small momenta both modes are purely diffusive and non-propagating.
The dotted lines in (a) correspond to the usual Bogoliubov dispersion relations for
κ = 0. (c) and (d): Dispersion relations Eq. (3.54) with gradient coefficients A,D that
are generated upon renormalization. (d) For finite D, the damping rate grows ∝ q2

for large q. The regularized dispersion relations, where aq2 is replaced by pa(q2) for
a = A,D (cf. Eq. (3.58)), are shown as a dash-dotted lines. Here we chose parameters
A = 1,D = 1/2, κ = λ, k = 1/(2ξ).

where the 4 × 4 matrix Rk(Q) is defined in analogy to the inverse propagator Eq. (3.49) as the second
variational derivative of the cutoff Eq. (3.37) with respect to the real fields Eq. (3.50),

Rk,i j(q2)δ(Q − Q′) =
δ2∆σk

δχi(−Q)δχ j(Q′)
. (3.57)

Due to the cutoff Rk(Q) in the denominator in Eq. (3.56), the poles of Gk(Q) are given by Eq. (3.54),
however, with Aq2 and Dq2 replaced by pA(q2) and pD(q2) respectively, where the function pa(q2)
for a = A,D reads

pa(q2) = aq2 − Rk,a(q2) =


ak2 for q2 < k2,

aq2 for q2 ≥ k2.
(3.58)

The thus modified dispersion relations are finite for q→ 0, i.e., infrared divergences of loop diagrams
are regularized. In panel (d) in Fig. 3.4 the regularized dispersion relations are shown as dashed-dotted
lines.

In Sec. 3.5 we introduced most of the ingredients for a FRG investigation of the steady state
driven-dissipative Bose condensation transition. Before we present the explicit flow equations in
Sec. 3.7, we will now provide a detailed discussion of the relation between our non-equilibrium
model and the classical equilibrium dynamical MA of HH [32].
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3.6 Relation to equilibrium dynamical models

Here we extend the discussion of Sec. 3.4.4 and work out the precise relation of the DDM to MA with
N = 2 components. We reemphasize that these considerations rely on the power counting introduced
in Sec. 3.4.3, which implies that we may omit quantum vertices from an effective long-wavelength
description close to criticality; The resulting action Eq. (3.45) is equivalent to a Langevin equation of
the form of Eq. (3.1) [75, 76, 93, 97].

Originally, MA was formulated in terms of such a Langevin equation for a non-conserved, coarse-
grained order parameter. It provides for a phenomenological description of the relaxational dynamics
of the order parameter subject to stochastic fluctuations, which are introduced necessarily as a conse-
quence of the coarse-graining over a volume of extent k−d

cg : The effects of fluctuations with momenta
q greater than the coarse-graining scale kcg are included by introducing random noise sources in the
evolution equation.

For our model, coarse-graining amounts to integrating out fluctuations with momenta q greater
than kcg in the functional integral Eq. (3.39) [69], which results in an effective action Γcg that can
be regarded as the starting point of a phenomenological description in the spirit of HH, i.e., we may
interpret it as the action σcg = Γcg for slow modes with momenta q < kcg.

The equation of motion of MA is constructed such that its stationary state is thermodynamic
equilibrium, which manifests itself in a FDT [32] relating the order parameter retarded response and
correlation functions. The FDT can be derived as a consequence of a specific equilibrium symmetry
of the dynamics which is related to time reversal and expresses detailed balance [90, 94, 95]. This
symmetry, however, does not restrict the dynamics to be purely relaxational as is the case in MA.
In fact, one can conceive an extension of MA by reversible mode couplings (MAR) which differs
from the DDM only in the obedience of the symmetry. (Note that the DDM generically features both
coherent and dissipative contributions). As universality classes are fully characterized by the spatial
dimensionality and symmetries of a system, however, this opens up the possibility of novel critical
behavior in the DDM.

In the remainder of this section we illuminate the consequences of the equilibrium symmetry
through a detailed comparison between MAR in which it is present at the outset and the DDM model,
where it is only emergent at long scales. We give a simple geometric interpretation of the restriction
that the symmetry imposes on the couplings that parameterize the effective action and specify the
submanifolds in the coupling space for the DDM that correspond to MA and MAR.

While these considerations demonstrate formally the non-equilibrium character of the DDM, the
equilibrium MAR constructed in the above way may seem a bit academic. In fact, as we will see in
Sec. 3.6.4 it amounts to an unrealistic fine-tuning of the ratios of all coherent vs. dissipative couplings.
The physically relevant model which the DDM should be compared to is model E, which describes
the equilibrium Bose condensation transition. An important difference between the DDM and model
E is the presence of an exact particle number conservation in the latter case which can be seen to
rule out a finite κ1 mass term.2 Therefore, according to the arguments given in Sec. 3.2, the standard
equilibrium Bose condensation transition exhibits only three independent exponents (as opposed to
four in the DDM) and, in particular, no counterpart to ηr. Moreover, as a consequence of the exact

2It may – and does – occur as a regularization, meaning however that it has to be sent to zero in such a way that it does
not affect any physical result.
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particle number conservation an additional slow mode occurs at criticality and modifies the dynamical
exponent.

3.6.1 Model A with N = 2 and reversible mode couplings (MAR)

We specify the equilibrium symmetry in terms of fields Φ̃ν which are related to the bare fields Φ̄ν of
Eq. (3.43) via

Φ̃c = Φ̄c, Φ̃q =
ZR,cg − r̄ZI,cg

1 + r̄2 (r̄1 + iσz) Φ̄q, (3.59)

where ZR,cg and ZI,cg denote the real and imaginary parts of the wave-function renormalization at the
coarse-graining scale kcg and r̄ is a real parameter, the physical meaning of which will become clear
in the following. The symmetry transformation is denoted by T and reads [90, 94, 95]

T Φ̃c(t, x) = σxΦ̃c(−t, x),

T Φ̃q(t, x) = σx

(
Φ̃q(−t, x) +

i
2T

∂tΦ̃c(−t, x)
)
,

(3.60)

cf. the implementation in the Langevin formulation Eq. (3.36). It includes complex conjugation (in
the form of multiplication with the Pauli matrix σx) and time reversal; T is the temperature. As
outlined above, we now construct the action for MAR as follows: We identify the effective action
Eq. (3.43) at the coarse-graining scale kcg with the action for low-momentum modes, σcg = Γcg,
and enforce thermodynamic equilibrium by requiring invariance of σcg under the transformation T ,
which results in

SMAR
cg =

∫

X
Φ̄†q

[(
ZR,cgσz − iZI,cg1

)
i∂tΦ̄c + (iσz − r̄1)

δŪD,cg

δΦ̄∗c
+ i

γ̄cg

2
Φ̄q

]
. (3.61)

(See App. 3.B for details of the derivation.) The action SMAR
cg contains coherent dynamics in the form

of ŪH,cg = r̄ŪD,cg, i.e., the parameter r̄ plays the role of the common fixed ratio between coherent and
dissipative couplings. This relation ensures compatibility of coherent dynamics with the equilibrium
symmetry. We note that here, crucially, both the irreversible and the reversible dynamics have the
same physical origin, being generated by the same functional ŪD,cg. This is motivated in the frame
of a phenomenological, effective model for relaxation dynamics in the absence of explicit drive.

However, not only the values of the couplings encoding coherent dynamics are restricted by the
symmetry, but also the Keldysh mass γ̄cg is determined by the temperature that appears in the sym-
metry transformation as

γ̄cg =
4

1 + r̄2

(
ZR,cg − r̄ZI,cg

)2
T. (3.62)

Finally we note that Eq. (3.61) includes MA with effectively purely dissipative dynamics as a special
case: Indeed we can derive the action for MA in the same way as we derived the action for MAR
from the truncation for the DDM, i.e., by enforcing an additional symmetry. Requiring invariance of
SMAR

cg under complex conjugation of the fields,

CΦ̃ν = σxΦ̃ν, (3.63)

we find the additional constraint r̄ = −ZI,cg/ZR,cg (see App. 3.B), reducing the number of independent
parameters further. Then, after rescaling the quantum fields with Zcg it becomes apparent that this
model describes purely dissipative dynamics as we will show in Sec. 3.6.4.
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3.6.2 Truncation for MAR

We proceed by specifying the truncation for a FRG analysis of MAR. Here it is crucial to note that the
transformation T Eq. (3.60) not only leaves the action Eq. (3.61) invariant, but is actually a symmetry
of the full theory [95], i.e., of the effective action. Then, if the cutoff ∆σk in Eq. (3.39) is T -invariant
as well (this is indeed the case for the choice Eq. (3.37)), also the scale-dependent effective action
ΓMAR

k must obey the symmetry. This requirement implies restrictions on the RG flow: Invariance of
the effective action on all scales is guaranteed by the ansatz

ΓMAR
k =

∫

X
Φ̄†q

[
(ZRσz − iZI1) i∂tΦ̄c + (iσz − r̄1)

δŪD

δΦ̄∗c
+ i

γ̄

2
Φ̄q

]
, (3.64)

which follows by enforcing the symmetry on the truncation Eq. (3.43) (see App. 3.B for details). We
note in particular that compatibility of coherent and dissipative dynamics is conserved in the RG flow.
In contrast to the DDM, here the Keldysh mass is not an independent running coupling, as it is linked
to the wave-function renormalization Z = ZR + iZI by the Ward identity of the symmetry Eq. (3.60),

γ̄ =
ZR − r̄ZI

ZR,cg − r̄ZI,cg
γ̄cg. (3.65)

In comparison to the DDM, therefore, MAR is described by a reduced number of couplings: Our
truncation Eq. (3.43) for the DDM is parameterized by a vector of couplings

ḡ =
(
Z, K̄, ρ̄0, ū1, ū2, ū3, γ̄

)T
, (3.66)

where Z, K̄, ū, ū3 are complex whereas ρ̄0, γ̄ are positive real numbers. In MAR, the real parts of
the complex couplings in the functional Ū are determined by imaginary ones and the ratio r̄ which
appears as a fixed parameter in the action at the coarse-graining scale kcg. Additionally the Keldysh
mass is related to the wave-function renormalization via Eq. (3.65), so that a reduced set of running
couplings,

ḡMAR =
(
Z, D̄, ρ̄0, κ̄1, κ̄, κ̄3

)T
, (3.67)

is sufficient to fully specify the truncation Eq. (3.64). In the purely dissipative MA, finally, the sym-
metry Eq. (3.63) determines the ratio of imaginary to reals parts of the wave-function renormalization
Z as r̄ = −ZI/ZR (see App. 3.B), so that Z can be parametrized in terms of a single real running
coupling. The truncation for MA, therefore, is described by the couplings:

ḡMA =
(
ZR, D̄, ρ̄0, κ̄1, κ̄, κ̄3

)T
. (3.68)

3.6.3 Fluctuation-dissipation theorem

In the following we will show that the symmetry Eq. (3.60) implies a classical FDT for MAR [90,
94, 95]. If we regard the full propagators of the theory as the k → 0 limits of the RG flow of scale-
dependent propagators, we may say that the FDT holds for MAR (and, a fortiori, for MA) for all
0 < k < kcg. In addition we will see that this is not the case for the driven-dissipative system we
consider. There the equilibrium symmetry is not present at mesoscopic scales but rather emergent
for the system at criticality in the infrared for k → 0. As a result, thermalization sets in only at low
frequencies and long wavelengths.
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As indicated at the beginning of the preceding section, the transformation T Eq. (3.60) is a sym-
metry of the full theory. In particular, for two-point correlation functions we have

〈φ̃ν(t, x)φ̃∗ν′(t
′, x′)〉 = 〈T φ̃ν(t, x)T φ̃∗ν′(t′, x′)〉, (3.69)

and corresponding relations hold for higher correlation functions. Here expectation values are defined
as

〈· · · 〉 =

∫
D[Φc,Φq] · · · eiSMAR

cg [Φc,Φq]. (3.70)

The relation Eq. (3.69) implies a FDT: For the particular choice of correlations between quantum
fields ν = ν′ = q which vanish by construction of the Keldysh functional integral [75–77], we find

0 = 〈φ̃q(t, x)φ̃∗q(t′, x′)〉 = 〈T φ̃q(t, x)T φ̃∗q(t′, x′)〉. (3.71)

Inserting here explicit expressions for the T -transformed fields and performing a Fourier transforma-
tion, we obtain the classical FDT

G̃K(ω,q) =
2T
ω

(
G̃R(ω,q) − G̃A(ω,q)

)
. (3.72)

Such a relation is in general not valid in the DDM. It is, however, emergent for the critical sys-
tem in the long-wavelength limit: In the basis φ̂c = φ̄c, φ̂q = i (Z/ |Z|) φ̄q we have for the inverse
propagators at the scale k (for convenience we are working here in the symmetric phase; the scale-
dependent inverse propagators are determined by the quadratic part of the effective action Eq. (3.43))
P̂R(ω,q) = i |Z| (ω − ξ∗(q)) = P̂A(ω,q)† where ξ(q) = Kq2 + u1 (note that here the renormalized
quantities appear) and P̂K = P̄K . With these inverse propagators we form the ratio

ω

2
P̂K

P̂R(Q) − P̂A(Q)
=

γ̄

4 |Z|
ω

ω − Re ξ(q)
, (3.73)

which would equal the temperature if a FDT were valid.3 As we will see in Sec. 3.8.3, the effective
action for the critical system becomes purely dissipative for k → 0. In particular we have Re ξ(q)→ 0
so that Eq. (3.73) indeed reduces to an FDT with an effective temperature

Teff =
γ̄

4 |Z| . (3.74)

Note that for purely dissipative dynamics Eq. (3.65) implies that the ratio γ̄/ |Z| is a constant of the
RG flow. For the DDM the emergence of an FDT with Teff manifests itself in the relation Eq. (3.114)
between the anomalous dimensions of γ̄ and Z valid at the fixed point. The flow of γ̄/ (4 |Z|) is shown
in Fig. 3.2.

3.6.4 Geometric interpretation of the equilibrium symmetry

For our truncation of the effective action ΓMAR
k , the relation ŪH = r̄ŪD between the real and imag-

inary parts of the functional Ū = ŪH + iŪD implies that the couplings parameterizing ŪH and ŪD

share a common ratio r̄ of real to imaginary parts

r̄ =
Ā
D̄

=
λ̄1

κ̄1
=
λ̄

κ̄
=
λ̄3

κ̄3
. (3.75)

3Due to the relation ĜK(ω,q) = −ĜR(ω,q)P̂KĜA(ω,q), in Eq. (3.72) the propagators can be replaced by the inverse
propagators.
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The same applies to the renormalized couplings, however, with a different value r: With z = −ZI/ZR

we have

r =
A
D

=
λ1

κ1
=
λ

κ
=
λ3

κ3
=

r̄ − z
1 + r̄z

. (3.76)

This can be visualized conveniently in the complex plane, where the ratio of real to imaginary parts
contains the same information as the argument of a complex number (the argument is tan(1/r)):
The renormalization of a complex coupling ḡ with Z corresponds to a rescaling |g| = |ḡ| / |Z| of the
modulus and a rotation of the phase by the argument of Z, arg g = arg ḡ − arg Z. The condition
Eq. (3.75) corresponding to MAR is depicted in Fig. 3.5 (b): All bare4 couplings lie on a single
ray. In the purely dissipative case with r = 0 and r̄ = z, which is shown in Fig. 3.5 (a), this ray
is perpendicular to Z. As a result, in this case the renormalized couplings are purely imaginary.
Generally, only the renormalized quantities allow for an immediate physical interpretation: A and
D describe propagation and diffusive behavior of particles, respectively, while λ (λ3) and κ (κ3) are
two-body (three-body) elastic collisions and loss. In the generic driven-dissipative case, we have no
a priori relations between these couplings because they are due to different physical mechanisms:
Dissipative couplings describe local incoherent single particle pump and loss, as well as local two-
body loss. On the other hand, unitary dynamics is given by coherent propagation and elastic collisions.
Geometrically, the physical couplings point in different directions in the first quadrant of the complex
plane (see Fig. 3.5 (c)), the latter restriction being due to the physical stability of the system (see
Sec. 3.3.1).

This concludes our discussion of the relation of the DDM to dynamical equilibrium models. In
the following section we will proceed to derive explicit flow equations for the couplings Eq. (3.66).

3.7 Non-Equilibrium FRG flow equations

In the following we discuss how the functional differential equation Eq. (3.42) for the effective action
is reduced to a set of ordinary differential equations by virtue of the ansatz Eq. (3.43) for Γk. First we
derive the flow equation for the effective potential, i.e., the part of the effective action that involves
all momentum-independent couplings. Then we proceed to specify the flow of the inverse propagator
which determines flow equations for the wave-function renormalization Z and the gradient coefficient
K̄. In the FRG, we approach the critical point from the ordered (symmetry-broken) side of the tran-
sition. This allows us to capture the leading divergences of two-loop effects in a calculation that is
formally one-loop [69] by means of diagrams like the second one in Eq. (3.32) in the spirit of the
background field method in gauge theories [98].

We denote the truncation Eq. (3.43), evaluated for homogeneous, i.e., space- and time-independent
“background fields” by

Γk,cq = −Ω
(
Ū′ρ̄cq + Ū′∗ρ̄qc − iγ̄ρ̄q

)
, (3.77)

(the subscript cq indicates that we have classical and quantum background fields) where Ω is the
quantization volume and the U(1) invariant combinations of fields are ρ̄cq = φ̄∗cφ̄q = ρ̄∗qc and ρ̄q =∣∣∣φ̄q

∣∣∣2. This representation of Γk,cq implies that the flow equation for the potential Ū′ can be obtained

4Here we denote the couplings that are not divided by Z as bare.
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Figure 3.5. (Color online) Visualization of the renormalization with Z. Left column:
Bare couplings. Right column: Renormalized couplings. The renormalization of a
complex coupling ḡ corresponds to a rescaling |g| = |ḡ| / |Z| of the modulus and a
rotation of the phase by the argument of Z, arg g = arg ḡ − arg Z. (a) When all bare
couplings lie on a single ray that is perpendicular to Z, the renormalized couplings
are purely imaginary as in MA. (b) Deviations from the right angle incorporate MA
with compatible reversible mode couplings. (c) In a generic non-equilibrium situation
there is no fixed relation between the arguments of the various couplings.
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from Eq. (3.42) by taking the derivative with respect to ρ̄cq and setting the quantum background fields
to their stationary value (which is zero) afterwards,

∂tŪ′ = − 1
Ω

[
∂ρ̄cq∂tΓk,cq

]
φ̄q=φ̄∗q=0

, (3.78)

where the dimensionless RG flow parameter t is related to the cutoff scale k via t = ln(k/Λ). The flow
equation for the renormalized potential follows straightforwardly by taking the scale derivative of the
relation Ū = ZU, which results in

∂tŪ′ = Z
(−ηZU′ + ∂tU′

)
, (3.79)

where we introduced the anomalous dimension of the wave-function renormalization,

ηZ = −∂tZ/Z. (3.80)

Then, using ∂ρ̄cq = Z∂ρcq , the flow equation for the renormalized potential can be written as

∂tU′ = ηZU′ + ζ′, ζ′ = − 1
Ω

[
∂ρcq∂tΓk,cq

]
φq=φ∗q=0

. (3.81)

We proceed by specifying the projection prescriptions that allow us to derive the flow of the
couplings un in the ordered phase from the flow equation (3.81). Taking the scale derivatives of the
relation un = U(n)(ρ0) we find

∂tun =
(
∂tU(n)

)
(ρ0) + U(n+1)(ρ0)∂tρ0. (3.82)

Based on the power-counting arguments of Sec. 3.4.3, our truncation includes terms up to cubic order
in the U(1) invariants, i.e., for derivatives of the effective potential of the order of n ≥ 4 we have
U(n) = 0. The flow equations for the quartic and sextic couplings are then given by (the RHS of these
equations determine the so-called β-functions)

∂tu2 = βu2 = ηZu2 + u3∂tρ0 + ∂ρcζ
′∣∣∣

ss, (3.83)

∂tu3 = βu3 = ηZu3 + ∂2
ρc
ζ′

∣∣∣
ss, (3.84)

where according to Eq. (3.82) in ζ′ we specify the classical background field ρc it to its stationary
value ρc|ss = ρ0. As we have seen above (cf. Secs. 3.3.1 and 3.4.1, the latter is determined by the
dissipative part of the field equation, i.e., by the condition Im U′(ρ0) = 0. Taking here the derivative
with respect to the RG parameter t, we find

∂tρ0 = − (
Im ∂tU′

)
(ρ0)/ Im U′′(ρ0) = − Im ζ′

∣∣∣
ss/κ. (3.85)

Having thus specified the flow equations for the couplings that parameterize the potential U, we
proceed to the Keldysh mass γ̄, which is the coefficient of the term that is proportional to the quantum
U(1) invariant ρ̄q in Eq. (3.77). We obtain the flow equation for γ̄ as

∂tγ̄ = − i
Ω

[
∂ρ̄q∂tΓk,cq

]
ss
. (3.86)
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For the renormalized Keldysh mass, which is related to the bare one via γ = γ̄/ |Z|2, we have (the
transformation from bare to renormalized fields implies ∂ρ̄q = |Z|2 ∂ρq)

∂tγ = βγ = 2ηZRγ + ζγ, ζγ = − i
Ω

[
∂ρq∂tΓk,cq

]
ss
. (3.87)

While the flow of Γk,cq (i.e., the flow equation evaluated at homogeneous background fields) yields
flow equations for all momentum-independent couplings, we have to consider the flow of the inverse
propagator

∂tP̄i j(Q)δ(Q − Q′) =

[
δ2∂tΓk

δχ̄i(−Q)δχ̄ j(Q′)

]

ss
, (3.88)

in order to derive flow equations for the wave-function renormalization Z and the gradient coefficient
K̄. The retarded component of the inverse propagator in the presence of real stationary background
fields φ̄c = φ̄∗c = φ̄0 reads

P̄R(Q) =

(−iZIω − K̄Rq2 − 2λ̄ρ̄0 iZRω − K̄Iq2

−iZRω + K̄Iq2 + 2κ̄ρ̄0 −iZIω − K̄Rq2

)
, (3.89)

Then, for the kinetic coefficient K̄ we choose from the flow equation (3.88) the elements of the inverse
propagator that do not have mass-like contributions [69] 2λ̄ρ̄0 and 2κ̄ρ̄0,

∂tK̄ = −∂q2

(
∂tP̄R

22(Q) + i∂tP̄R
12(Q)

)∣∣∣∣
Q=0

. (3.90)

The flow equation for the wave-function renormalization Z as specified below, on the other hand,
mixes massive and massless components symmetrically

∂tZ = −1
2
∂ωtr

[(
1 + σy

)
∂tP̄R(Q)

]∣∣∣∣
Q=0

. (3.91)

This choice allows for the locking of the flows of the Keldysh mass and Z as implied by the emergence
of the symmetry Eq. (3.60) in the purely dissipative IR regime (see Sec. 3.8). Finally, the flow
equation for the renormalized coefficient K follows by straightforward differentiation of its definition
K = K̄/Z in terms of bare quantities. We find

∂tK = βK = ηZK + ∂tK̄/Z. (3.92)

The truncation Eq. (3.43) is parameterized in terms of the couplings Eq. (3.66). Renormalization
of the fields with Z leads to a description in terms of g = (K, ρ0, u2, u3, γ)T (where we omit the mass
u1: as indicated above we approach the critical point from the ordered phase, i.e., we parameterize the
effective action in terms of the stationary condensate density ρ0 instead of the mass u1). In this section
we derived the β-functions for these renormalized couplings, i.e., we have specified a closed set of
flow equations ∂tg = βg(g) from which Z can be completely eliminated (the anomalous dimension
ηZ entering the β-functions can again be expressed in terms of the couplings g alone). More explicit
expressions for the β-functions are provided in App. 3.C.3).
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3.8 Scaling solutions

As one considers an effective description of a system at a continuous phase transition at longer and
longer scales (which is equivalent to following the RG flow to smaller values of k), physical observ-
ables and the couplings that describe the system exhibit scaling behavior. The search for such scaling
solutions to the flow equations is facilitated by introducing rescaled dimensionless (in the sense of the
canonical power counting introduced in Sec. 3.4.3) couplings which remain constant, i.e., by search-
ing for a fixed point of the flow equations of these rescaled couplings instead. In the following section
we introduce such rescaled couplings and derive the corresponding flow equations.

3.8.1 Scaling form of the flow equations

As a first step we trade the real parts of K, u2, and u3 for the ratios of real to imaginary parts

rK = A/D, ru2 = λ/κ, ru3 = λ3/κ3, (3.93)

which measure the relative strength of coherent and dissipative dynamics. As we will show below, at
criticality all these ratios flow to zero signaling decoherence. Their flow is given by

∂trK = βrK =
1
D

(βA − rKβD) , (3.94)

∂tru2 = βru2
=

1
κ

(
βλ − ru2βκ

)
, (3.95)

∂tru3 = βru3
=

1
κ3

(
βλ3 − ru3βκ3

)
. (3.96)

(The β-functions for the real and imaginary parts of K, u2, and u3 are specified in App. 3.C.2, see
Eq. (3.194).) We proceed by introducing a dimensionless mass term

w =
2κρ0

k2D
, (3.97)

the flow equation of which mixes contributions from the β-functions of ρ0, κ, and D, and reads

∂tw = βw = − (2 − ηD) w +
w
κ
βκ +

2κ
k2D

βρ0 , (3.98)

where the anomalous dimension of D is defined as

ηD = −∂tD/D. (3.99)

Finally we replace the quartic and sextic couplings by dimensionless ones. For a momentum-independent
n-body coupling un we can construct a corresponding dimensionless coupling by means of the relation

ũn =
k(d−2)n−d

Dn

(
γ

2

)n−1
un. (3.100)

The flow equations for the imaginary parts κ̃ and κ̃3 of the dimensionless quartic and sextic couplings,
therefore, are given by

∂tκ̃ = βκ̃ = −
(
4 − d − 2ηD + ηγ

)
κ̃ +

k−4+dγ

2D2 βκ, (3.101)

∂tκ̃3 = βκ̃3 = −
(
6 − 2d − 3ηD + 2ηγ

)
κ̃3 +

k−6+2dγ2

4D3 βκ3 , (3.102)
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and include contributions from the anomalous dimension

ηγ = −∂tγ/γ. (3.103)

Thus we are left with six dimensionless running couplings, which we collect in vectors r =(
rK , ru2 , ru3

)T and s = (w, κ̃, κ̃3)T . Their flow equations form a closed set,

∂tr = βr(r, s), ∂ts = βs(r, s). (3.104)

The β-functions on the RHS of these equations contain the anomalous dimensions ηZ , ηD, and ηγ,
which in turn can be expressed as functions of the running couplings r and s alone. We note in
passing that according to the discussion of Sec. 3.6.4, the equilibrium model MAR is described by
rK = ru2 = ru3 = r, i.e.,

rMAR = r (1, 1, 1)T (3.105)

(MA is realized for the special case r = 0). Inserting the same value r for all three ratios in the
respective β-functions we find βrK = βru2

= βru3
, which shows that for MAR the common ratio is

preserved by the flow as it should be.

Our analysis of the flow equations (3.104) will proceed in two steps: First we will search for fixed
points r∗ and s∗, which are solutions to the algebraic equations

βr(r∗, s∗) = βs(r∗, s∗) = 0. (3.106)

In Sec. 3.8.2 we briefly discuss the trivial Gaussian fixed point and then turn to the Wilson-Fisher
fixed point that describes the critical system in 3.8.3). Second we will solve the full flow equations
numerically and provide our results in Sec. 3.9. While already the linearized flow equations in the
vicinity of the Wilson-Fisher fixed point encode universal physics at the phase transition and deter-
mine the asymptotic flow of the system for k → 0 (or t → −∞), the numerical integration of the full
flow equations provides us with information on non-universal aspects such as the extent of the scaling
regime.

3.8.2 Gaussian fixed point

All β-functions vanish on the manifold of Gaussian fixed points which is parameterized by s∗ = 0 and
r∗ ∈ R3. We note that the combination of vanishing imaginary parts κ̃∗ and κ̃3∗ of the quartic and sextic
couplings and arbitrary finite ratios of real to imaginary parts implies that also the real parts of ũ2∗ and
ũ3∗ are zero on this fixed point manifold. In a linearization of the flow equations around s∗ = 0, the
fluctuation contributions vanish and the scaling behavior is determined solely by the canonical scaling
dimensions, implying in particular that the Gaussian fixed point is unstable (for small values s , s∗
the flow is directed away from the fixed point) and, therefore, physically not relevant. Non-trivial
scaling behavior at criticality is governed by the Wilson-Fisher fixed point which we will discuss in
the next section.

3.8.3 Wilson-Fisher fixed point: critical behavior

As discussed in Sec. 3.6, our driven-dissipative model reduces to MA when we set the real parts of
all renormalized couplings to zero, cf. Fig. 3.5, i.e., for r = 0. It is well-known that MA exhibits a
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non-trivial Wilson-Fisher fixed point [32], and indeed we find this fixed point at

r∗ = (rK∗, ru∗, ru′∗) = 0,
s∗ =

(
w∗, κ̃∗, κ̃′∗

)
= (0.475, 5.308, 51.383) .

(3.107)

The values of the coupling s∗ are identical to those obtained in an equilibrium classical O(2) model
from functional RG calculations at the same level of truncation [69]. We note that this fixed point
is also contained in the subspace of couplings corresponding to MAR, which is characterized by
Eq. (3.105), i.e., the phase transitions in both the equilibrium and non-equilibrium models are de-
scribed by the same fixed point. Critical behavior, however, is determined by the RG flow in the
vicinity of the fixed point. Here the non-equilibrium setting adds two more independent directions,
thereby opening up the possibility for deviations from equilibrium criticality as we will now show.

The asymptotic flow for k → 0 of the critical system is determined by a linearization of the flow
equations in the deviations δs = s−s∗, δr = r from the fixed point. In the linear regime the two sectors
corresponding to s and r decouple as described by the block diagonal stability matrix

∂t

(
δr
δs

)
=

(
N 0
0 S

) (
δr
δs

)
, (3.108)

where the 3 × 3 submatrices S and N are given by

S = ∇T
s βs

∣∣∣r=r∗,s=s∗
=


−1.620 0.088 0.005
−3.183 0.290 0.036
−15.374 −42.249 2.183

 , (3.109)

N = ∇T
r βr

∣∣∣r=r∗,s=s∗
=


0.053 0.059 0.032

0 −0.053 0.196
0.498 −2.327 1.973

 . (3.110)

The matrix N would be identically zero in the absence of anomalous additions to the canonical scaling
dimensions (note that the ratios r have canonical scaling dimension zero), or even if coherent and
dissipative couplings would exhibit identical anomalous scaling. The non-vanishing of this block
thus indicates a different universal behavior of these two types of couplings. Due to the decoupling
of the flows of r and s we may discuss the linearized flow of each set of couplings separately.

In the matrix S we find one negative eigenvalue s1 corresponding to the correlation length expo-
nent ν = −1/s1 = 0.716 (our findings for critical exponents are summarized in Tab. 3.2). Considering
that we are restricting ourselves to relevant and marginal terms in our truncation, the agreement of
the numerical value of ν with results from more sophisticated calculations [99] is reasonable. Fur-
thermore there are two complex conjugate eigenvalues s2,3 = 1.124 ± i0.622 with positive real parts
(indicating that these directions are stable). The imaginary parts are known artifacts of this level
of truncation for the O(2) model and vanish upon inclusion of higher order terms in the effective
potential [100].

The scaling behavior of the couplings Z,D, and γ is determined by the values of the respective
anomalous dimensions at the fixed point. In addition we define the anomalous dimension for the bare
kinetic coefficient K̄ as

η = −∂tK̄/K̄ =
1

1 + r2
K

[
r2

K η̄A + η̄D − irK (η̄A − η̄D)
]
, (3.111)



3.8. Scaling solutions 75

ν η z ηr

O(2) 0.716 0.039
MA 0.716 0.039 2.121

MAR 0.716 0.039 2.121 - 0.143
DDM 0.716 0.039 2.121 - 0.101

Table 3.2. Results for the correlation length exponent ν, the anomalous dimension η,
the dynamical critical exponent z, and the decoherence exponent ηr in our truncation.

where the representation in terms of η̄A and η̄D follows from the definition of these quantities in
Eq. (3.192). At the fixed point η takes the value

η = 0.039, (3.112)

which is again the result for the anomalous dimension of the classical O(2) model in d = 3 dimensions
at the same level of truncation [69] and agrees well with results from more accurate calculations [99].
In summary, the static critical behavior coincides precisely with the one of the classical O(2) model,
implying that the dynamical anomalous dimension ηZ effectively does not enter the corresponding
equations. This can be seen as follows: Inserting r = 0 in the expressions for the anomalous dimen-
sions, we find

ηZR = −ηγ, ηZI = 0. (3.113)

(We note that this holds for all values of the static couplings s, i.e., it is always realized in MA.)
These relations ensure that ηZR and ηγ compensate each other in all flow equations.5 Moreover they
imply that the ratio γ̄/ |Z| appearing on the RHS of the fluctuation-dissipation relation Eq. (3.73)
approaches a constant value at the fixed point: According to the definition of the anomalous di-
mensions Eqs. (3.80) and (3.103), close to the fixed point the flow of Z and γ is described by
Z ∼ k−ηZ (note that ηZ is real so that this behavior indeed describes algebraic scaling and does
not contain oscillatory parts) and γ ∼ k−ηγ with ηZ and ηγ evaluated at r∗ and s∗. Thus we find
γ̄/ |Z| = |Z| γ ∼ k−ηZ−ηγ = const., i.e., the symmetry Eq. (3.60), which manifests itself in this quantity
approaching a constant value (cf. Eq. (3.74)), emerges in the IR without imposing it in the microscopic
model. In other words, the driven-dissipative system obeys a classical FDT in the long-wavelength
limit (see Fig. 3.2). At the fixed point we find the value

ηZ = −ηγ = 0.161. (3.114)

Let us now consider the upper left block N of the stability matrix. It has three positive eigenvalues,

n1 = 0.101, n2 = 0.143, n3 = 1.728, (3.115)

which indicates that the ratios r are attracted to their fixed point value zero. The corresponding
eigenvectors are

u1 =


0.022
0.109
0.994

 , u2 =
1√
3


1
1
1

 , u3 =


0.802
0.469
0.370

 . (3.116)

5The cancellation of ηZR and ηγ can be made explicit by inserting the β-functions for κ and κ3, Eqs. (3.215) and (3.216)
respectively, as well as the expression for ηD that follows from Eq. (3.211), in the flow equations for κ̃ and κ̃3. In the
resulting expressions the anomalous dimensions ηZR and ηγ appear only as the sum ηZR + ηγ.
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The smallest of the eigenvalues determines the scaling behavior of r in the deep IR. In order to see
this let us expand r in the basis of eigenvectors of the matrix N,

r =

3∑

i=1

uici. (3.117)

The coefficients in this expansion are given by ci = vi · r, where vi are the left eigenvectors of N (the
latter is not symmetric and its left and right eigenvectors, therefore, are not equal), normalized such
that ui · v j = δi j. The asymptotic behavior of the flow of the so-called scaling fields [77] ci is given
by ci ∼ enit = kni , which implies that for r we indeed find

r ∼ u1kn1 = u1k−ηr , (3.118)

with only subdominant contributions in the directions of u2 and u3. This leads us to identify the
decoherence exponent

ηr = −n1 = −0.101. (3.119)

From the scaling behavior of the ratios r we may infer the one of the coherent couplings. For the
coefficient of coherent propagation A, in particular, we have

A = rK D ∼ kn1−ηD = k−ηA . (3.120)

Then, with the anomalous dimension of the dissipative kinetic coefficient D at the fixed point,

ηD = −0.121, (3.121)

we obtain the value
ηA = −0.223. (3.122)

Let us discuss the consequences of this result for the effective dispersion relation of long-wavelength
excitations, which is encoded in the running inverse propagator Eq. (3.49). Once the cutoff scale k
becomes smaller than the external momentum q, the effective infrared cutoff is given by q instead
of k [101] Then, in the dispersion relation Eq. (3.54)., which we rewrite here in terms of the scaling
variables introduced in Sec. 3.8.1 as

ωR
1,2 = Dq2

[
−i (1 + w/2) ±

√
r2

K + rKru2w − (w/2)2
]
, (3.123)

we may insert the scaling forms w ∼ w∗, rK ∼ rK0q−ηr , ru2 ∼ ru20q−ηr , and D ∼ D0q−ηD . For q → 0
both modes are purely diffusive with ωR

1 ∼ −iD0q2−ηD and ωR
2 ∼ −iD0q2−ηD (1 + w∗), and for the

dynamical critical exponent z which is defined via the relation ωR ∼ −iqz we find the value

z = 2 − ηD = 2.121. (3.124)

Above the purely diffusive IR regime, when w � rK , ru2 , the dispersion relation simplifies to

ωR
1,2 ∼ (−iD ± DrK) q2 ∼ −iD0q2−ηD ± A0q2−ηA , (3.125)

i.e., coherent propagation and diffusive contributions scale differently with the momentum q. In the
symmetric phase the branch ωR

2 is absent and the bare retarded response function is dominated by
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Figure 3.6. (Color online) Spectral density Eq. (3.128) in the scaling regime. The
solid line corresponds to the position ∼ A0q2−ηA of the peak of the Lorentzian curve
while its width ∼ D0q2−ηD is indicated by dashed lines. For comparison we also
show peak position and width for canonical scaling ∼ q2 as thin solid and dashed
lines, respectively. (Canonical and anomalous scaling forms are chosen to coincide at
qΛ = 0.1.) Parameters are A0ΛηA = Z0ΛηZ = 1 and D0ΛηD = 1/2.

a single pole at ω = ωR
1 , i.e., we have (the bare scale-dependent propagators are determined by the

quadratic part of the effective action Eq. (3.43))

ḠR(Q) =
1

Z∗
(
ω − ωR

1

) . (3.126)

As explained at the end of Sec. 3.2 this quantity and, in particular, the spectral density which is related
to its imaginary part [77],

A(Q) = −2 Im ḠR(Q), (3.127)

are direct experimental observables. For ω ≈ ωR
1 the spectral density has the shape of a Lorentzian

centered at ReωR
1 and with width determined by ImωR

1 ,

A(Q) =
2

|Z|2
ZR ImωR

1(
ω − ReωR

1

)2
+

(
ImωR

1

)2 . (3.128)

Inserting here the scaling forms Z ∼ Z0k−ηZ and Eq. (3.125) for ωR
1 with different scaling behavior

of real and imaginary parts, the structure sketched in Fig. 3.3 emerges. For the specific values of
the anomalous dimensions obtained in this section the spectral density is shown in Fig. 3.6, where a
pronounced feature is clearly visible.

Before moving on to a numerical integration of the flow equations in the next section, we briefly
contrast our findings for the DDM with the equilibrium case of MAR. There, analyzing the stability
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of the fixed point Eq. (3.107) we have to take into account only one direction r = rK = ru2 = ru3 , and
we find (as r∗ = 0 we have δr = r)

∂t

(
δr
δs

)
=

(
R 0
0 S

) (
δr
δs,

)
(3.129)

where the matrix S is the same as above and the element R is given by the “middle” eigenvalue
Eq. (3.115) of the stability matrix N in the non-equilibrium problem,

R = ∂rβr
∣∣∣
r=r∗,s=s∗

= n2, (3.130)

i.e., also in the equilibrium setting we find decoherence at the longest scales, however, with a value of
the decoherence exponent that is different from the one in non-equilibrium. Let us finally remark that
in the linearized regime, the fact that MAR is contained as a special case in the non-equilibrium prob-
lem, becomes visible in the form of the second eigenvector Eq. (3.116) which realizes the constraint
Eq. (3.105).

We finally comment on the relation of the critical exponents obtained here with other approaches.
The static critical exponent η shows very good agreement with sophisticated high order perturbative
calculations. For the dynamical critical exponent z, to the best of our knowledge, currently there are
no high-precision results for MA with N = 2 components available. (The situation is different for the
Ising-symmetric case with N = 1, where the dynamical critical exponent has been calculated with
high accuracy, see Ref. [102] and references therein.) Thus the value z = 2.121 obtained here has
to be compared to z = 2.026 which corresponds to the third order in ε-expansion [80, 103]. The
decoherence exponent (ηr = −0.101 here) has been computed in a recent complementary perturbative
field theoretical study to second order in ε-expansion, where it takes the value ηr = −0.003, see
Ref. [57]. The discrepancy between these values can only be resolved by extending the truncation
advocated here, by including higher order corrections in pertrubative field theoretical approaches, or
by means of large-scale computer simulations.

3.9 Numerical integration of flow equations

In the previous section we have seen that the flow equations Eq. (3.104) entail non-trivial critical be-
havior governed by the Wilson-Fisher fixed point Eq. (3.107). While these results were based on an
analysis of the linearized flow equations in the vicinity of the fixed point, we will now turn to a numer-
ical integration of the full non-linear equations. One the one hand, this serves to illustrate the concept
of universality: Independently from the initial values rΛ, κ̃Λ, and κ̃3Λ at the mesoscopic starting point
of the RG flow, critical behavior can be induced by a proper fine-tuning of wΛ and becomes apparent
in the approach of the RG flow to the scaling solution. Apart from that, the availability of the full flow
in the framework of the FRG allows us to extract non-universal aspects. In particular, we will give
an estimate of the Ginzburg scale, i.e., the scale that separates the region of non-universal flow from
the universal scaling regime and thus is important for determining experimental requirements on the
necessary frequency resolution.

Our approach for finding numerical solutions to the flow equations that exhibit critical behavior
is as follows: We choose initial values rΛ, κ̃Λ, and κ̃3Λ at the mesoscopic scale k = Λ (t = 0), which
are appropriate for the description of the model introduced in Sec. 3.3. This model contains two-body
elastic interactions and loss, while three-body terms are contained only in an effective low-momentum
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description, implying κ̃Λ ≈ 1 and κ̃3Λ � 1. The dissipative kinetic coefficient D is very small in the
microscopic description, so that rKΛ � 1 initially, while for the two-body terms we have ru2Λ ≈ 1.
The latter generate the three-body couplings and we assume that ru3Λ ≈ 1 as well. For such a choice
of initial values, there is a critical value wΛ = wc so that the resulting RG trajectories r(t) and s(t)
approach the scaling solution, i.e., the fixed point, for k → 0 (t → −∞). Any solution obtained by
numerically integrating the flow equations with wΛ fine-tuned to wc, however, eventually always flows
away from the fixed point, as due to limited accuracy the solution develops a non-zero component in
the unstable direction of the fixed point at some stage. For all solutions shown in the figures we
choose wΛ slightly below wc, so that the trajectory at large RG “times” t flows to the symmetric phase
with w = 0.

When such a near-critical trajectory approaches the scaling solution, the couplings s flow towards
their fixed point values s∗ on a scale 1/Re s2,3 ≈ 1 determined by the eigenvalues s2,3 of the stability
matrix S , cf. Fig. 3.7, and stay there for a long “time” ts. Depending on how close wΛ is to wc, this
duration is typically ts = 10 to 20 which corresponds to several orders of magnitude in k/Λ. During
ts the ratios r decay according to Eq. (3.117), i.e., as the sum of three exponentials, with decay rates
given by the eigenvalues Eq. (3.115) of the stability matrix N. In order to extract these eigenvalues
from the numerical solution, we consider the flow of the coefficients ci ∼ enit in the expansion of r in
the basis of eigenvectors of N Eq. (3.117). Figure 3.7 shows c1,2 along with exponential fits, which
reproduce the eigenvalues n1,2 to satisfactory accuracy.

An important result of the previous section is the scaling relation Eq. (3.114) between the anoma-
lous dimensions ηZ and ηγ of the wave-function renormalization and the Keldysh mass respectively,
which implies that when evaluated along a critical trajectory, the value of −ηγ approaches the one
of the real part ηZR of ηZ , while the imaginary part ηZI flows to zero. This prediction – physically
implying asymptotic thermalization – is verified numerically in Fig. 3.8.

As the anomalous dimensions ηa of a = Z,D, and γ are functions of the renormalized dimen-
sionless couplings r and s alone and not the quantities a themselves, we get the solutions to the flow
equations ∂ta = −ηaa simply by exponentiating the integrals of the anomalous dimensions along RG
trajectories r(t) and s(t), i.e.,

a(t) = aΛe−
∫ t

0 dt′ηa . (3.131)

In this way we obtain the trajectories of K shown in Fig. 3.9 and the flow of the effective temperature
Teff = γ̄/ (4 |Z|) = γ |Z| /4 which according to the discussion in Sec. 3.6.3 at low frequencies saturates
to a constant value as illustrated in Fig. 3.2. While this asymptotic value depends on the initial values
of γ̄ and Z at the scale Λ and is, therefore, non-universal, the manner in which it is approached is
universal as it is determined by the exponent ηr: According to Eq. (3.131) the flow of Teff is given by

Teff(t) = TeffΛe−
∫ t

0 dt′(ηZR+ηγ). (3.132)

Close to the fixed point we may expand the anomalous dimensions in the exponential in powers of
δr = r and δs. As both ηZR and ηγ are even functions of r there is no linear term in the expansion
and we may write for a = ZR and γ (here we are indicating the anomalous dimension evaluated at the
fixed point explicitly as ηa∗):

ηa = ηa∗ +
1
2

r ·
[
∇T

r ∇rηa
]
r=δs=0

r, (3.133)

where we are neglecting corrections that are quartic in |r| or contain mixed powers of |r| and |δs|. Both
types of corrections are small as compared to the leading contribution that is quadratic in |r|: In the
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Figure 3.7. (Color online) (a) The flow of c1 (solid line) describes the vanishing
of coherent dynamics. A fit with ln c1 = a1t + b1 in the region t ∈ [−24,−20] (the
points t = −24 and t = −20 are highlighted by dots on the trajectory) yields the slope
a1 = 0.10 in agreement with smallest eigenvalue n1 = −ηr of the stability matrix
Eq. (3.110). We also show the evolution of the coefficient c2 (dashed line). For the
evolution of c2, the slope of a linear fit is a2 = 0.14 and reproduces the eigenvalue
n2. In the scaling region, the coefficient c3 drops to very small values . 10−11 on
a scale 1/n3 ≈ 0.6. The exponential decay of the components of r is in this range
still dominated by the contribution stemming from c2. (b) The couplings 10w (solid),
κ̃ (dashed), and 10−1κ̃3 (dot-dashed) are close to their fixed point values in the range
from t ≈ −5 to t ≈ −25. A measure for the extent of the universal domain is given by the
Ginzburg scale Eq. (3.136) which here takes the value tG ≈ −3.4. Initial conditions for
both (a) and (b) are rKΛ = ruΛ = 10, ru3Λ = 1, wΛ ≈ 0.05810, κ̃ = 0.5, and κ̃3 = 0.01.
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Figure 3.8. (Color online) Anomalous dimensions ηZR (solid), ηZI (dashed), and −ηγ
(dot-dashed) for the solution of Fig. 3.7. From t ≈ −5 to t ≈ −25, where the values
of s are close to the scaling solution, ηZR takes the constant value Eq. (3.114), while
ηZI decays to zero. The value of −ηγ approaches the one of ηZR so that Eq. (3.114) is
satisfied at late “times” t. Eventually, as the trajectory is driven away from the fixed
point and enters the symmetric phase with w = 0, the anomalous dimensions drop to
zero.

scaling regime we have |r| ∼ e−ηr∗t � |δs| ∼ eRe s2,3t, where s2,3 are eigenvalues with positive real parts
Re s2 = Re s3 of the stability matrix S Eq. (3.109) and determine the leading corrections to scaling in
the static sector. Therefore, neglecting exponentially small corrections, we have

ηa = ηa∗ + η′′a e−2ηr∗t. (3.134)

Note that the quantities η′′a depend on the precise prefactor in the scaling form Eq. (3.118) of r, i.e.,
they depend on microscopic parameters and are thus non-universal. Then, using Eq. (3.134) and
keeping in mind that ηγ∗ = −ηZR∗, we find the asymptotic behavior

Teff(t) = Teff0

(
1 +

η′′ZR + η′′γ
2ηr∗

e−2ηr∗t
)
, (3.135)

where in the last line we are again dropping exponentially small corrections. This form confirms the
physical intuition that long-wavelength thermalization of the DDM is governed by the exponent that is
unique to this model and manifestly witnesses the microscopic non-equilibrium nature of this model.
We finally note that the effective temperature defined in Eq. (3.74) is not the one that enters the FDT
Eq. (3.72) for MAR. The latter can be established by means of the basis transformation Eq. (3.59)
which involves the parameter r̄. This parameter, however, is characteristic the of MAR and has no
counterpart in the DDM.

The near-critical trajectories we consider in this section illustrate the concept of universality in
that they show how details of the microscopic model, which determine the initial conditions of the
RG flow, are lost as we lower k → 0, where all of these trajectories converge towards the scaling
solution, cf. Fig. 3.1. However, a distinctly non-universal feature of these trajectories is the point
where the crossover to the universal regime takes place, which is known as the Ginzburg scale [78–
80]. Physically, the Ginzburg scale marks the breakdown of mean-field theory as we approach the
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Figure 3.9. (Color online) Equilibrium vs. non-equilibrium flow: (a) As discussed
in Sec. 3.6.4, in thermodynamic equilibrium all couplings lie on a single ray in the
complex plane. (b) This geometric constraint is absent out-of-equilibrium. We show
g = 10K, ũ, and 10−1ũ3 as solid, dashed, and dot-dashed lines respectively. Stages
of the flow at t = 0,−8, and −16 are indicated with points on the trajectories. Initial
values are (a) rΛ = 10,wΛ = 0.01281 and (b) rKΛ = 10, ruΛ = 5, ru3Λ = 1,wΛ =

0.01264. In both cases we have κ̃Λ = 0.1, κ̃3Λ = 0.01, and KΛ = 1 + i0.1.
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fluctuation-dominated critical region. In a perturbative estimate in the symmetric phase, we compare
the bare distance from the phase transition κ1 to the corresponding one-loop correction. Demanding
these quantities to be of the same order of magnitude yields [19]

κ1G =
1

D3
Λ

(
γΛκΛ

2C

)2
, (3.136)

where C is a numerical constant (we find C = 2π if we set the bare value κ1G exactly equal to its
one-loop correction). Expressing κ1G through a momentum scale as κ1G = DΛk2

G we find Eq. (3.3),
and for the dimensionless RG “time” tG = ln (kG/Λ), in terms of the dimensionless two-body loss
rate κ̃ introduced in Sec. 3.8.1, we have

tG = ln (κ̃Λ/C) . (3.137)

Fitting this logarithmic dependence to numerically obtained trajectories in Fig. 3.1, we find C ≈ 14.8.
The Ginzburg scale delimits also the region where the driven-dissipative system obeys a FDT and the
ratio Teff = γ̄/ (4 |Z|) saturates to a constant value as shown in Fig. 3.2.

3.10 Conclusions

We have studied the nature of Bose criticality in driven open systems. To this end, starting from a
description of the microscopic physics in terms of a many-body quantum master equation, we have
developed and put into practice a FRG approach based on a Keldysh functional integral reformulation
of the quantum master equation for the quantitative determination of the universality class. The
absence of both an exact particle number conservation and the detailed balance condition were seen
to underly the existence of a new and independent critical exponent governing universal decoherence,
while the distribution function shows asymptotic thermalization despite the microscopic driven nature
of the system.

This work is just a first step in the exploration of non-equilibrium critical behavior. Key questions
for future studies concern the status of critical points in lower dimensionality as, e.g., relevant for
current exciton-polariton systems. In particular, in Ref. [66] it has been shown that the thermal fixed
point is unstable in two dimensions, and instead is replaced by the non-equilibrium Kardar-Parisi-
Zhang [43] fixed point. It is also a key issue to investigate different symmetries beyond the O(2)
case. For example, Heisenberg models realized with ensembles of trapped ions may exhibit O(3)
symmetry [104]. Furthermore, given the fact that many light-matter systems are pumped coherently as
opposed to the incoherent pump considered here, it will be important to understand the impact of the
coherent drive on potential criticality in these classes of systems. Finally, it is an intriguing question
whether driven open systems which realize non-equilibrium counterparts of quantum criticality can be
identified. In the long run, it remains to be seen whether a classification of non-equilibrium criticality
with similarly clear structure as familiar from equilibrium dynamical criticality [32] can be reached.
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3.A Markovian dissipative action

3.A.1 Translation table: Master equation vs. Keldysh functional integral

Here we specify the relation between second quantized master equation and the equivalent Keldysh
functional integral, defined with a markovian dissipative action. In particular, we review how the
presence of external driving underlies the validity of the master equation and markovian dissipative
action. We start from a master equation governing the time evolution of a system density matrix,

∂tρ̂ = −i
[
Ĥs, ρ̂

]
+ κ

(
L̂ρ̂L̂† − 1

2

{
L̂†L̂, ρ̂

})
. (3.138)

Here, Ĥs is a system Hamiltonian generating the unitary evolution and L̂ is a Lindblad operator mak-
ing up the dissipative part of the Liouvillian. For simplicity we consider only a single dissipative
channel. The generalization to several channels as in Eq. (3.6), realized through the coupling to
several baths, is straightforward. Equation (3.138) results from a more general system-bath setting,
Ĥtot = Ĥs + Ĥb + Ĥsb (Ĥb and Ĥsb are a quadratic bath Hamiltonian with a continuum of frequen-
cies and a system-bath Hamiltonian linear in the bath operators, respectively) under the following
three assumptions: (i) the system-bath coupling

√
γ(ω) is weak compared to a typical scale ω0 in the

system (or, by energy conservation, in the bath) indicating, e.g., the level spacing in an atom (Born
approximation γ(ω)/ω0 � 1) (ii) the frequency dependence of the system-bath coupling is negligible
over the bandwidth ϑ of the bath centered around ω0, implying δ-correlations in the time domain
(Markov approximation γ(ω) ≈ const.), and (iii) the system is driven with an external field with fre-
quency ν to bridge the large energy separation of the levels, (ν − ω0) / (ν + ω0) � 1. This makes it
possible to work in the rotating wave approximation, in which only the detuning ∆ = ν − ω0 occurs
as a physical scale, while all fast terms involving ν + ω0 are dropped. From this consideration, it
is clear that the master equation is an accurate description of strongly driven systems coupled to an
environment. A typical realization in quantum optics is an atom with two relevant levels separated
by ω0, connected by an external laser drive with frequency ν, which is detuned from resonance by
∆ = ν−ω0. Only the laser drive makes the excited level accessible and gives rise to two-level dynam-
ics such as Rabi oscillations, with frequency determined by the laser intensity. The excited level is
unstable and can undergo spontaneous emission by coupling to the radiation field, providing for the
reservoir – this mechanism is physically completely independent of the coherent dynamics. Alterna-
tively but fully equivalent to the operator formalism, the above approximations can be performed in a
Keldysh path integral setting (see below). In this way, the physics of a given quantum master equation
becomes amenable to quantum field theoretical approaches, which is particularly useful for bosonic
and fermionic driven-dissipative many-body systems. Here the starting point is the Keldysh partition
function

Z =

∫
D[a∗, a, b∗, b]e−iσtot[a∗,a,b∗,b], (3.139)

which results from a “Trotterization” of the Hamiltonian dynamics (after normal ordering) acting on
the density matrix in the integrated form of the von Neumann equation in the basis of coherent states;
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in this process, the second quantized system and bath field operators, âi (the index i denotes both
position and internal indices, such as different particle species) and b̂µ (µ labels the bath modes and
will be chosen a continuous index below) respectively, are mapped to time-dependent complex valued
fields in the action

σtot =
∑

σ=±
σ

∫
dt


∑

i

a∗i,σ(t)i∂tai,σ(t) +
∑

µ

b∗µ,σ(t)i∂tbµ,σ(t) − Htot,σ(t)

 , (3.140)

where Htot,σ(t) is a quasilocal polynomial of these fields. The relative minus sign for the evolution on
the forward (+) and backward (-) contours clearly reflects the commutator structure in the von Neu-
mann equation of motion for the system-bath density operator above. We have omitted an imaginary
regularization term ensuring convergence of the functional integral [75–77] for simplicity, as it does
not affect any of the next steps. Integrating out the harmonic bath variables using approximations
(i) – (iii) and considering for the moment Lindblad operators L̂ which are linear in the system field
operators, we arrive at the following effective Markovian dissipative action:

σ =
∑

σ

σ

∫
dt


∑

i

a∗i,σ(t)i∂tai,σ(t) − Hs,σ(t)

 − iκ
[
L+(t)L∗−(t) − 1

2
(
L∗+(t)L+(t) + L∗−(t)L−(t)

)]
.

(3.141)
While the relative minus sign for the system Hamiltonian Hs on the + and - contours preserve the
commutator structure, the dissipative terms clearly reflect the temporally local Lindblad structure
of Eq. (3.138). We thus arrive at a simple translation rule for bosonic6 master equations into the
corresponding Keldysh functional integral: (i) the temporal derivative terms can be read off from the
last equation; (ii) for all (normal ordered) operators on the right (left) of the density matrix, introduce
a contour index + (-) and write down the Markovian dissipative action. The linear Lindblad operators
we consider here are not affected by normal ordering. For the more general case of Lindblad operators
that are quasilocal polynomials in the system field operators, operator ordering can be tracked by a
suitable temporal regularization procedure as elaborated in the next section.

3.A.2 Derivation in the Keldysh setting

Here we present a derivation of the Markovian dissipative action in the ± basis for arbitrary (non-
linear) Lindblad jump operators, which allows for the most direct comparison with the master equa-
tion. In particular, we pay special attention to the question how the operator ordering in the master
equation is reflected in the path integral formulation. We leave the system action unspecified, requir-
ing only the property that after proper rotating frame transformation the evolution of the system is
much slower than the correlation time of the bath τc = 1/ϑ (broadband bath). The action of the bath
is, in the ± basis,

σb =
∑

µ

∫
dtdt′

(
b∗µ,+(t), b∗µ,−(t)

) ( G++
µ (t, t′) G+−

µ (t, t′)
G−+
µ (t, t′) G−−µ (t, t′)

)−1 (
bµ,+(t′)
bµ,−(t′)

)
. (3.142)

6For fermions, additional signs arise due to the Grassmann nature of the fermion field, but a similar translation table
exists.
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The Green’s functions for the oscillators of the bath are assumed to be in thermal equilibrium and
read

G+−
µ (t, t′) = −in̄(ωµ)e−iωµ(t−t′),

G−+
µ (t, t′) = −i

(
n̄(ωµ) + 1

)
e−iωµ(t−t′),

G++
µ (t, t′) = θ(t − t′)G−+

µ (t, t′) + θ(t′ − t)G+−
µ (t, t′),

G−−µ (t, t′) = θ(t′ − t)G−+
µ (t, t′) + θ(t − t′)G+−

µ (t, t′).

(3.143)

The linear coupling between system and the bath is (note that the case of several dissipative channels
and local baths as in Eq. (3.6) can be implemented by adding appropriate indices to the Lσ and bµ,σ
and summing over these indices)

σsb =
∑

µ

√
γµ

∫
dt

(
L∗+(t)bµ,+(t) + L+(t)b∗µ,+(t) − L∗−(t)bµ,−(t) − L−(t)b∗µ,−(t)

)
, (3.144)

where L± correspond to the quantum jump operators which are typically quasilocal polynomials of
the system’s creation and annihilation operators. To be consistent with the derivation of the path
integral, we require the jump operators to have been normal ordered before the Trotter decomposition
giving rise to the path integral. The partition function is of the general form

Z =

∫
D[a∗, a, b∗, b]ei(σs[a∗,a]+σb[b∗,b]+σsb[a∗,a,b∗,b]), (3.145)

Now we integrate out the bath via completion of the square which results in an effective action σeff

for the system degrees of freedom. The contribution σeff,µ of the µth mode to the effective action
reads

σeff,µ = γµ

∫
dtdt′

(
L∗+(t),−L∗−(t)

) (G++
µ (t, t′) G+−

µ (t, t′)
G−+
µ (t, t′) G−−µ (t, t′)

) (
L+(t′)
−L−(t′)

)
. (3.146)

The signs for the operators on the − contour comes from the backward integration in time. Thus the
mixed terms will occur with an overall − sign, while the ++ and −− terms come with an overall +.
Summing over all the modes µ we obtain the effective action for the field variables of the subsystem
due to the coupling to the bath. We now take the continuum limit of densely lying bath modes,
centered around some central frequency ω0 and with bandwidth ϑ. That is, we substitute the sum
over the modes with an integral in the energy Ω weighted by a (phenomenologically introduced)
density of states ν(Ω) of the bath

∑
µ γµ '

∫ ∞
0 dΩγ(Ω)ν(Ω), and obtain

σeff = −
∫ ω0+ϑ

ω0−ϑ
dΩγ(Ω)ν(Ω)

∫
dtdτ

(
L∗+(t),−L∗−(t)

) (G++
Ω

(τ) G+−
Ω

(τ)
G−+

Ω
(τ) G−−

Ω
(τ)

) (
L+(t − τ)
−L−(t − τ)

)
, (3.147)

where in addition we have used the translation invariance of the bath Green’s function, Gαβ
Ω

(t, t′) =

Gαβ
Ω

(t − t′) to suitably shift the integration variables. We consider the various terms separately. In
doing the Markov approximation, we use (a) that by assumption it is possible to choose a rotating
frame in which the evolution of the system is slow compared to the scales in the bath, ωsys � ω0, ϑ.
In this case, a zeroth order temporal derivative approximation for the jump operators is appropriate.
This gives rise to a temporally local form of the markovian dissipative action. However, for the
evaluation of tadpole diagrams for this action, ambiguities due to a temporally local vertex arises. In
these diagrams – and only in these – it is then important to specify the proper regularization of the
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system’s Green’s function at equal time arguments. To keep track of this, we indicate the sign of the
next time step in the approximated jump operators by t±δ = t ± δt. In step (b) below, we assume that
the density of states and the coupling of the system to bath are well approximated as constant over
the relevant reservoir width,

−
∫

dtL∗+(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)G+−

Ω (τ)L−(t − τ)

= i
∫

dtL∗+(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)n̄(Ω)e−iΩτL−(t − τ)

(a)≈ i
∫

dtL∗+(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)n̄(Ω)e−iΩτL−(t−δ)

(b)≈ i
∫

dtL∗+(t)γν
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
n̄(Ω)e−iΩτL−(t−δ)

≈ i
∫

dtL∗+(t)γν
∫ ∞

−∞
dΩn̄(Ω)δ(Ω − ω0)L−(t−δ)

= iκn̄
∫

dtL∗+(t)L−(t−δ),

(3.148)

where we have shifted the frequency integration domain by −ω0 and taken the limit ϑ → ∞, as well
as κ = γν and n̄ = n̄(ω0). Further note the relation to the operator formalism

∫ ∞
−∞

dΩ
2π n̄(Ω)e−iΩτ =

〈b̂†(τ)b̂(0)〉. Similarly,

−
∫

dtL∗−(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)G−+

Ω (τ)L+(t − τ) ≈ iκ(n̄ + 1)
∫

dtL∗−(t)L+(t−δ) (3.149)

and
∫ ∞
−∞

dΩ
2π (n̄(Ω) + 1)e−iΩτ = 〈b̂(τ)b̂†(0)〉. For the terms on the forward contour, we obtain

∫
dtL∗+(t)

∫
dτ

∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)G++

Ω (τ)L+(t − τ)

= −i
∫

dtL∗+(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω) [θ(τ) (n̄(Ω) + 1) + θ(−τ)n̄(Ω)] e−iΩτL+(t − τ)

(a)≈ −i
∫

dtL∗+(t)
∫

dτ
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω) [θ(τ) (n̄(Ω) + 1) + θ(−τ)n̄(Ω)] e−iΩτL+(t−δ)

(b)≈ −i
∫

dtL∗+(t)γν
[∫

dτθ(τ)
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
(n̄(Ω) + 1) e−iΩτ +

∫
dτθ(−τ)

∫ ω0+ϑ

ω0−ϑ
dΩ

2π
n̄(Ω)e−iΩτ

]
L+(t−δ)

≈ −i
∫

dt
{[

1
2
κ (n̄ + 1) − iδE1

]
L∗+(t)L+(t−δ) +

(
1
2
κn̄ + iδE2

)
L∗+(t)L+(t+δ)

}
.

(3.150)
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In the last line we have used
∫

dτθ(τ)
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
(n̄(Ω) + 1)e−iΩτL+(t−δ)

≈
∫ ∞

−∞
dΩ

2π
(n̄(Ω) + 1)

(
πδ(Ω − ω0) − iP 1

Ω − ω0

)
L+(t−δ)

=

[
1
2
κ (n̄ + 1) − iδE1

]
L+(t−δ)

(3.151)

and
∫

dτθ(−τ)
∫ ω0+ϑ

ω0−ϑ
dΩ

2π
n̄(Ω)e−iΩτL+(t−δ)

=

∫
dτθ(τ)

∫ ω0+ϑ

ω0−ϑ
dΩ

2π
n̄(Ω)e+iΩτL+(t+δ)

≈
∫ ∞

−∞
dΩ

2π
n̄(Ω)

(
πδ(Ω − ω0) − iP 1

Ω − ω0

)
L+(t+δ)

=

(
1
2
κn̄ + iδE2

)
L+(t+δ).

(3.152)

Importantly, note the sign change in the regularization of the time argument upon reversal of integra-
tion direction. This gives a hint which operator “comes first” in the coarse grained evolution where
the bath has been integrated out, and reflects the fact that in the corresponding master equation, the
“cooling” dissipation terms ∼ (n̄ + 1) are normal ordered in the jump operators (∼ L̂†L̂), while the
“heating” terms ∼ n̄ are anti-normal ordered (∼ L̂L̂†). Similarly, we obtain on the backward contour,

∫
dtL∗−(t)

∫
dτ

∫ ω0+ϑ

ω0−ϑ
dΩ

2π
γ(Ω)ν(Ω)G−−Ω (τ)L−(t − τ)

≈ −i
∫

dt
{[

1
2
κ (n̄ + 1) + iδE1

]
L∗−(t)L−(t+δ) +

(
1
2
κn̄ − iδE2

)
L∗−(t)L−(t−δ)

}
, (3.153)

where the changes in the signs relative to the forward term emerge from the reverse signs in the
θ-functions. In summary, we obtain the following dissipative contribution to the action:

σd = −iκ
∫

dt
{

(n̄ + 1)
[
L∗−(t)L+(t−δ) − 1

2
(
L∗+(t)L+(t−δ) + L∗−(t)L−(t+δ)

)]

+n̄
[
L∗+(t)L−(t−δ) − 1

2
(
L∗+(t)L+(t+δ) + L∗−(t)L−(t−δ)

)]}
. (3.154)

In addition, there is a “Lamb shift” which reads

σL = −
∫

dt
[
δE1

(−L∗+(t)L+(t−δ) + L∗−(t)L−(t+δ)
)

+ δE2
(
L∗+(t)L+(t+δ) − L∗−(t)L−(t−δ)

)]
. (3.155)

This gives a contribution to the coherent dynamics which has the same physical origin as the dissi-
pative dynamics. However, typically there is a dominant independent Hamiltonian contribution, such
that the effective Hamiltonian parameters after the Lamb shift renormalization are properly regarded
as independent of the Liouvillian ones.
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3.B Symmetry constraints on the action and truncation for MAR

In this section we derive the action Eq. (3.61) and the truncation Eq. (3.64) for MAR. Our starting
point is the truncation Eq. (3.43) appropriate for the driven-dissipative model on which we impose
invariance under the equilibrium symmetry transformation Eq. (3.60). This leads to Eq. (3.64) which
reduces to the action Eq. (3.61) when we set k = kcg.

In terms of the bare spinors Φ̄ν the truncation for the DDM can be written as

Γk =

∫

X
Φ̄†q

[
(ZRσz − iZI1) i∂tΦ̄c − δŪH

δΦ̄∗c
+ iσz

δŪD

δΦ̄∗c
+ i

γ̄

2
Φ̄q

]
. (3.156)

We perform the change of basis Eq. (3.59) and obtain for the contributions in the sum Γk = Γdyn,k +

ΓH,k + ΓD,k + Γreg,k the expressions

Γdyn,k = i
r̄ZR + ZI

ZR,cg − r̄ZI,cg

∫

X
Φ̃†qσz∂tΦ̃c, (3.157)

ΓH,k =
i

ZR,cg − r̄ZI,cg

∫

X
Φ̃†qσz

(
r̄
δŪD

δΦ̃∗c
− δŪH

δΦ̃∗c

)
, (3.158)

ΓD,k = − 1
ZR,cg − r̄ZI,cg

∫

X
Φ̃†q

(
δŪD

δΦ̃∗c
+ r̄

δŪH

δΦ̃∗c

)
, (3.159)

and

Γreg,k =
i

ZR,cg − r̄ZI,cg

∫

X
Φ̃†q

(
(ZR − r̄ZI) i∂tΦ̃c +

1 + r̄2

ZR,cg − r̄ZI,cg

γ̄

2
Φ̃q

)
. (3.160)

Both Γdyn,k and ΓD,k are symmetric under the transformation Eq. (3.60). Demanding the remaining
contributions ΓH,k and Γreg,k to be invariant we find that a term of the form of Eq. (3.158) is actually
forbidden by the symmetry, i.e., we must have ΓH,k = 0, which is satisfied for ŪH = r̄ŪD. For the
regularization term Γreg,k we obtain the additional constraint Eq. (3.65). All these requirements are
implemented in the truncation Eq. (3.64) which is easily seen to reduce to Eq. (3.61) for k = kcg.

If in addition to the equilibrium symmetry we demand invariance under complex conjugation of
the fields Eq. (3.63) as is the case for MA, we find the condition Γdyn,k = 0. This is met for all
0 < k < kcg if r̄ = −ZI/ZR.

3.C Non-Equilibrium FRG flow equations

Here we present details of the derivation of the non-equilibrium FRG flow equations in Sec. 3.7. To
start with, we rewrite the flow equation (3.42) such that only renormalized quantities appear on the
RHS,

∂tΓk =
i
2

Tr
[(

Γ
(2)
k + Rk

)−1
∂̃tRk

]
. (3.161)

The second functional derivatives appearing under the trace on the RHS are taken with respect to
renormalized real fields Eq. (3.50). These can be written in terms of the bare ones as χ(Q) = zχ̄(Q),
where the matrix z is given by

z = 1 ⊕
(
ZR −ZI

ZI ZR

)
. (3.162)
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The linear transformation from bare to renormalized fields implies for functional derivatives the rela-
tions

Γ
(2̄)
k = zT Γ

(2)
k z, R̄k = zT Rkz, (3.163)

and inserting these in the flow equation (3.42) yields Eq. (3.161) if in addition we replace the deriva-
tive with respect to t by the differential operator ∂̃t which is defined as

∂̃t ≡ ∂tRk,K̄∂Rk,K̄
+ ∂tR∗k,K̄∂R∗

k,K̄
. (3.164)

With this definition we may write ∂tR̄k = ∂̃tR̄k, which has the advantage that ∂̃t commutes with the
multiplicative renormalization with Z (note that also Z is a running coupling and depends on t), i.e.,
we have

∂̃tR̄k = ∂̃t
(
zT Rkz

)
= zT

(
∂̃tRk

)
z. (3.165)

Furthermore, since ∂̃t acts only on the cutoff and not the inverse propagator Γ
(2)
k , we may rewrite the

exact flow equation (3.161) in the simple form

∂tΓk =
i
2

Tr ∂̃t ln
(
Γ

(2)
k + Rk

)
. (3.166)

3.C.1 Expansion in fluctuations

According to its definition in Sec. 3.3.3, the effective action is a functional of the field expectation
values, and also the flow equation (3.166) can be evaluated for arbitrary field configurations. A partic-
ularly useful form of the flow equation can be obtained by decomposing the fields into homogeneous
and frequency- and momentum-dependent fluctuation parts as χ(Q) = χδ(Q) + δχ(Q) and expanding
the logarithm on the RHS of Eq. (3.166) to second order in the fluctuations δχ(Q). Then, the zeroth
order term determines the flow of the momentum-independent couplings whereas the β-functions for
the wave-function renormalization and the gradient coefficient can be obtained from the second order
contribution.

We begin by deriving an explicit expression for the full inverse propagator Γ
(2)
k up to second order

in δχ. To this end we rewrite the effective action Eq. (3.45) in the form

Γk =
1
2

∫

Q
χ(−Q)T D(Q)χ(Q) −

∫

X
V, (3.167)

where
∫

Q =
∫ dωddq

(2π)d+1 . The frequency- and momentum-dependent part of the inverse propagator
Eq. (3.49) is denoted by D(Q) = P(Q)−P(0), and the effective potential V that contains all momentum-
independent couplings is given by

V = U′ρcq + U′∗ρqc − iγρq. (3.168)

The second functional derivative of the effective action can then be expressed as the sum of two
contributions,

Γ
(2)
k (Q,Q′) = D(Q)δ(Q − Q′) −V(2)(Q,Q′), (3.169)
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where the second term is just the functional derivative of the effective potential,

V(2)
i j (Q,Q′) =

δ2

δχi(−Q)δχ j(Q′)

∫

X
V =

∫

X
ei(Q−Q′)XV (2)

i j , (3.170)

which can be reduced to ordinary (i.e., not functional) partial derivatives with respect to the fields in
the time domain and real space,

V (2)
i j =

∂2

∂χi∂χ j
V. (3.171)

Setting the fluctuation components of the fields to zero in Eq. (3.169) we obtain the inverse propagator
in the presence of homogeneous classical and quantum background fields,

Pcq(Q)δ(Q − Q′) = Γ
(2)
k (Q,Q′)

∣∣∣
δχ=0 =

(
D(Q) − V (2)

cq

)
δ(Q − Q′). (3.172)

Note that the difference between Pcq(Q) and the inverse propagator Eq. (3.49) is that in the latter the
background fields are set to their stationary values while in the former they remain unspecified. The
background fields are all contained in the second contribution V (2)

cq which we split into 2 × 2 blocks
according to

V (2)
cq =


V (2)H

cq V (2)A
c

V (2)R
c V (2)K

 . (3.173)

While the upper left block V (2)H
cq is linear in the quantum fields (and, therefore, vanishes when we set

these to zero, giving rise to the causality structure of the inverse propagator Eq. (3.49)),

V (2)H
cq,11 =

[(
ρcq + ρqc

)
U(3)

H + i
(
ρcq − ρqc

)
U(3)

D

]
χ2

c,1 +
(
ρcq + ρqc + 2χc,1χq,1

)
U′′H

+i
(
ρcq − ρqc + i2χc,1χq,2

)
U′′D,

V (2)H
cq,12 = V (2)H

cq,21 =
(
χc,2χq,1 + χc,1χq,2

)
U′′H +

(
χc,1χq,1 − χc,2χq,2

)
U′′D

+χc,1χc,2
[(
ρcq + ρqc

)
U(3)

H + i
(
ρcq − ρqc

)
U(3)

D

]
,

V (2)H
cq,22 =

[(
ρcq + ρqc

)
U(3)

H + i
(
ρcq − ρqc

)
U(3)

D

]
χ2

c,2 +
(
ρcq + ρqc + 2χc,2χq,2

)
U′′H

+i
(
ρcq − ρqc − i2χc,2χq,1

)
U′′D,

(3.174)

the retarded and advanced components only contain classical background fields (hence we omit the
index q),

V (2)R
c =


U′H + χc,1

(
χc,2U′′D + χc,1U′′H

)
U′D + χc,2

(
χc,2U′′D + χc,1U′′H

)

χc,1
(
χc,2U′′H − χc,1U′′D

)
− U′D U′H + χc,2

(
χc,2U′′H − χc,1U′′D

)
 , V (2)A

c =
(
V (2)R

c

)†
,

(3.175)
and the Keldysh component is field-independent and given by V (2)K = −iγ1. In Eq. (3.166), the
inverse propagator is supplemented by the cutoff to yield the regularized propagator

Pk,cq(Q) = Pcq(Q) + Rk(q2), (3.176)

which determines the zeroth order contribution in the fluctuation expansion of the flow equation.

We proceed by expanding the inverse propagator Eq. (3.169) to second order in the fluctuations
δχ. With Eq. (3.172) we may write

Γ
(2)
k (Q,Q′) = Pcq(Q)δ(Q − Q′) + F (Q,Q′) + O

(
δχ3

)
, (3.177)
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where the matrix F is given by the sum F = F1 + F2 with F1,2 being of first and second order in δχ.
The explicit dependence of these matrices on the fluctuations reads

F1(Q,Q′) = −
∑

i

V (3)
i δχi(Q − Q′), (3.178)

F2(Q,Q′) = −1
2

∑

i j

V (4)
i j

∫

P
δχi(−P)δχ j(P + Q − Q′). (3.179)

Here, for given values of i and j the quantities V (3)
i and V (4)

i j are 4 × 4 matrices defined as the partial
derivatives of V (2),

V (3)
i =

∂V (2)

∂χi
, V (4)

i j =
∂V (2)

∂χi∂χ j
. (3.180)

Inserting the decomposition Eq. (3.177) in Eq. (3.166) and expanding the logarithm in the fluctuations
δχ yields

∂tΓk =
i
2

[
Tr ∂̃t ln Pk,cq − 1

2
∂̃t Tr

(
Gk,cqF1

)2
]
, (3.181)

where Gk,cq(Q) = Pk,cq(Q)−1 is the propagator in the presence of classical and quantum background
fields. Note that the appearance of G2

k,cq makes the trace in the last term UV-convergent and thereby
allowed us to commute ∂̃t with Tr. In the expansion Eq. (3.181) we are keeping only terms of ze-
roth and second order, as these determine, respectively, the flow of the effective potential and the
frequency- and momentum-dependent contributions to the inverse propagator. We also omit a term
∂̃t Tr Gk,cqF2 which in our truncation with momentum-independent vertices does not contribute to the
flow of Z and K̄.

3.C.2 Flow equation for the effective potential

Equation (3.181) reduces to the flow equation for the effective potential if we set the fluctuations δχ
to zero. Then the second term on the RHS vanishes and we have

1
Ω
∂tΓk,cq =

i
2

∫

Q
∂̃t ln detcq(ω, q2) (3.182)

where detcq(ω, q2) = det Pk,cq(Q) denotes the determinant of the regularized inverse propagator
Eq. (3.176) in the presence of classical and quantum background fields. Since our model is symmetric
under simultaneous phase rotations φν → eiαφν of the classical and quantum fields, the determinant
detcq(ω, q2) can be expressed as a function of the U(1)-invariant field combinations ρc, ρcq, ρqc, and
ρq. It can not be written as a function of these invariants without ambiguity though, as can be seen by
noting that the product of four fields φ∗cφ∗qφcφq equals both ρcρq and ρcqρqc. However, the form of the
field-dependent contribution Eq. (3.173) to the inverse propagator implies that detcq(ω, q2) contains
terms that are at most quadratic in the quantum fields and that there is no contribution that contains
φ∗qφq but no classical fields. All contributions containing quantum and classical fields can be ex-
pressed in powers of ρc, ρcq, and ρqc. Therefore, in the following we will consider detcq(ω, q2) to
be a function of this reduced set of invariants. Then, inserting Eq. (3.182) in the definition of ζ′ in
Eq. (3.81) we find

ζ′ = − i
2

∫

Q
∂̃t

{
1

detc(ω, q2)

[
∂ρcqdetcq(ω, q2)

]
ρcq=ρqc=0

}
, (3.183)
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where detc(ω, q2) = det Pk,c(Q) is the determinant of the regularized propagator with only classical
background fields,

Pk,c(Q) = Pk,cq(Q)
∣∣∣
φq=φ∗q=0, (3.184)

which differs from Pk,cq(Q) only in the block V (2)H
cq (note that the other blocks in Eq. (3.173) do not

contain quantum fields) which vanishes for φq = φ∗q = 0. Accordingly the inverse propagator Pk,c(Q)
acquires the causality structure Eq. (3.51) which implies that the determinant detc(ω, q2) factorizes
into retarded and advanced contributions,

detc(ω, q2) = detRc (ω, q2)detA
c (ω, q2). (3.185)

These are simply related by a change of the sign of the frequency variable, detRc (ω, q2) = detA
c (−ω, q2).

Inserting Eq. (3.185) in Eq. (3.183) we can rewrite the latter as

ζ′ = 2vd

∫ ∞

0
dxxd/2−1∂̃tζ

′(x), (3.186)

where vd =
(
2d+1πd/2Γ(d/2)

)−1
and we introduced a new integration variable x = q2; the function

appearing in the integrand is given by the integral over frequencies

ζ′(q2) = − i
4π

∫ ∞

−∞
dω

[
∂ρcqdetcq(ω, q2)

]
ρcq=ρqc=0

detA
c (ω, q2)detA

c (−ω, q2)
, (3.187)

which can be performed with the aid of Ref. [105], p. 308, 18. (where a factor of (−1)n+1 is miss-
ing [106]). We omit the rather lengthy result.

Let us proceed by specifying the action of ∂̃t in Eq. (3.186). The function ζ′(x) depends on the
cutoff via its dependence on pa(x) for which we have ∂̃t pa(x) = −∂̃tRk,a(x), see Eq. (3.58), and thus

∂̃tζ
′(x) = −

∑

a=A,D

∂̃tRk,a(x)∂pa(x)ζ
′(x). (3.188)

Recalling the definition Eq. (3.164) of the differential operator ∂̃t according to which it effectively
acts as a scale derivative of the bare cutoff, we find

∂̃tRk,A(x) = Re
(
∂tRk,K̄(x)/Z

)
,

∂̃tRk,D(x) = Im
(
∂tRk,K̄(x)/Z

)
.

(3.189)

Inserting here the expression

∂tRk,K̄(x) = −
[(

2K̄ + ∂tK̄
)

k2 − ∂tK̄x
]
θ(k2 − x), (3.190)

we end up with
∂̃tRk,a(x) = −

[
(2 − η̄a) k2 + η̄ax

]
aθ(k2 − x), (3.191)

where we defined

η̄A = − 1
A

Re
(
∂tK̄/Z

)
, η̄D = − 1

D
Im

(
∂tK̄/Z

)
. (3.192)
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Plugging these results in Eq. (3.186) and using that the θ-function restricts the range of integration
over x to the interval [0, k2], where pa(x) = ak2 (cf. Eq. (3.58)) and therefore ζ′(x) = ζ′(k2) does not
depend on x, we get

ζ′ =
8vdkd+2

d

∑

a

(
1 − η̄a

d + 2

)
a
[
∂pa(x)ζ

′(x)
]

pA(x)=Ak2,pD(x)=Dk2 . (3.193)

The further evaluation of this expression is most conveniently performed on the computer using Math-
ematica.

In Sec. 3.7 we specified prescriptions that allow us to obtain flow equations for the complex two-
and three-body couplings from the flow equation for the effective potential, cf. Eqs. (3.83) and (3.84).
When we switch to Mathematica for an explicit evaluation of the flow equations, however, it is more
convenient to work with real couplings. The flow equations for the quartic and sextic couplings are
then given by

∂tλ = βλ = ηZRλ − ηZIκ + λ3∂tρ0 + ∂ρcζ
′
H

∣∣∣
ss,

∂tκ = βκ = ηZRκ + ηZIλ + κ3∂tρ0 + ∂ρcζ
′
D

∣∣∣
ss,

∂tλ3 = βλ3 = ηZRλ3 − ηZIκ3 + ∂2
ρc
ζ′H

∣∣∣
ss,

∂tκ3 = βκ3 = ηZRκ3 + ηZIλ3 + ∂2
ρc
ζ′D

∣∣∣
ss,

(3.194)

where we decompose ζ′ = ζ′H+iζ′D and ηZ = ηZR+iηZI into real and imaginary parts. For completeness
we also state the flow equation of ρ0 in terms of these quantities:

∂tρ0 = βρ0 = −ζ′D
∣∣∣
ss/κ. (3.195)

To conclude this section let us specify the flow equation for γ. Similar to Eq. (3.186) we can
express the quantity ζγ defined in Eq. (3.87) as

ζγ = 2vd

∫ ∞

0
dxxd/2−1∂̃tζγ(x). (3.196)

As anticipated in the paragraph following Eq. (3.182), the determinant detcq(ω, q2) can be expressed
in terms of ρc, ρcq, and ρqc solely. Therefore, the term that is proportional to φ∗qφq and determines the
flow of γ can then be found taking the derivative

∂2

∂φ∗q∂φq
=
∂ρcq

∂φq

∂ρqc

∂φ∗q
∂2

∂ρcq∂ρqc
= ρc

∂2

∂ρcq∂ρqc
, (3.197)

and we find for the integrand in Eq. (3.196) the expression

ζγ(q2) =
ρ0

4π

∫ ∞

−∞
dω


∂2
ρcq,ρqc

detcq(ω, q2)

detc(ω, q2)
− ∂ρcqdetcq(ω, q2)∂ρqcdetcq(ω, q2)

det2c(ω, q2)


ss

. (3.198)

This can be treated in the same way as Eq. (3.187) above.
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3.C.3 Flow equation for the inverse propagator

The second term on the RHS of Eq. (3.181) determines the flow of both the wave-function renor-
malization and the gradient coefficient. It is quadratic in the fluctuations δχ, hence we can write it
as

Tr
(
Gk,cqF1

)2
∣∣∣∣∣
ss

= −i2
∫

Q
δχ(−Q)T Σ(Q)δχ(Q), (3.199)

where we set the fields to their stationary values. Σ(Q) can be visualized as consisting of one-loop
diagrams with four external legs two of which are attached to the condensate (cf. the second diagram
on the RHS of Eq. (3.32)) and is given by

Σi j(Q) =
i
2

∫

P
tr

(
Gk(P)V (3)

i Gk(P + Q)V (3)
j

)
, (3.200)

where Gk(Q) = Pk(Q)−1 with the inverse propagator given by Eqs. (3.51) and (3.52) to which the
cutoff Rk(q2) has to be added. For φc = φ∗c = φ0 and φq = φ∗q = 0 the matrices V (3)

i have the structure

V (3)
i =

(
vH

3,i vA
3,i

vR
3,i 0

)
, vH

3,1 = vH
3,2 = 0, vR/A

3,3 = vR/A
3,4 = 0. (3.201)

Inserting this expression in Eq. (3.200) above and taking the causality structure of the propagator into
account, we can rewrite the integrand in the form (P+ = P + Q)

tr
(
Gk(P)V (3)

i Gk(P+)V (3)
j

)
= tr

(
GK

k (P)vH
3,iG

K
k (P+)vH

3, j

)

+ tr
(
GK

k (P)vH
3,iG

R
k (P+)vR

3, j

)
+ tr

(
GR

k (P)vR
3,iG

K
k (P+)vH

3, j

)

+ tr
(
GK

k (P)vA
3,iG

A
k (P+)vH

3, j

)
+ tr

(
GA

k (P)vH
3,iG

K
k (P+)vA

3, j

)
. (3.202)

Then the second and third equalities in Eq. (3.201) imply that Σ(Q) has the same causality structure
as the inverse propagator. For the retarded block we find

ΣR
i j(Q) =

i
2

∫

P

[
tr

(
GK

k (P)vH
3,i+2GR

k (P+)vR
3, j

)
+ tr

(
GA

k (P)vH
3,i+2GK

k (P+)vA
3, j

)]
, (3.203)

where now the indices i and j take the values 1, 2, and the Keldysh component is given by

ΣK
i j(Q) =

i
2

∫

P
tr

(
GK

k (P)vH
3,i+2GK

k (P+)vH
3, j+2

)
. (3.204)

The frequency integrals appearing in Eqs. (3.203) and (3.204) can be evaluated by straightforward
application of the resiude theorem: GR

k (Q) has simple poles ωR
1,2 given by Eq. (3.54) with Aq2 and

Dq2 replaced by pA(q2) and pD(q2) respectively. While the poles of the advanced propagator ωA
1,2 are

complex conjugate to the poles of the retarded propagator, GK
k (Q) has poles at both ωR

1,2 and ωA
1,2. We

omit the lengthy expression for Σ(Q) after frequency integration.

Combining Eqs. (3.88) and (3.181), the flow equation for frequency- and momentum-dependent
part of the the bare inverse propagator can be written as

∂t
(
P̄(Q) − P̄(0)

)
= −zT

(
∂̃tΣ(Q)

)
z, (3.205)
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with the matrix z defined in Eq. (3.162). Inserting this expression in the flow equations for the wave-
function renormalization Z and the gradient coefficient K̄, Eqs. (3.91) and (3.90) respectively, we find
after some algebra,

ηZ = −1
2
∂ωtr

[(
1 + σy

)
∂̃tΣ

R(Q)
]∣∣∣∣

Q=0
, (3.206)

∂tK̄/Z = ∂q2

(
∂̃tΣ

R
22(Q) + i∂̃tΣ

R
12(Q)

)∣∣∣∣
Q=0

. (3.207)

The real and imaginary parts of the anomalous dimension ηZ , which appear in the flow equations (3.194)
of the real quartic and sextic couplings, are then given by

ηZR = Re ηZ = −1
2
∂ωtr

(
σy∂̃tΣ

R(Q)
)∣∣∣∣

Q=0
, (3.208)

ηZI = Im ηZ = − i
2
∂ωtr

(
∂̃tΣ

R(Q)
)∣∣∣∣

Q=0
. (3.209)

Here we used the relation ΣR(Q) = ΣR(−Q)∗ which implies ∂ωΣR(0) = −∂ωΣR(0)∗. To further eval-
uate ηZR and ηZI we switch to Mathematica. The derivatives with respect to the frequency can be
carried out without any difficulty and ∂̃t can be calculated as in Eq. (3.188) above. Again the integral
over spatial momenta is facilitated by the θ-function contained in ∂̃tRk,a(x) and can be carried out
analytically.

Finally, for the real and imaginary parts of the renormalized kinetic coefficient K = K̄/Z = A + iD
we have

∂tA = βA = Re ∂tK = ηZRA − ηZID − η̄AA, (3.210)

∂tD = βD = Im ∂tK = ηZRD + ηZIA − η̄DD, (3.211)

where using ∂q2ΣR(0) = ∂q2ΣR(0)∗ (note that Σ(Q) depends only on the norm squared q2 of the spatial
momentum) we may express the quantities η̄A and η̄D defined in Eq. (3.192) as

η̄A = − 1
A
∂q2 ∂̃tΣ

R
22(Q)

∣∣∣
Q=0 = − 1

2A
∂2

q∂̃tΣ
R
22(Q)

∣∣∣
Q=0,

η̄D = − 1
D
∂q2 ∂̃tΣ

R
12(Q)

∣∣∣
Q=0 = − 1

2D
∂2

q∂̃tΣ
R
12(Q)

∣∣∣
Q=0.

(3.212)

We will proceed with the evaluation of these expressions in the next section.

3.C.4 Computation of gradient coefficient anomalous dimensions

As the cutoff Eq. (3.55) is a non-analytic function of the momentum, the evaluation of the derivatives
in Eq. (3.212) requires some care. In this section we present two approaches to this problem: The first
one was introduced by Wetterich in Ref. [101] and the second one makes use of Morris’ lemma [107].
Our starting point is Eq. (3.203) in which we set the external frequencyω to zero. Using the shorthand∫

p =
∫ ddp

(2π)d we may write

ΣR(0,q) =

∫

p
σR(pA, pD, pA+, pD+). (3.213)
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Here and in the following for the sake of brevity we will omit the arguments in pa ≡ pa(x) and
pa± ≡ pa(x±) for a = A,D, x = q2 and x± = |p ± q|2. The integrand in the above expression is given
by the integral over the frequency component of the internal momentum P = (ν,p),

σR
i j(pA, pD, pA+, pD+) =

i
2

∫
dν
2π

[
tr

(
GK

k (P)vH
3,i+2GR

k (P+)vR
3, j

)
+ tr

(
GA

k (P)vH
3,i+2GK

k (P+)vA
3, j

)]
.

(3.214)
Our notation makes explicit that the momentum dependence of the regularized propagator Gk(Q) is
contained in the functions pa(q2) introduced in Eq. (3.58). Inserting Eq. (3.214) in the expressions
for the anomalous dimensions Eq. (3.212) we find

η̄A = − 1
2A

∂2
q

∣∣∣
q=0

∫

p
∂̃tσ

R
22(pA, pD, pA+, pD+),

η̄D = − 1
2D

∂2
q

∣∣∣
q=0

∫

p
∂̃tσ

R
12(pA, pD, pA+, pD+).

(3.215)

In the following we will discuss the evaluation of η̄A while we will only state the result for η̄D. Let
us begin by introducing the abbreviations ∂a ≡ ∂pa(x) and ∂a± ≡ ∂pa(x±). In the integrand we omit the
arguments and write σR

22+
≡ σR

22(pA, pD, pA+, pD+) and σR
22− ≡ σR

22(pA−, pD−, pA, pD). We recall that
the derivative ∂̃t acts only on the cutoff, hence we have

η̄A =
1

2A
∂2

q

∣∣∣
q=0

∫

p

∑

a

∂̃tRk,a(x)∂a
(
σR

22+ + σR
22−

)
, (3.216)

where we performed a change of integration variables p→ p − q in the second term.

Wetterich’s method

Following Ref. [101] we introduce new variables: With y = x − k2 and z =
(
x − k2

)
θ(x − k2) = yθ(y)

we have
pa(x) = a

(
k2 + z

)
. (3.217)

We now use the fact that an expansion of the integrand in Eq. (3.216) in powers of z± is effectively
equivalent to an expansion in q2: Below we will see that due to the θ-functions contained in z± and
∂̃tRk,a(x) the integration over p is restricted to a region that is O(q) for q→ 0. In this region p ≈ k and
the prefactor of the θ-function in the definition of z±, therefore, is also O(q). Hence we may restrict
ourselves to the first order in the expansion

a∂aσ
R
22± = a∂aσ

R
22±

∣∣∣
z±=0 + A±z± + O

(
z2
±
)
, (3.218)

where the coefficient of the linear term is

A± = a∂a

∑

b

b∂b±σR
22±

∣∣∣
z±=0. (3.219)

The zeroth order term does not depend on q and can be discarded from the expression for η̄A which
now becomes

η̄A =
1

2A
∂2

q

∣∣∣
q=0

∫

p

∑

a

1
a
∂̃tRk,a(x) (A+z+ + A−z−) . (3.220)
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Inserting here the explicit expressions for z± = y±θ(y±) we find

η̄A = − 1
2A

∂2
q

∣∣∣
q=0 (B+ + B−) , (3.221)

where using Eq. (3.191) we have

B± =
∑

a

∫

p

[
(2 − η̄a) k2 + η̄ax

]
θ(k2 − x)θ(y±)A±y±. (3.222)

Due to the first θ-function only momenta p within a circle of radius k centered at the origin contribute
to the integral (hence we may set pa(x) = ak2 in A±), while the second θ-function excludes all p
inside a circle of radius k centered at ∓q. In the resulting area of integration – which is itself O(q) as
anticipated above – we have p ≈ k for q → 0. Without loss of generality we choose q = (q, 0, . . . )
and decompose the integral as

∫
p =

∫
pt

∫ ∞
−∞

dp1
2π , where p1 is the component in the direction of q, i.e.,

p = (p1,pt), and pt ∈ Rd−1. The integrand does not depend on the direction of pt, hence, using (this
relation holds for d ≥ 2; for d = 1 there is no integration over pt)

∫

pt

f (xt) = 2vd−1

∫ ∞

0
dxt x

(d−3)/2
t , (3.223)

where the integration variable on the RHS is xt = p2
t , we have

B± =

∫ ∞

0
dxt

∫ ∞

−∞
dp1θ(k2 − x)θ(y±)b±, (3.224)

where
b± =

vd−1

π
x(d−3)/2

t

∑

a

[
(2 − η̄a) k2 + η̄ax

]
A±y±. (3.225)

In Eq. (3.224) the θ-functions restrict the range of integration to

k2 − p2
1 − xt > 0, (p1 ± q)2 + xt − k2 > 0. (3.226)

The first of these inequalities allows for a solution for p1 only if 0 < xt < k2. Then it implies

− α < p1 < α. (3.227)

where α =
√

k2 − xt. The second inequality is equivalent to

p1 > α ∓ q ∨ p1 < −α ∓ q. (3.228)

For B+ we have to consider the upper sign. Then Eq. (3.227) and the first inequality Eq. (3.228) have
the joint solution

max {−α, α − q} < p1 < α. (3.229)

Splitting the integration over xt into two ranges 0 < xt < xt0 where xt0 = k2 − q2/4 and xt0 < xt < k2

we can specify the maximum explicitly as

max {−α, α − q} =


α − q for 0 < xt < xt0,

−α for xt0 < xt < k2.
(3.230)



3.C. Non-Equilibrium FRG flow equations 99

The second inequality Eq. (3.228) and Eq. (3.227) do not have a common region of validity, and we
find

B+ =

∫ xt0

0
dxt

∫ α

α−q
dp1b+ +

∫ k2

xt0

dxt

∫ α

−α
dp1b+. (3.231)

Let us now consider B−: Eq. (3.227) and the second inequality Eq. (3.228) are solved by

− α < p1 < min {α,−α + q} . (3.232)

where in the same ranges of xt as above the minimum is

min {α,−α + q} =


−α + q for 0 < xt < xt0,

α for xt0 < xt < k2.
(3.233)

The first inequality Eq. (3.228) and Eq. (3.227) can not be fulfilled at the same time. Thus we have

B− =

∫ xt0

0
dxt

∫ −α+q

−α
dp1b− +

∫ k2

xt0

dxt

∫ α

−α
dp1b−. (3.234)

Now it is straightforward to carry out the integral over xt in both B+ and B− and we obtain the result

B± =
4vd

d
kd+2q2

∑

a

A±. (3.235)

Inserting this in Eq. (3.221) and using that setting z± = 0 in Eq. (3.219) is the same as setting q = 0
and p = k we find

η̄A = −4vd

dA
kd+2

∑

a,b

ab∂a
[
∂b+σ

R
22+ + ∂b−σR

22−
]
q=0,p=k

. (3.236)

Both terms on the RHS give the same contribution. Then, carrying out a similar analysis for η̄D yields

η̄A = −8vd

dA
kd+2

∑

a,b

ab∂a∂b+σ
R
22+

∣∣∣
q=0,p=k,

η̄D = −8vd

dD
kd+2

∑

a,b

ab∂a∂b+σ
R
12+

∣∣∣
q=0,p=k,

(3.237)

The remaining derivatives can straightforwardly be performed using Mathematica.

Morris’ lemma

The same results can also be obtained by a direct evaluation of the derivatives in Eq. (3.216),

η̄A =
1

2A

∫

p

∑

a,b

∂̃tRk,a(x)∂a

{∑

c

∂2
b+,c+σ

R
22+ p′b+ p′c+

(
∂qx+

)2

+ ∂b+σ
R
22+

[
p′′b+

(
∂qx+

)2
+ p′b+∂

2
qx+

]
+ (+→ −)

}∣∣∣∣∣
q=0

(3.238)
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Upon setting q = 0 in the terms in braces, x± are replaced by x. Then we may drop all terms
that include the product ∂̃tRk,a(x)p′b as it contains θ-functions that do not have a common support:
According to Eq. (3.191) ∂̃tRk,a(x) is proportional to θ(k2 − x), while p′b(x) = bθ(x − k2). With
∂qx±|q=0 = ±2p · q̂ (here q̂ denotes the vector of unit length in the direction of q) we find

η̄A =
2

dA

∫

p
x
∑

a,b

∂̃tRk,a(x)p′′b ∂a
[
∂b+σ

R
22+ + ∂b−σR

22−
]
q=0

, (3.239)

where we used ∫

p
(p · q̂)2 f (p) =

1
d

∫

p
p2 f (p) (3.240)

The second derivative p′′b (x) = bδ(x − k2) contains a δ-function and, therefore, we set p = k in the
terms in brackets. (Note that pa(x) is continuous at x = k2.) Then, Using Morris’ lemma according
to which we can replace δ(x)θ(x) → 1

2δ(x) when this combination is multiplied by a function that is
continuous at x = 0, we have

∂̃tRk,a(x)p′′b (x) = −abk
2
δ(p − k). (3.241)

Evaluating the integral over p with the aid of the δ-function reproduces the result Eq. (3.236).
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Fluids of exciton-polaritons, excitations of two dimensional quantum wells in optical cavities,
show collective phenomena akin to Bose condensation. However, a fundamental difference from
standard condensates stems from the finite life-time of these excitations, which necessitate contin-
uous driving to maintain a steady state. A basic question is whether a two dimensional condensate
with long range algebraic correlations can exist under these non-equilibrium conditions. Here we
show that such driven two-dimensional Bose systems cannot exhibit algebraic superfluid order
except in low-symmetry, strongly anisotropic systems. Our result implies, in particular, that re-
cent apparent evidence for Bose condensation of exciton-polaritons must be an intermediate scale
crossover phenomenon, while the true long distance correlations fall off exponentially. We obtain
these results through a mapping of the long-wavelength condensate dynamics onto the anisotropic
Kardar-Parisi-Zhang equation.

4.1 Introduction

One of the most striking discoveries to emerge from the study of non-equilibrium systems is that they
sometimes exhibit ordered states that are impossible in their equilibrium counterparts. For example, it

†The author of the thesis contributed to the understanding of the distinction between driven-dissipative condensate
dynamics and equilibrium dynamical models, and to the comparison with experimental findings. He was also actively
involved in preparing the manuscript together with the other authors.
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has been shown [1] that a two-dimensional “flock” - that is, a collection of moving, self-propelled enti-
ties - can develop long-ranged orientational order in the presence of finite noise (the non-equilibrium
analog of temperature), and in the absence of both rotational symmetry breaking fields and long
ranged interactions. In contrast, a two-dimensional equilibrium system with short-ranged interactions
(e.g., a two-dimensional ferromagnet) cannot order at finite temperature; this is the Mermin-Wagner
theorem [2].

In this paper, we report an example of the opposite phenomenon: A driven, two-dimensional Bose
system, such as a gas of polariton excitations in a two-dimensional isotropic quantum well [3], cannot
exhibit off-diagonal algebraic correlations (i.e., two-dimensional superfluidity).1 In the polariton gas,
the departure from thermal equilibrium is due to the incoherent pumping needed to counteract the
intrinsic losses and maintain a constant excitation density.

The critical properties of related driven quantum systems have been the subject of numerous
theoretical studies; in certain cases it can be shown that the low frequency correlation functions
induced by driving are identical to those in equilibrium systems at an effective temperature set by the
driving [7–11]. Such emergent equilibrium behavior occurs in three dimensional bosonic systems,
although non-equilibrium effects can change the dynamical critical behavior [11, 12]. Here, we show
that the non-equilibrium conditions imposed by the driving have a much more dramatic effect on
two-dimensional Bose systems: effective equilibrium is never established in the generic isotropic
case; instead, the non-equilibrium nature of the fluctuations inevitably destroys the condensate at
long scales. We emphasize that dissipation alone, e.g., due to coupling to an dissipative equilibrium
bath, would not have an adverse effect on the condensate. Rather, it is crucial to have both dissipation
and driving, giving rise to a true non-equilibrium steady-state situation.

This conclusion follows from the known [13–16] connection between the Complex Ginzburg-
Landau equation (CGL) (which describes the long wavelength dynamics of a driven condensate)
and the Kardar-Parisi-Zhang (KPZ) equation [17], or, in the anisotropic case, the anisotropic KPZ
equation [18], which were originally formulated to describe randomly growing interfaces. The non-
equilibrium fluctuations generated by the drive translate into the non-linear terms of the KPZ equation.

Our results suggest that recent experiments [19–24] done with isotropic semiconductor quantum
wells purporting to show evidence for the long sought [25] Bose condensation of polariton exci-
tations are in fact observing an intermediate length scale crossover phenomenon, and not the true
long-distance behavior of correlations. This is true despite the weak anisotropy, present in these ex-
periments due to the splitting of transverse electric and transverse magnetic cavity modes [3, 26],
which proves to be far too weak to create sufficient anisotropy at reasonable laser driving power. We
remark that earlier work, which predicted long range algebraic order in two-dimensional driven con-
densates [27], relied on a linear (Bogoliubov) theory. Although this may be valid on intermediate
scales, our analysis shows that it fails at long distances due to the relevant non-linearity.

On the other hand, performing the same mapping on the anisotropic CGL leads, as noted by Grin-
stein et al. [15, 16], to the anisotropic KPZ equation. This suggests, as also noted by those authors,

1We will throughout this paper follow the literature on the equilibrium Kosterlitz-Thouless transition [4, 5] and refer to
an algebraically ordered phase as a “superfluid phase,” even though the nature of its response (i.e., whether or not it has
a well-defined superfluid density) remains an open question for future investigation. We note, however, that it has been
shown by J. Keeling [6] that, within the Gaussian approximation, superfluid response persists in the presence of drive and
dissipation in two dimensions, concomitant with algebraically decaying correlations in the same approximation. Since the
anisotropic KPZ equation approaches a Gaussian fixed point in the algebraically ordered phase, it seems reasonable to
expect superfluid response in this phase.
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that algebraic order can prevail if the system is anisotropic, in the sense that the non-linear coupling
parameters are different in different directions. Then the transition from this algebraically ordered
phase to the disordered phase occurs by a standard equilibrium-like Kosterlitz-Thouless transition.
This requires very strong anisotropy, which may seem unnatural in the case of exciton-polaritons
in two dimensional quantum wells. However, mapping a realistic model of such a system to the
anisotropic KPZ equation shows that the anisotropy of the KPZ non-linearities is a function of the
driving laser power. Surprisingly, we find that even if the intrinsic anisotropy of the system is moder-
ate, the effective anisotropy increases with pump power and eventually passes the threshold allowing
for an effective equilibrium description. Then, not only does an algebraically ordered phase occur,
but it does so in a reentrant manner: the phase is entered, and then left, as the driving laser power is
increased.

We emphasize that the results reported here are universal, in the sense that they apply to all driven
open quantum systems with phase rotation symmetry in two dimensions. They are thus of relevance
to a variety of experiments in which competition between coherent and driven-dissipative dynamics
occur, such as microcavity arrays [28, 29] or ultracold atoms [30]. However, at present ensembles
of exciton-polaritons stand out as the most promising realization of this physics, as the ability to
tune laser power provides a crucial ”knob” which can be ”turned” to make the system more non-
equilibrium. (Note that this goal is opposite to that of some recent work, which has strived to reach
the equilibrium limit [24].) In particular, below we present parameter estimates which demonstrate
that our predictions should be in reach with current technology.

4.2 Model

The dynamics of a driven-dissipative system like a polariton condensate is determined both by coher-
ent processes, such as the dispersion and scattering between polaritons, and independent dissipative
processes induced by loss and the pumping field. A model of the condensate dynamics that incorpo-
rates these processes is

∂tψ(x, t) = −δHd

δψ∗
− i

δHc

δψ∗
+ ζ(x, t). (4.1)

Here, ψ is the scalar complex order parameter, which describes the incipient condensate of linearly
polarized polaritons [3]. The effective Hamiltonians H` (` = c, d) that generate the coherent and
dissipative dynamics respectively read

H` =

∫

x,y

[
r`|ψ|2 + Kx

` |∂xψ|2 + Ky
`
|∂yψ|2 +

1
2

u`|ψ|4
]
. (4.2)

The last term ζ(x, t) in Eq. (4.1) is a zero mean Gaussian white noise with short-ranged spatiotemporal
correlations: 〈ζ∗(x, t)ζ(x′, t′)〉 = 2σδd(x − x′)δ(t − t′), 〈ζ(x, t)ζ(x′, t′)〉 = 0.

Eq. (4.1) is widely known as the complex Ginzburg-Landau equation [31, 32], or in the context
of polariton condensates, as the dissipative Gross-Pitaevskii equation [33, 34], although usually only
the isotropic (i.e., Kx

`
= Ky

`
), noise free (ζ = 0) case is considered (but see [35]). Modifications of this

equation, e.g., including higher powers of ψ and ζ, higher derivatives, or combinations of the two,
can readily be shown to be irrelevant in the Renormalization Group (RG) sense: they have no effect
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on the long-distance, long-time scaling properties of either the ordered phase, or the transition into it
2.

Each of the parameters appearing in the model has a clear physical origin, as we now review.
The coefficient rd is the single particle loss rate γl (spontaneous decay) offset by the pump rate γp,
that is, rd = γl − γp. We consider a situation in which both loss and pump processes are spatially
homogeneous. The effective chemical potential rc is completely arbitrary. Indeed, it can be adjusted
by a temporally local gauge transformation ψ(x, t) = ψ′(x, t)eiωt, such that r′c = rc − ω. In the
following, we choose rc so that, in the absence of noise, the equation of motion has a stationary,
spatially uniform solution.

The term proportional to uc is the pseudo-potential which describes the elastic scattering of two
polaritons, whereas ud is the non-linear loss or, alternatively, a reduction of the pump rate with density,
that ensures saturation of particle number. The coefficients Kx,y

c = 1/(2mx,y) (units are chosen such
that ~ = 1), where mx,y are the eigenvalues of the effective polariton mass tensor, with principal axes
x, y. Under typical circumstances, the diffusion-like term Kd is expected to be small, but is allowed
by symmetry, and so will always be generated [36, 37]. Finally, the noise is given by the total rate
of particles entering and leaving the system. In polariton condensates, where ud reflects a non-linear
reduction of the pumping rate rather than an additional loss mechanism (see appendix 4.B), the noise
strength at steady state is simply set by the single particle loss, i.e. 2σ = 2γl. 3

Before proceeding, it is important to clarify under what conditions Eq. (4.1) describes an effective
thermal equilibrium at all wavelengths. Imposing the additional condition that the field follows a
thermal Gibbs distribution at steady state translates to the simple requirement Hd = RHc, where R is
a multiplicative constant [35, 38–40]. This condition can also be seen as a symmetry of the dynamics
which ensures detailed balance [11, 12] and is realized in dynamical systems which relax to thermal
equilibrium [41, 42]. In contrast, in a driven system, the relation Hd = RHc is not satisfied in general,
because the dissipative and coherent parts of the dynamics are generated by independent processes.
This relation can, however, arise as an emergent symmetry at low frequencies and long wavelengths
as was shown to be the case for a three-dimensional driven condensate [11, 12]. Below we shall
derive the hydrodynamic long-wavelength description of a two-dimensional driven condensate and
determine if it flows to effective thermal equilibrium.

4.3 Mapping to a KPZ equation

In the long-wavelength limit, Eq. (4.1) generically reduces to a KPZ equation [17] for the phase
variable [15]. In the dissipationless case Hd = 0, the dynamics becomes totally different, and exhibits
the usual propagating long wavelength Bogoliubov quasiparticles. We discuss this point further in the
Supplemental Materials, after equation (4.17). As in equilibrium, in a hydrodynamic description of
the condensate the order-parameter field is written in the amplitude-phase representation as ψ(x, t) =

(M0 +χ(x, t))eiθ(x,t). Integrating out the gapped amplitude mode, and keeping only terms which are not

2The gradient terms shown are the only ones at second order in gradients allowed in systems which have inversion
symmetry about either the x or the y axis; we will restrict our discussion here to such systems.

3In reality the system might be coupled also to a particle conserving bath, such as phonons in the solid, which we have
not included. While such a coupling is irelevant in the RG sense, if it is strong and induces fast relaxation toward the bath
equilibrium, it may renormalize the parameters of the stochastic equation of motion (4.1). However, such a bath will not
restore detailed balance, and none of the universal results presented here will change.
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irrelevant in the sense of the renormalization group, we obtain a closed equation for θ (see appendix
4.A)

∂tθ = Dx∂
2
xθ + Dy∂

2
yθ +

λx

2
(∂xθ)2 +

λy

2
(∂yθ)2 + ζ̄(x, t), (4.3)

with (α = x, y):

Dα = Kα
d

[
1 +

Kα
c

Kα
d

uc

ud

]
, (4.4)

λα = 2Kα
c

[Kα
d

Kα
c

uc

ud
− 1

]
.

and noise strength (replacing σ in the noise correlations above)

∆ =
(u2

d + u2
c)γl

2ud(γp − γl)
. (4.5)

Eq. (4.3) is the anisotropic KPZ equation, originally formulated to describe the roughness of a grow-
ing surface due to random deposition of particles on it [17, 18], in which case θ is the height of the
interface. It reduces to the isotropic KPZ equation when Dx = Dy and λx = λy. This reduction can
also be achieved by a trivial rescaling of lengths if Γ ≡ λyDx

λxDy
= 1. Thus, when Γ , 1, the system is

anisotropic.

Crucially, the presence of the non-linearity directly reflects non-equilibrium conditions 4. Indeed,
the coefficients λx, λy that measure the deviation from thermal equilibrium vanish identically when
the conditions

Kx
c /K

x
d = Ky

c/K
y
d = uc/ud, (4.6)

which follow from the equilibrium requirement that Hd = RHc, are met.

It is furthermore important to note that our KPZ model differs from that formulated for a de-
scription of randomly growing interfaces [17] in that the analog of the interface height variable in
our model is actually a compact phase; hence, topological defects in this field are possible. This
difference with the conventional KPZ equation also arises in “Active Smectics” [44].

Analysis of Eq. (4.3) in the absence of vortices is the analogue of the low temperature spin-wave
(linear phase fluctuation) theory of the equilibrium XY model. Indeed, without the non-linear terms,
the KPZ equation reduces to linear diffusion, which would bring the field to an effective thermal equi-
librium with power-law off-diagonal correlations (in d = 2). A transition to the disordered phase in
this equilibrium situation can occur only as a Kosterlitz-Thouless (KT) transition through prolifera-
tion of topological defects in the phase field.

In a driven condensate, the non-linear terms are in general present, and in two dimensions have
the same canonical scaling dimension as the linear terms. A more careful RG analysis is therefore
required to determine how the system behaves at long scales even without defect proliferation. Such
an analysis has been done in Refs. [18] and [44] for the anisotropic KPZ equation. In this case, the

4 More precisely, the KPZ equation describes non-equilibrium conditions in d > 1. In fact, in one dimension, it can
be mapped “accidentally” onto the noisy Burgers equation, and thus may occur also in an equilibrium context. An explicit
example has been identified in [43].
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Figure 4.1. The RG flow in the Γ-g parameter space for anisotropic driven BEC in
d = 2. For Γ < 0 and g > 0, all flow lines go to a stable fixed point (−1, 0); for Γ > 0
and g > 0, all flow lines go to infinity, and approach the isotropic limit Γ = 1.

flow is closed in the two parameter space of scaled non-linearity g ≡ λ2
x∆

D2
x
√

DxDy
and scaled anisotropy

Γ ≡ λyDx
λxDy

, and is given, to leading order in g, by:

dg
dl

=
g2

32π
(Γ2 + 4Γ − 1),

dΓ

dl
=

Γg
32π

(1 − Γ2). (4.7)

These flows are illustrated in Fig. 4.1. We see that in an isotropic system, Γ = 1, and the nonlinear
coupling g, which embodies the non-equilibrium fluctuations, is relevant. Moreover, for a wide range
of anisotropies (namely, all Γ > 0) the flow is attracted to the isotropic line: the system flows to strong
coupling, with emergent rotational symmetry. On the other hand, if the anisotropy is sufficiently
strong, so that Γ < 0, the non-linearity becomes irrelevant and the system can flow to an effective
equilibrium state at long scales. We emphasize that by ”strong anisotropy” we mean only that the
KPZ non-linearities λx,y have opposite signs; the diffusion constants Dx,y must both be positive for
reasons of stability. Furthermore, we do not assume strong anisotropy between Dx and Dy; our
predictions apply even when these are comparable in magnitude, or, indeed, even if they are equal.
The linear spatial extents of the system Lx,y are also assumed to be comparable. That is, in no sense
are we considering a “nearly one-dimensional” system.

We will now discuss the physics of these two regimes, starting with the isotropic case, which is
most relevant to current experiments with polariton condensates.

4.4 Isotropic systems

As noted above, rotational symmetry is emergent at long scales if the anisotropy is not too strong at
the outset. This is also the regime in which current experimental quantum well polaritons lie. We
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Figure 4.2. Dependence of the emergent KPZ length scale L∗ (in units of the mi-
croscopic healing length) on the tuning parameter x = γp/γl − 1. This curve was
obtained by inserting the expression Eq. (4.9) for the bare coupling g0 into Eq. (4.8)
for L∗. While L∗ is exponentially large when x > ūγ̄2/2π, it goes to a microscopic
value ξ0 at the mean field transition x = 0+. The shaded region marks the scales at
which a system would exhibit algebraic correlations. Upon decreasing the tuning pa-
rameter x, a finite system will lose its algebraic order in one of two ways: (1) When
L∗ falls below system size, as in the case of system L1 shown, or (2) in a KT transition
before L∗ falls below system size, as in the case of system L2. Here we have used
γ̄ = 0.8, ū = 0.14.

therefore consider this case first.

On the line Γ = 1, the scaling of the non-linear coupling dg/dl = g2/8π drives g → ∞; in
the growing surface problem the system goes to the “rough” state, with height fluctuations scaling
algebraically with length. The analogous behavior in the phase field θ would lead to stretched ex-
ponentially decaying order parameter correlations. However, the fact that the phase field is compact
implies that topological defects (vortices) in this field exist. Our expectation, based on analogy with
equilibrium physics (which admittedly may be an untrustworthy analogy), is that vortices will un-
bind at the strong coupling fixed point of the KPZ equation. If this happens, it will lead to simple
exponential correlations. Testing this expectation will be the object of future work.

We have thus established that the non-linearity, no matter how weak, destroys the condensate at
long distances, leading to either stretched or simple exponential decay of correlations throughout the
isotropic regime. However, the effects of the nonlinearity only become apparent when g gets to be
of order one. Solving the scaling equation we see that this occurs at the characteristic “RG time”
l∗ = 8π/g0; the corresponding length scale is:

L∗ = ξ0el∗ = ξ0e8π/g0 , (4.8)

where ξ0 is the mean field healing length of the condensate. If the bare value of g0 is small, then
the scale L∗ can be huge. On length scales smaller than L∗, the system is governed by the linearized
isotropic KPZ equation, which, as noted earlier, is the same as an equilibrium XY model. Thus, all of
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the equilibrium physics associated with two-dimensional BEC, including power law correlations and
a Kosterlitz-Thouless defect unbinding transition, can appear in a sufficiently small system.

As parameters, such as the pump power, are changed, the system can lose its apparent algebraic
order in one of two ways: (i) the KPZ length L∗ is gradually reduced below the system size, or
(ii) L∗ remains large while the correlations within the system size L are destroyed by unbinding of
vortex anti-vortex pairs at the scale L. The latter type of crossover would appear as a KT transition
broadened by the finite size. Of course, for any given set of system parameters, a sufficiently large
system (L > L∗) will always be disordered.

We shall now discuss how the system parameters determine what type of crossover, if any, will be
seen in an experiment. We assume that the main tuning parameter is the pump power γp, and it will be
convenient to track the behavior as a function of a dimensionless tuning parameter x = γp/γl − 1, and
set Kd = 0 since this parameter is thought to be small in current experimental realizations. In appendix
4.B we derive the parameters of the KPZ equation for a realistic model of a polariton condensate that
is coupled to an excitonic reservoir. In particular, we obtain an expression for the bare dimensionless
coupling constant g0 in this model, which measures the bare deviation from equilibrium:

g0 =
∆λ2

D3 = 2ūγ̄2
(
γ̄2 + (1 + x)2

x(1 + x)3

)
. (4.9)

Here ū ≡ uc/Kc is the dimensionless interaction constant, and γ̄ ∼ γl the dimensionless loss rate as
defined in appendix 4.B. Note that g0 diverges as we approach the mean field transition at x → 0+,
while it decays as 1/x2 as x→ ∞ at very high pump power.

Hence, in the latter regime the KPZ length scale L∗ = ξ0 exp(8π/g0) is certainly much larger than
any reasonable system size. As the pump power is decreased, and the system approaches the mean
field transition at x = 0, L∗ drops sharply to a microscopic healing length L∗ ≈ ξ0. L∗ drops below the
system size when x . x∗, where

x∗(1 + x∗)3

γ̄2 + (1 + x∗)2 ≈
ūγ̄2

4π
ln(L/ξ0). (4.10)

For pump powers corresponding to x > x∗, the system will appear to be at effective equilibrium,
and, hence, may sustain power law order within its confines, whereas for pump power x < x∗, the
non-equilibrium fluctuations become effective and destroy the algebraic correlations at the scale of
the system size. However, it is possible that this crossover at x∗ is preceded by unbinding of vortices
at values of x = xKT > x∗, while the finite system is still at effective equilibrium. This crossover
behavior is depicted in Fig. 4.2.

To determine which crossover occurs in a particular system, let us estimate the value of the tun-
ing parameter xKT at which the putative Kosterlitz-Thouless transition would occur if the non-linear
term λ vanished, or was negligible. Then Eq. (4.3) obeys a fluctuation-dissipation relation with a
temperature set by the noise T = ∆. The KT transition would occur for an equilibrium XY model
approximately at the point where ∆/D = π. Expressing both ∆ and D in terms of the tuning parameter
x, we obtain the equation for the critical value xKT at which the Kosterlitz-Thouless transition will
appear to occur:

xKT (1 + xKT )
γ̄2 + (1 + xKT )2 ≈

ū
2π
. (4.11)
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These equations (4.10) and (4.11) for x∗ and xKT simplify when the interactions are weak: ū �
2π, and the system is not too big: (ū/4π)γ̄2 ln(L/ξ0) � 1. In this limit, which proves to hold in
current experiments, x∗ and xKT are given approximately by x∗ ≈ (ū/4π)γ̄2(1 + γ̄2) ln(L/ξ0), and
xKT ≈ (ū/4π)(1 + γ̄2).

Under these conditions, we expect to see a crossover controlled by vortex unbinding through the
KT mechanism, i.e., xKT > x∗, if the system size is L < ξ0 exp(2/γ̄2). For larger system sizes, the
crossover will be controlled by the nonlinearities of the KPZ equation.

In which regime do experiments on Polariton condensates lie? In Ref. [45] parameter values for
typical experimental systems have been deduced for the effective two band polariton model described
in appendix 4.B. Based on this analysis we find ūc ≈ 0.14, and γ̄ ≈ 0.1. With these parameters the
KT transition would be expected at xKT ∼ 0.02 and the bare healing length at this point is ξ0 ∼ 2µm.
Since the system size (spot size) is no more than ∼ 100µm in any current experiments, these values
satisfy the conditions for the simplified expressions for x∗ and xKT discussed above. In addition, the
small value of γ̄ implies that the crossover will be dominated by KT physics; the non-linear effects
we have treated here will not be visible in these experiments. However, it should not be difficult to
raise γ̄ by reducing the cavity Q (note that this will require a concomitant increase of the laser power
at threshold). A moderate increase of γ̄ to 0.75 will make it possible to enter the KPZ dominated
regime at attainable system sizes.

Several recent experiments in the field of exciton-polariton physics [46–48] have come nearly
as close to equilibrium conditions as cold atom experiments by realizing increasingly long polariton
lifetimes (i.e., lowering γ̄). From the perspective of the findings presented in this work it may be
viewed as an outstanding feature of exciton-polaritons that both close-to-equilibrium conditions and
the regime required to investigate the genuine non-equilibrium aspects predicted here are accessible
in these systems.

4.5 Strong anisotropy

If the bare value of the anisotropy parameter is negative Γ < 0, then the RG equations (4.7) lead
to a fixed point at g = 0. Because the non-linear λx,y terms in (4.3) are irrelevant in this region
of parameter space, the linear (and, hence, equilibrium) version of the theory applies. Hence it is
possible, for Γ < 0, to obtain both a power law phase and a KT defect unbinding transition out of it.

To estimate the extent of this phase, we can utilize the RG flow of the anisotropic KPZ equation
for Γ < 0 analyzed in Ref. [44]. In principle, we should add to these recursion relations terms coming
from the vortices. Instead, we will follow reference [44] and assume that the vortex density is low
enough that vortices only become important on length scales far longer than those at which the KPZ
nonlinearities λα have become unimportant (i.e., those at which the scaled non-linearity g has flowed
to nearly zero). If this is the case, then we can use the recursion relations Eq. (4.7) for our problem,
despite the fact that they were derived neglecting vortices.

Our strategy is then to use those recursion relations to flow to the linear regime, which, as noted
earlier, is equivalent to an equilibrium XY model. In this regime, vortex unbinding is controlled by
the (bare) parameters of equation (4.3) through the dimensionless noise strength κ0 ≡ ∆/

√
DxDy

and scaled anisotropy Γ0 = λyDx/(λxDy). Following [44], the critical point for vortex unbinding
can be estimated by solving for the renormalized scaled noise κ(l → ∞) ≡ κ(∞) as a function of
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Figure 4.3. Phase diagram of a generic anisotropic system exhibiting reentrance.
The thin line marks the natural trajectory in an experiment in which only the pump-
power is varied. The arrows mark the direction of increasing pump power. Such an
experiment will see a reentrant behavior, where the system starts in a disordered state,
enters the power-law superfluid and then goes back to a disordered state. Here we
have used the two band model of appendix 4.B with γ̄ = 1/2, ū = 2, νx = 1/8 and
νy = 1/4.

the bare value using the RG equations of the non-compact KPZ equation; this involves additional
recursion relations for Dα and ∆ as well as Eq. (4.7); for details see reference [44]. This gives
κ(∞) = −κ0(1−Γ0)2/(4Γ0). The KT transition occurs at the point where this renormalized value κ(∞)
of κ reaches π. Hence the phase boundary in the κ0-Γ0 plane is a locus in the plane of bare scaled
noise and anisotropy parameters given by [44]

κ0 = − 4πΓ0

(1 − Γ0)2 . (4.12)

The assumption in deriving this curve was that the dominant contribution to the stiffness renormal-
ization comes from the non-linear fluctuations, rather than from bound vortex-antivortex pairs, which
have been neglected.

There is a broad range of parameters for which a system enters a regime Γ0 = (Dxλy)/(Dyλx) < 0,
in which true power-law order and a KT transition exist. Using the effective (two band) polariton
model in appendix 4.B we find the trajectory a realistic system would follow in the κ0,Γ0 plane as
with increasing pump power as a function of its microscopic parameters, see Fig. 4.3. This is given
by

Γ0 =

[
νy(1 + x) − γ̄

] [
νxγ̄ + 1 + x

]
[
νx(1 + x) − γ̄]

[
νyγ̄ + 1 + x

] , (4.13)

κ0 =
ū
2x

[γ̄2 + (1 + x)2]√
[νyγ̄ + (1 + x)][νxγ̄ + (1 + x)]

, (4.14)

with the ratios of the dissipative to coherent phase stiffnesses along the two directions, να = Kα
d /K

α
c .

Now consider gradually increasing the pump power, and hence x, from the mean field threshold x = 0.
For system parameters γ̄ > νy > νx, Γ0(x) starts out positive at x = 0, is reduced to negative values
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as x is increased past x =
γ̄
νy
− 1, and eventually runs off to Γ0 = −∞ at a finite value of x (namely,

x =
γ̄
νx
− 1). If at the same time ū is sufficiently small, then the experimental trajectory in the κ0 − Γ0

plane is guaranteed to cross the dome marking the condensate (algebraic order) phase as determined
in Eq. (4.12). The condition on ū for this crossing to occur is

ū < 2π

(
γ̄ − νy

)

γ̄νy(1 + ν2
y)
. (4.15)

Thus, we not only naturally achieve the ordered phase in this anisotropic system by varying the
driving, but we do so in a reentrant manner: we enter the phase, and then leave it again, as the driving
is increased. The analysis for γ > νy > νx is the same if we take Γ→ 1/Γ.

We note that momentum-dependent splitting of transverse electric and transverese magnetic modes
in typical exciton-polariton experiments induces a slight anisotropy in the coherent mass terms in
these systems [3, 26], while the dissipative mass terms Kα

d are typically very small because they are
generated as second order effects in the interactions [11, 12]. Under these conditions the regime of
strong anisotropy cannot be reached with reasonable pump power.

4.6 Outlook

Our analysis can be extended to three dimensions. There, for weak deviations from equilibrium, i.e. a
small bare value of the KPZ non-linearity, it predicts a true Bose condensate which may be established
through the dynamical phase transition described in Ref. [11], even in the isotropic case. However,
beyond a critical strength of the deviation from equilibrium, there may be a different, non-equilibrium
transition controlled by a strong coupling fixed point of the three dimensional KPZ equation [49]. This
opens up the possibility of a new non-equilibrium phase of matter with short-ranged order, distinct
from the usual uncondensed state in that vortex loops do not proliferate. This will be explored in
future work. Other directions for future research are investigation of the interplay of the KPZ physics
uncovered here with more realistic microscopic models of exciton-polariton condensates. This in-
volves taking into account both the polariton polarization inherited from the driving light [50, 51],
and the effects of disorder on phases and phase transitions [52] (see also Refs. [3, 53] and references
therein for further aspects of disorder in exciton-polaritons), which is unavoidable in real experimen-
tal systems. It is worth noting that a recent analysis of the dissipative Ginzburg-Landau equation
in the presence of static disorder without noise found that the mean field condensate is destroyed,
through a completely different mechanism [54].
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4.A Mapping to the Kardar-Parisi-Zhang equation

Here we review the mapping [15], in the long-wavelength limit, between the model (4.1) and an
anisotropic KPZ equation [17, 18]. We work in the amplitude-phase representation ψ(x, t) = (M0 +

χ(x, t))eiθ(x,t), with M0, χ, and θ all real. Here M0 is determined by requiring that χ = 0, θ = 0
is a static uniform solution of Eq. (4.1) in the absence of fluctuations (ζ(x, t) = 0). The real and
imaginary parts of Eq. (4.1) then give M2

0 = −rd/ud and rc = −ucM2
0 , respectively. We can satisfy the

second condition by exploiting the freedom to choose rc mentioned in the main text. As explained
there, by varying the strength of the pump laser, one can experimentally control rd, which determines
the amplitude M0. The mean field transition occurs at the point rd = 0 (i.e., when γp = γl), where
the amplitude M0 vanishes. For later convenience we define the dimensionless tuning parameter
x ≡ γp/γl − 1.

Plugging the amplitude-phase representation of ψ into Eq. (4.1), and linearizing in the amplitude
fluctuations χ, we obtain the pair of equations

∂tχ = −2ud M2
0χ − Kx

c M0∂
2
xθ − Ky

c M0∂
2
yθ − Kx

d M0(∂xθ)2 − Ky
d M0(∂yθ)2 + Reζ, (4.16)

M0∂tθ = −2ucM2
0χ + Kx

d M0∂
2
xθ + Ky

d M0∂
2
yθ − Kx

c M0(∂xθ)2 − Ky
c M0(∂yθ)2 + Imζ, (4.17)

where we have used the freedom discussed earlier to choose rc = −ucM2
0 to simplify this expression.

Note that if we have no dissipation (Hd = 0), so that ud = 0, both χ and θ are “slow” variables, in
the sense of evolving at rates that vanish as the wavevector goes to zero. In this case we can substitute
Eq. (4.16) into the time derivative of Eq. (4.17) to obtain a wave equation for θ supplemented by
irrelevant non-linear corrections. This gives the linear dispersion of the undamped Goldstone modes
characteristic of a lossless condensate with exact particle number conservation. In contrast, without
particle number conservation (i.e., in the presence of loss and drive), ud , 0, and we can therefore
neglect the ∂tχ term (which vanishes as frequency ω→ 0) on the left hand side of Eq. (4.16) relative
to the 2ud M2

0χ on the right hand side for any “hydrodynamic mode” (i.e., in the low frequency limit).
Doing so turns Eq. (4.16) into a simple linear algebraic equation relating χ to spatial derivatives of θ.
Substituting the solution for χ of this equation into Eq. (4.17) gives Eq. (4.3), a closed equation for θ.
The noise variable in that equation is related to the original noise through ζ̄ = (Imζ − ucReζ/ud) /M0,
and hence 〈ζ̄(x, t)ζ̄(x′, t′)〉 = 2∆δd(x − x′)δ(t − t′) with ∆ given in Eq. (4.5). The stochastic equation
for θ includes all terms that are marginal and relevant by canonical power-counting, while neglecting
irrelevant terms like ∂2

t θ, ∂t∇2θ, and ∂t(∇θ)2, and terms with even more derivatives.

4.B Polariton condensate model with reservoir

In the main text we worked with a complex Ginzburg-Landau equation describing the incipient con-
densate in the lower polariton band. Such a model clearly gives the correct universal physics. How-
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ever, in order to find how the parameters of the anisotropic KPZ equation change as actual experimen-
tal parameters are varied requires to start from a more microscopic model of the polariton degrees of
freedom.

The standard model for describing these systems is a two fluid model which treats the excitonic
range of the lower polariton band as a reservoir with local density nR for the condensate which forms
at zero momentum in the lower polariton band [3]. Here we generalize the model slightly in order to
include dissipative mass terms and anisotropy:

∂tψ =


∑

α=x,y

(iKα
c + Kα

d )∂2
α − irc − γl − iuc|ψ|2 + RnR

ψ + ζ,

∂tnR = P − RnR|ψ|2 − γRnR, (4.18)

where 〈ζ∗(x, t)ζ(x′, t′)〉 = 2σδ(x − x′)δ(t − t′). It is usually assumed that the reservoir relaxation time
γR is faster than all other scales. Hence we may solve the reservoir density independently assuming
it is time independent

nR =
P

γR + R|ψ|2 . (4.19)

Substituting this in the equation for ψ we obtain

∂tψ =


∑

α

(iKα
c + Kα

d )∂2
α − irc − γl − iuc|ψ|2 +

P
η + |ψ|2

ψ + ζ, (4.20)

where we have eliminated R and γR for the single parameter η = γR/R. We note that the amplitude of
the white noise is given by the total loss rate (γl) and gain, and since in steady state the loss and gain
must be equal we simply have σ = γl in this case.

In the following, as in the main text we work in the phase-amplitude representation ψ(x, t) =

(M0 + χ(x, t))eiθ(x,t) and expand around the homogeneous mean field solution. Let us therefore first
solve for the mean field steady state. The real part of the equation gives γl = P/(η + M2

0) from
which we can deduce the condensate density M2

0 = P/γl − η. The imaginary part of the equation is
rc = −ucM2

0 . It is also worth noting that loss comes only from the term γl, since there is no two-
particle loss term in this model (instead saturation is reached due to the non-linear reduction of the
pump term). Hence in steady state, when loss is equal to gain, the noise term is simply σ = γl.

We now proceed to write the equations of motion for χ and θ to linear order in χ. This gives

M−1
0 ∂tχ = −2γ2

l P−1M0χ − Kα
c ∂

2
αθ − Kα

d (∂αθ)2 + M−1
0 Reζ,

∂tθ = −2ucχ + Kα
d ∂

2
αθ − Kα

c (∂αθ)2 − M−1
0 Imζ. (4.21)

Now as in the main text we can eliminate χ to obtain the KPZ equation for θ, where α = x, y is
summed over and

∂tθ = Dα∂
2
αθ +

1
2
λα(∂αθ)2 + ζ̄, (4.22)

where

ζ̄ = M−1
0

Reζ − ucP
γ2

l

Imζ

 . (4.23)
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The noise parameter in 〈ζ̄∗(x, t)ζ̄(x′, t′)〉 = 2∆δ(x − x′)δ(t − t′) is here given by:

∆ =
γ2

l /2
P − ηγl

1 +
u2

c P2

γ4
l

 =

1 +
u2

cη
2γ2

p

γ4
l


γ2

l /2η
γp − γl

=
ucγ̄

2x

(
1 +

(1 + x)2

γ̄2

)
, (4.24)

where we have defined γp ≡ P/η, the dimensionless tuning parameter x = γp/γl − 1 and the dimen-
sionless loss parameter γ̄ ≡ γl/(ηuc). Below we will also need the dimensionless interaction strength
ū ≡ uc/

√
Kx

c Ky
c and the ratios να = Kα

d /K
α
c . The parameters of the anisotropic KPZ equation may

now be written as:

Dα = Kα
c


Kα

d

Kα
c

+
ucP
γ2

l

 = Kα
c

(
να +

1 + x
γ̄

)
, (4.25)

λα = 2Kα
c


Kα

d ucP

Kα
c γ

2
l

− 1

 = 2Kα
c

(
να

1 + x
γ̄
− 1

)
.

In order to make contact to the main text, we note that the expressions for the diffusion constants
Dα and non-linear coefficients λα can be obtained from the predictions Eq. (4.25) for the complext
Ginzburg-Landau model Eq. (1) of the main text, if we make the replacement

ud =
γ2

l

P
=

ucγ̄

1 + x
. (4.26)

The parameter Kd is thought to be small in isotropic two-dimensional quantum wells. If we take
Kd = 0, then D = Kcuc/ud = Kc(1 + x)/γ̄, and λ = −2Kc. Eq. (4.9) in the main text corresponds to
this special case Kd = 0.

Finally, to facilitate estimating the scales on which the phenomena discussed here can be observed
in current experiments, we summarize the relations between the dimensionless quantities used in the
main text and the parameters of the commonly used theoretical model of isotropic exciton-polariton
systems. There the diffusion constant Kd is taken to be zero (although in some cases such a term is
included effectively in a complex prefactor (1 + iΩ) ∂tψ = . . . on the right-hand side of Eq. (4.18)
which models frequency-dependent pumping [37] or energy relaxation [36]); the coefficient Kc =

~2/(2mLP) is related to the effective mass of the polariton branch; then the mean field healing length
can be expressed in terms of the experimental parameters in Eq. (4.18) as

ξ0 =
~√

2mLPuc
(

P
γl
− γR

R

) . (4.27)

The healing length sets a natural scale for the KPZ crossover length L∗ (4.8). In order to compare the
latter to spatial extent L of the condensate (as explained in the main text, only for L > L∗ can the KPZ
crossover be observed), we have to express the bare dimensionless non-linearity g0 (4.9) in terms of
the parameters of the microscopic model. This can be achieved by inserting the relations

ū =
2mLPuc

~2 ,

γ̄ =
Rγl

γRuc
,

x =
PR
γRγl

− 1,

(4.28)
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in Eq. (4.9).
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Chapter 5

AdditionalMaterial

Superfluidity in Driven-Dissipative Systems†

The Mermin-Wagner theorem [1] states that two-dimensional systems with short-range inter-
actions and rotational symmetry cannot exhibit long-range order at any finite temperature. Never-
theless, such systems can undergo the BKT transition to a low-temperature superfluid phase with
algebraically decaying correlations. Contrary to that, in systems that are taken out of equilibrium
by imposing external drive and dissipation as is the case in fluids of exciton-polaritons, even such
quasi-long-range order is destroyed on asymptotically large scales [2]. Here we show that in
spite of the absence of algebraic order a finite superfluid density, which we identify through the
retarded current-current response, may still survive under non-equilibrium conditions. We ob-
tain this result by mapping the long-wavelength condensate dynamics to the Kardar-Parisi-Zhang
equation. Our approach is valid when the density of topological defects in the condensate field is
sufficiently low.

5.1 Introduction

The issue of superfluidity in two-dimensional (2D) driven-dissipative systems can most clearly be
stated by first considering a related problem which does not suffer from the increased complexity that
arises in reduced dimensions and when a system is driven out of equilibrium; i.e., let us consider
Bose-Einstein condensation (BEC), e.g., of a cold atomic gas with short-range interactions, in ther-
modynamic equilibrium and in three spatial dimensions. In such a system the condensation transition
marks the establishment of off-diagonal long-range order of the single-particle density matrix, and
the spontaneous breaking of the U(1) symmetry under phase rotations, which is associated with the
conservation of particle number, by the order parameter ψ: the latter, which might be regarded as the
wave function of the condensate, is a complex number and thus singles out a specific value of the
phase. Long-wavelength fluctuations of the phase around this value are the low-lying excitations of
the system, and the superfluid density determines the increase in free energy that is due to a spatially
non-uniform configuration of the phase of ψ [3]. Contrary to what these considerations might suggest,

†The author of the present thesis carried out all of the calculations presented in this chapter and wrote the text. This
chapter forms the basis of a publication that is currently being written.
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superfluidity (i.e., a finite superfluid density) does not only occur in systems with spontaneously bro-
ken phase rotation symmetry. A specific example is BEC in two spatial dimensions: as stated by the
Mermin-Wagner theorem [1], in this case phase rotation symmetry persists at any finite temperature.
Nevertheless, there is a low-temperature phase with a finite superfluid density, and in which corre-
lations decay algebraically instead of approaching a constant value at large distances as in 3D. This
quasi-long-range order in 2D and the true long-range order in 3D condensates have in common, that
they lead to non-analytic behavior when correlation functions are transformed to momentum space,
and due to the obedience of specific fluctuation-dissipation relations (FDRs) in thermodynamic equi-
librium, which establish an immediate link between correlation functions and corresponding response
functions, the same non-analyticities also show up in the response of the system to external pertur-
bations. In particular, the retarded current-current response function of a superfluid system contains
a term that is in momentum space proportional to qiq j/q2, where qi and q j are components of the
momentum q, and the coefficient of this term is immediately related to the superfluid density that
measures the free energy cost of long-wavelength order parameter phase fluctuations as described
above, thereby providing us with an alternative definition of the superfluid density. This definition of
the superfluid density in terms of the current-current response function, which is reviewed in detail
in Sec. 5.2, can be generalized to systems out of equilibrium, where the notion of a free energy is
missing.

To be specific, in the following we consider a bosonic many-body system that is driven out of
equilibrium by coupling it to several baths with which it can exchange particles, such that a steady
state is established when the rates of particles entering and leaving the system exactly cancel each
other. This scenario is realized in experiments with exciton-polaritons [4–8]. When the replenishment
of particles occurs by an incoherent pump processes, these systems possess a U(1) phase rotation
symmetry even in the absence of particle number conservation, as is discussed in Sec. 5.3.2, and
thus the question arises whether quasi-long-range order and superfluidity can also be realized out of
equilibrium. In Ref. [2] it was shown that algebraic decay of correlations persists in driven-dissipative
systems only up to a characteristic scale, above which it is followed by stretched-exponential or even
faster decay. This indicates that there are no non-analyticities in the momentum space representation
of correlation functions, however, due to the violation of equilibrium FDRs by the combination of
drive and dissipation, we must not conclude that the same holds true also for the response. Under these
conditions, an exotic phase with short-range correlations but a finite superfluid density is conceivable.
Here we provide theoretical evidence that such a phase might actually be realized in 2D driven-
dissipative systems, and that its properties are governed by the strong-coupling fixed point (SCFP)
of the Kardar-Parisi-Zhang (KPZ) equation in 2D [9]. The relation between the complex Ginzburg-
Landau equation, which describes the dynamics of the condensate field in driven-dissipative systems,
and the KPZ equation was noticed in Refs. [10–13] and discussed in the context of exciton-polaritons
in Refs. [2, 14–16]. Using this connection, we find that the superfluid density is given by

ρs = ρ0

(
uc

2mν∗ud
L−χ +

ln 2
8π

g∗
)
. (5.1)

Here, ρ0 is the mean-field condensate density, uc and ud are the elastic two-body interaction and
two-body loss coefficients, respectively, and m is the mass of bosonic quasiparticles; ν ∼ ν∗Lχ is the
scaling form of the diffusion coefficient in the KPZ equation at the SCFP. In particular, ν∗ is a non-
universal constant, χ ≈ 0.4 is the so-called roughness exponent (its value in 2D has been determined,
e.g., using renormalization group (RG) methods [17–19] or numerically [20–25]), and L is the linear
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size of the system. g∗ denotes the universal value of the dimensionless KPZ non-linearity at the SCFP;
a rough estimate based on Ref. [17], where the value of g∗v2 with v−1

2 = 23πΓ(1) = 8π is shown as
a function of the spatial dimension in Fig. 1, gives g∗ ≈ 1.4/v2 ≈ 35.2, leading to ρs ≈ ρ0 in the
thermodynamic limit L→ ∞.

In Ref. [26] the superfluid density of a 2D driven-dissipative system has been calculated in a
perturbative expansion in fluctuations around the mean-field condensate. This approach does not
fully account for the crucial role played by the non-equilibrium fluctuations of the phase at the KPZ
SCFP, and hence yields a result that is different from the one reported in Eq. (5.1). It is expected
to apply in systems that are smaller than the characteristic scale identified in Ref. [2], beyond which
KPZ scaling sets in.

In thermodynamic equilibrium, at high temperatures the superfluid density is destroyed by the
proliferation of topological defects. The pendant of thermal fluctuations in a non-equilibrium system
is Markovian noise, which might create topological defects also in a driven-dissipative system. At
present it is not clear how the presence of topological defects might affect the result for the superfluid
density in Eq. (5.1). In fact, if vortices proliferate at any value of the noise strength, then we expect
it to be valid only in systems that are smaller than the average distance between vortices. On the
other hand, if the BKT scenario with a low-temperature/low-noise phase in which free vortices are
absent applies also out of equilibrium, then the superfluid density in this phase would be given by
ρs in Eq. (5.1) even in the thermodynamic limit L → ∞. Clarification of this point, which we
discuss further in Sec. 5.5, could be achieved by performing numerical simulations of the driven-
dissipative order parameter dynamics, i.e., of the stochastic complex Ginzburg-Landau equation, or
by performing an RG analysis of the KPZ equation that fully takes into account the compactness of
the phase field.

The remainder of this chapter is organized as follows: In Sec. 5.2 we review the definition of
the superfluid density in terms of the current-current response function, and contrast it with other
definitions. We specify the model we consider in Sec. 5.3, and discuss its relevance for exciton-
polariton systems and its relation to the models of Hohenberg and Halperin [27–29] of dynamical
criticality in thermodynamic equilibrium. The notion of a current in a system without particle number
conservation (i.e., without a continuity equation) is introduced in Sec. 5.3.2: first, in Sec. 5.3.2 we
give a motivation on physical grounds, and then, in Sec. 5.3.2, we derive the expression for the current
from a symmetry-based argument. In order to explicitly evaluate the superfluid density we employ a
hydrodynamic description, which is introduced in Sec. 5.3.3. There we derive the long-wavelength
Keldysh action for the phase of a driven-dissipative condensate. (We illustrate this method further in
Appendix 5.C with the example of a weakly interacting Bose gas.) The calculation of the superfluid
density leading to the result reported in Eq. (5.1) is presented in Sec. 5.4. Finally, in Sec. 5.5 , we
conclude with a discussion of the possible influence of topological defects on the phase diagram of
2D driven-dissipative systems.

5.2 Superfluidity in systems without particle number conservation

Superfluidity is a notion that integrates a plethora of exotic phenomena, many of which have been
successfully described by the so-called two-fluid model [30]. In this model the system is decomposed
into a normal component, which behaves as an ordinary liquid, and a superfluid component, that is



128 Additional Material: Superfluidity in Driven-Dissipative Systems

liable for the remarkable observations that have been made in the study of superfluid systems. Promi-
nent among these is the complete absence of viscosity in the motion of the superfluid component, and
thus the dramatically reduced viscosity of the system as a whole at low temperatures, where there is
still a finite density of the normal component, which flows with non-zero friction. However, a more
fundamental difference distinguishing the superfluid from the normal component is that the circula-
tion of the flow of the former around an arbitrarily chose point is quantized to be a multiple of 2π. As
a result, the superfluid component cannot rotate as a whole [31], but only by forming vortices, which
are topological excitations and thus long-lived. Indeed, even in an annular geometry, in which the
core of a vortex lies outside of the system itself, metastable circular currents of the superfluid compo-
nent can exist. On the other hand, when one takes a superfluid at rest and attempts to set it into motion
by rotating the vessel in which it is contained, there is a critical angular velocity for the formation of
vortices below which the superfluid fraction will cease to rotate. This observation can be turned into a
rigorous definition of the superfluid component: it is precisely that part of the system, which stays at
rest if the system is exposed to a weak rotational force or, stated differently, only the normal compo-
nent starts to flow in response to such a force. Apparently the superfluid and normal components can
be distinguished by studying the response of the system and, in particular, the relevant information is
encoded in the retarded current-current response function, which is defined as

χi j(t − t′, x − x′) = iθ(t − t′)〈[ ji(t, x), j j(t′, x′)]〉, (5.2)

where ji(t, x) are the Cartesian components of the current operator. In a system without particle
numer conservation, the rate at which the number of particles within a given volume changes is
not completely determined by the flow of particles into this volume, but rather has an additional
contribution due to the exchange of particles with the baths surrounding the system. Subtleties in the
definition of a current in an open system are discussed in Sec. 5.3.2 below.

In an isotropic system the current-current response function defined in Eq. (5.2) can be brought
to a form in which the responses to potential and rotational – or, in other words, longitudinal and
transverse – forces are clearly distinguished. To achieve this we have to take the Fourier transform
of Eq. (5.2): then, in frequency and momentum space, the current-current response function can be
decomposed into longitudinal and transverse components [32–34], χl(ω,q) and χt(ω,q) respectively,
which are scalars and depend only on the magnitude of the momentum q and not on its direction,

χi j(ω,q) = χl(ω,q)
qiq j

q2 + χt(ω,q)
(
δi j −

qiq j

q2

)
. (5.3)

If the applied force is longitudinal, i.e., its Fourier transform fl(ω,q) is parallel to the direction of the
momentum q, then the same is true for the induced current, which is in the linear response regime
given by 〈j(ω,q)〉 = χ(ω,q)fl(ω,q) = χl(ω,q)fl(ω,q); instead, for the case of a rotational or trans-
verse force ft(ω,q) that is perpendicular to q, the induced current is determined by the transverse part
of the current-current response function, 〈j(ω,q)〉 = χt(ω,q)ft(ω,q). We can make the above defini-
tion of the superfluid component precise as follows: superfluidity corresponds to a reduced response
χt(0,q) to a static transverse force in the limit q → 0, as compared to the response of a normal fluid.
In fact, in the latter case the current is expected to be parallel to the force, which implies that the
off-diagonal elements of χi j(0,q) vanish for q → 0 and hence limq→0 (χl(0,q) − χt(0,q)) = 0. A
deviation from this relation can be attributed to the presence of superfluidity. In particular, we may
define the superfluid density as [32–34]

ρs/m = lim
q→0

(χl(0,q) − χt(0,q)) . (5.4)
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In a system with particle number conservation the longitudinal component is determined by the total
density ρ according to the so-called f -sum rule [34], which can be stated as ρ/m = χl(0,q) and holds
for any value of the momentum q. This observation together with Eq. (5.4) motivates the identification
of χt(0,q) in the limit q → 0 with the normal density ρn, such that Eq. (5.4) can be written as
ρ = ρs + ρn, in accordance with the two-fluid picture. If the number of particles in the system is not
conserved, the f -sum rule does not hold any more. Nevertheless, we can still divide the right-hand
side (RHS) of Eq. (5.4) by χl(0,q) to define the superfluid fraction ad hoc as fs = limq→0(χl(0,q) −
χt(0,q))/χl(0,q). Then the normal fraction is just the difference of fs from unity, i.e., fn = 1 − fs =

limq→0 χt(0,q)/χl(0,q).

The definition of the superfluid density in Eq. (5.4) has a clear physical motivation that is still
meaningful if one considers a system out of thermodynamic equilibrium and in the absence of particle
number conservation. However, it is certainly not the only definition of superfluidity that has been
devised in the past. For example, the Landau criterion [31] provides an argument that is based on
energy conservation for the absence of dissipation in superfluid flow. In particular, it states that an
impurity may move through the system without friction as long as the motion occurs at a speed that
is lower than a critical value. This criterion has been extended to driven-dissipative systems [35, 36],
and tested in experiments with exciton-polaritons [37, 38], and a sudden onset of scattering from the
defect at the critical velocity has indeed been observed. However, this effect strongly depends on the
precise shape of the defect: while small defects experience drag due to the emission of sound waves,
vortices and/or solitons are created in the wake of an extended defect [39–42]. On the other hand,
the definition of the superfluid density in Eq. (5.4) relates to the low-frequency and long-wavelength
limit, and thus is expected to be insensitive to microscopic details. In a similar spirit and as described
in Sec. 5.1, in equilibrium one can define the superfluid density (in this context one also speaks of the
helicity modulus) as a measure for the change of the free energy due to long-wavelength fluctuations
of the phase of the order parameter [3], imposed by a twist in the boundary conditions. While this
definition coincides in equilibrium with the one in Eq. (5.4) given in terms of the current-current
response function [43], it cannot be generalized straightforwardly to non-equilibrium conditions, for
the simple reason that a quantity analogous to the free energy is missing. (One alternative would be to
choose the oscillation frequency of the driven-dissipative condensate instead [44].) Finally, another
strongly related [45, 46] notion in equilibrium is the superfluid stiffness, i.e., the coefficient of the
term

∫
x (∇θ)2 in the long-wavelength phase-only action. This is in fact the quantity that determines

the critical temperature for the equilibrium BKT-transition in 2D, which is driven by the unbinding of
vortex-antivortex pairs. While as pointed out above the observation of metastable vortices is clearly
another hallmark of superfluidity and has been extensively studied in exciton-polaritons [47–49], it is
still unclear whether there is a transition in which topological defects proliferate in two-dimensional
driven-dissipative systems in the thermodynamic limit, even though recently there has been numerical
evidence that it actually exists in finite size systems [50].

In the present chapter we take Eq. (5.4) as the basic definition of the superfluid density of a 2D
driven-dissipative systems in the absence of particle number conservation. We evaluate the current-
current response in Sec. 5.4 in the limit of vanishing frequency of the external perturbation and for
long-wavelength excitation, ignoring the possible occurrence of topological defects. This approach
can be considered as analogous to the spin-wave theory for the 2D XY-model in thermodynamic
equilibrium, and thus we expect our result to be valid at least at low noise level and concomitant low
density of topological defects (out of equilibrium, the strength of Markovian noise is the counterpart
of a finite temperature), in a finit-size system, such that the probability for a vortex to occur within
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the confines of the system is small. If it turns out that even in an infinite system at low noise level
there exists a phase in which topological defects occur only in bound pairs, analogous to the low-
temperature BKT phase in equilibrium, then our results should apply in this phase. This issue is
discussed further in Sec. 5.5.

5.3 Model

In this section we specify the open system dynamics we consider in terms of a quantum master
equation for a bosonic many-body system and a corresponding dissipative Keldysh action. We discuss
the relation of this model to exciton-polariton condensates and equilibrium dynamical models [27–29]
with (model F) and without (model A*) particle number conservation. The issue of defining a current
in an open system is considered in Sec. 5.3.2, and in Sec. 5.3.3 we specify how a hydrodynamic
description of the open system in which the phase of the bosonic field, which determines the current
through its gradient, is a fundamental degree of freedom.

5.3.1 Quantum master equation and Keldysh action

In the following we consider the model of bosons with single-particle loss and gain and two-body loss
discussed in Refs. [51, 52], however, here we turn our attention to the case of two spatial dimensions.
The dynamics of this model can be described by the master equation in Lindblad form

∂tρ = Lρ = −i[H, ρ] + γpD[ψ†]ρ + γlD[ψ]ρ + udD[ψ2]ρ, (5.5)

where the dissipative terms are given by

D[Γ]ρ =

∫

x

(
Γ(x)ρΓ†(x) − 1

2
{Γ†(x)Γ(x), ρ}

)
, (5.6)

and the Hamiltonian reads

H =

∫

x

(
−ψ†(x)

∇2

2m
ψ(x) +

uc

2
ψ†(x)2ψ(x)2

)
. (5.7)

In Eq. (5.5), γp, γl, and ud are the rates of single-particle pumping, single-particle loss, and two-body
loss, respectively. The parameters appearing in the Hamiltonian are the mass m and the coupling
constant uc of elastic two-body interactions.

As we are interested in the steady-state properties of the system described by Eq. (5.5), me may
alternatively use a formulation in terms of a Keldysh functional integral with the dissipative Keldysh
action [51, 52] (we denote the collection of time and space variables by capital letters, X = (t, x))

S =

∫

X

[
φ∗q

(
i∂t + Kc∇2

)
φc + c.c. − V

]
,

V = (rc − ird) φ∗qφc + (uc − iud)
(
φ∗qφ

∗
cφ

2
c +

1
4
φ∗qφ

∗
cφ

2
q

)
+ c.c. − i2

(
γ + udφ

∗
cφc

)
φ∗qφq,

(5.8)

where the potential V incorporates elastic interactions as well as the spatially homogeneous particle
loss and source terms. Additionally, we introduced a “chemical potential” rc, the value of which,
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however, is arbitrary, as it can be adjusted by a gauge transformation φc,q 7→ φc,qe−iωt which corre-
sponds to rc 7→ rc − ω. The other parameters in the Keldysh action are Kc = 1/(2m) and, in the
dissipative quadratic part of the Keldysh action, we have the effective loss rate, rd = (γl − γp)/2,
which is the difference between the single-particle loss and pump rates, and their sum γ = (γl +γp)/4.
Finally, the classical and quantum fields are defined as the sum and difference of fields on the forward
and backward branches of the closed time path, respectively,

φc =
ψ+ + ψ−

2
,

φq = ψ+ − ψ−.
(5.9)

In a mean-field approximation, where the steady-state expectation value φ0 = 〈φc〉 of the classical
field is determined by the classical field equation δS/δφ∗q = 0, a transition to a condensed phase is
induced by increasing the single-particle pump rate γp above the corresponding loss rate γl such that
rd = (γl − γp)/2 < 0. Then we have |φ0|2 = −rd/ud = −rc/uc (note that the last equality can always
be satisfied by means of a gauge transformation as discussed above), while φ0 = 0 for rd > 0.

Relation to exciton-polariton models

In Refs. [51, 52] it was shown that the model described by the quantum master equation (5.5) or the
corresponding Keldysh action (5.8) belongs to the same universality class as exciton-polaritons in
semiconductor quantum wells, i.e., it exhibits the same universal long-wavelength and long-time be-
havior in 3D [51–53] (keeping in mind, however, that this case can be explored in exciton-polaritons
only theoretically, as these systems are restricted to one or two spatial dimensions), as well as in
2D [2], and 1D [14–16]. The simplest model to describe the latter system theoretically employs a
dissipative Gross-Pitaevskii equation [54], which can be supplemented with a Markovin noise source
to account for the fluctuations that are induced by the loss and pump processes. Then the Gross-
Pitaevskii equation takes the form of a Langevin equation which by the MSR construction [55, 56]
can be expressed as the classical limit of a Keldysh action. On the other hand, starting from the
Keldysh action Eq. (5.8) and focusing on the physics at long scales we can restrict ourselves to the
most relevant contributions in the RG sense, which turns out to be equivalent to taking the classical
limit of the Keldysh action [51, 52]. In particular, we may discard the so-called quantum vertices,
i.e., the vertices that are of quadratic and higher order in the quantum fields. Note that while both
approaches yield the same Keldysh action, which we specify below in Eq. (5.10), they are quite dif-
ferent in spirit: the former may actually be regarded as a simplistic phenomenological model for the
microscopic physics of exciton-polariton condensation, while the latter is an effective theory for the
long-wavelength physics in the sense of a Ginzburg-Landau-Wilson approach [29, 57–59]. In both
cases the Keldysh action takes the form

S =

∫

X

{
φ∗q

[
i∂t + (Kc − iKd)∇2

]
φc + c.c. − V

}
,

V = (rc − ird) φ∗qφc + (uc − iud) φ∗qφ
∗
cφ

2
c + c.c. − i2γφ∗qφq,

(5.10)

where in addition to omitting the quantum vertices we introduced an effective diffusion constant Kd

which is generated by integrating out high-frequency fluctuations (e.g., in the course of RG transfor-
mations; we note that omitting irrelevant contributions amounts to a first coarse-graining step, i.e.,
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the parameters in the above action should be interpreted as renormalized and not bare ones) and thus
has to be included to properly describe the universal long-scale physics. (A complex wave-function
renormalization can be absorbed in a redefinition of the basic fields [51, 52].) As indicated above, this
action corresponds to a simple model of exciton-polaritons with saturable pump, discarding the exci-
tonic reservoir and with the non-linear pump term expanded to first order in |ψ|2 [54]. In these models
the diffusion term iKd∇2ψ is sometimes introduced effectively via a complex prefactor of the deriva-
tive of ψ with respect to time. Such a complex prefactor models frequency-dependent pumping [36]
or energy relaxation [60–62].

Relation to thermodynamic equilibrium models

Condensation of exciton-polaritons is different from “conventional” Bose-Einstein condensation in
two important aspects, which are first that the number of particles is not conserved, and second that
the stationary state of the system is not thermodynamic equilibrium but rather characterized by the
balance between non-linear loss and linear gain mechanisms.1 Remarkably, both properties can be
attributed to the absence of a symmetries in the action Eq. (5.8): for the case of particle number
conservation this is the symmetry under global phase rotations, which we discuss in detail in Sec. 5.3.2
below, and the symmetry that distinguishes equilibrium from non-equilibrium stationary states is
specified in Refs. [67–70] and discussed in detail in Appendix 5.A.

Systems with both particle number conservation and a thermal Gibbs ensemble stationary state
belong to the universality class of model F of Hohenberg and Halperin [27–29], whereas equilib-
rium critical dynamics without particle number conservation correspond to the universality class of
model A* [71]. While in general the action Eq. (5.10) describes condensation under non-equilibrium
conditions, for a specific choice of parameters [29, 72–74], which is given by

Kc/Kd = uc/ud, (5.11)

it satisfies the equilibrium symmetry mentioned above, and then it reduces to model A*. We note that
this condition does not involve the ratio rc/rd, as the latter can be tuned at will by means of a rotating
frame transformation as explained in Sec. 5.3. The consequences of deviations from the equilibrium
condition (5.11) for the dynamical critical behavior in 3D driven-dissipative condensates have been
discussed in Ref. [51–53], and for the coherence properties of 2D and 1D systems in [2] and [14–16],
respectively. The purpose of the present chapter is to infer how violations of the equilibrium condition
affect the superfluid density.

5.3.2 Current in open systems

In Sec. 5.2 we specified how the current-current response function (5.2) determines the superfluid
fraction. However, up to now we have not yet given the very definition of the current that enters
Eq. (5.2). This is the purpose of the present section.

If a system is perfectly isolated from its environment, then the temporal change of the number of
particles in a given volume Ω is equal to the current of particles J∂Ω passing through the boundary ∂Ω.
This is illustrated in panel (a) of Fig. 5.1. In an open system, on the other hand, as is depicted in panel

1We note that while this distinction applies to idealized systems it does not always conform to experimental reality: cold
atomic systems suffer from losses [63] (which are, however, often negligible on experimental timescales) while longer and
longer lifetimes of exciton-polaritons are reached [64–66], bringing these systems closer to thermodynamic equilibrium.
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(a) (b)

⌦ ⌦c
J@⌦
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Figure 5.1. Notions of current in closed and open systems. (a) In a closed system
the single contribution to the current from a volume Ω to its complement Ωc is due to
particles moving through the boundary ∂Ω. We denote this current as J∂Ω and it is
given by Eq. (5.20). (b) Exchange of particles between the system and the bath results
in an additional dissipative current Jd,Ω, cf. Eq. (5.21), present only in open systems.

(b) of the same figure, there is an additional contribution to the current out of Ω due to the exchange
of particles between the system and the baths to which it is coupled. Following Refs. [75, 76] we call
this contribution the dissipative current Jd,Ω, and it has to be carefully distinguished from the coherent
current J∂Ω: only the latter involves the actual movement of particles within the system. We define
the current-current response function (5.2) in terms of the coherent current, and as we show below in
Sec. 5.3.2, the corresponding current density operator is given by

j(x) =
1

i2m
:
(
ψ†(x)∇ψ(x) − ψ(x)∇ψ†(x)

)
:, (5.12)

where the colons denote normal ordering. For the evaluation of the current-current response function
Eq. (5.2) we switch in Sec. 5.4 below to a formulation in terms of a Keldysh functional integral.
The formalism of quantum field theory is particularly well suited for studying symmetries, and we
develop an alternative perspective on the notions of currents in closed and open systems, based on
a discussion of phase rotation symmetries of the Keldysh action, in Sec. 5.3.2. As a very step, this
requires an appropriate representation of the current operator in Eq. (5.12) in terms of fields on the
closed time path. This representation can be obtained simply by replacing the field operators in
Eq. (5.12) by fields ψ±, which yields currents j± on the forward and backward branches of the closed
time path, respectively. As in the definition Eq. (5.9) of classical and quantum fields, we form the
sum and difference of the currents j± and in this way define classical and quantum currents,

jc =
1
2

(j+ + j−) =
1

i2m

(
φ∗c∇φc +

1
4
φ∗q∇φq − c.c.

)
, (5.13)

jq = j+ − j− =
1

i2m

(
φ∗c∇φq + φ∗q∇φc − c.c.

)
. (5.14)

In terms of these currents we can write the retarded current-current response function (5.2) as (see Ap-
pendix 5.B for a detailed discussion of the translation of the operator expression (5.2) to the Keldysh
formalism)

χi j(X − X′) = i〈 jci(X) jq j(X′)〉. (5.15)

This expression is the starting point for the evaluation of the superfluid density in Sec. 5.4.
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Coherent and dissipative currents

Let us now make precise the notions of current in an open system introduced at the beginning of this
section and illustrated in Fig. 5.1, and thereby clarify the motivation for using the expression for the
current (5.12) in the definition of the current-current response function. In this section we proceed
along the lines of Ref. [76] and argue within the operator formalism and based on physical intuition.
Then, in Sec. 5.3.2, we will take a more formal viewpoint and discuss currents in an open system
from a symmetry-based perspective, which is conveniently done in the functional integral formalism.

In Fig. 5.1 we consider a subsystem in space, i.e., a subvolume, Ω and its complement Ωc and de-
fine the total current JΩ out of Ω as the rate of change of the number of particles within the subsystem,
JΩ = ṄΩ. Our goal is to decompose the total current as JΩ = J∂Ω + Jd,Ω into contributions describing
the coherent current J∂Ω from the subsystem to its complement Ωc, and the so-called dissipative cur-
rent Jd,Ω from the subsystem to the bath. In fact, the existence of this dissipative current can be traced
back to be a consequence of coarse-graining in time involved in the Markov approximation [75].

The number of particles in the subsystem defined by a spatial region Ω is NΩ =
∫

x∈Ω n(x), where
n(x) = ψ†(x)ψ(x) is the local density. From the master equation ρ̇ = Lρ with Liouvillian L in
Lindblad form given in Eq. (5.5), it follows that the time evolution of NΩ in Heisenberg representation
is given by ṄΩ = L∗NΩ with the adjoint Liouvillian defined by tr (ALB) = tr (BL∗A), i.e., we have

∂tNΩ = i[H,NΩ] + γpD∗[ψ†]NΩ + γlD∗[ψ]NΩ + udD∗[ψ2]NΩ, (5.16)

where (note thatD∗[Γ] differs fromD[Γ] in Eq. (5.6) only in that Γ and Γ† are exchanged in the first
term)

D∗[Γ]NΩ =

∫

x

(
Γ†(x)NΩΓ(x) − 1

2
{Γ†(x)Γ(x),NΩ}

)
. (5.17)

An explicit expression for the equation of motion for NΩ in Eq. (5.16) can be obtained by starting
from the one for local density n(x) = ψ†(x)ψ(x), which reads

∂tn(t, x) = −∇ · j(t, x) + γpψ(t, x)ψ†(t, x) − γln(t, x) − 2udψ
†(t, x)2ψ(t, x)2, (5.18)

where first term encodes coherent dynamics and corresponds to the Heisenberg commutator i[H, n(x)],
whereas the remaining contributions incorporate the dissipative parts stemming from the terms involv-
ing D∗ in Eq. (5.16). Integrating Eq. (5.18) over a the volume Ω we obtain the extended continuity
equation in the form

∂tNΩ = J∂Ω + Jd,Ω, (5.19)

where we identified the coherent and dissipative currents as

J∂Ω(t) = −
∫

∂Ω

ds · j(t, x), (5.20)

Jd,Ω(t) =

∫

Ω

dx
(
γpψ(t, x)ψ†(t, x) − γln(t, x) − 2udψ

†(t, x)2ψ(t, x)2
)
. (5.21)

Note that the coherent current is indeed located at the boundary between the subsystem Ω and its
complement, and its density is given by j, which we already anticipated in Eq. (5.12).



5.3. Model 135

Phase rotation symmetries and Noether currents

The number of particles in a closed system is conserved—by Noether’s theorem, this conservation
law is equivalent to the symmetry of the action describing the system under global phase rotations.
More precisely, Noether’s theorem states that any global symmetry entails the existence of a d +

1-component current with components jµ, which obeys a continuity equation, 〈∂µ jµ〉 = 0, where
∂0 = ∂t and ∂1,2,...d are derivatives with respect to Cartesian coordinates, so that the integral over
space Q =

∫
x j0 gives a conserved quantity, i.e., we have 〈dQ/dt〉 = 0. The global phase rotation

symmetry associated with particle number conservation can be made a local one by introducing a
gauge field in the action that couples to the Noether current jµ. Then the current-current response
function determines the current that is induced in linear response due to the presence of precisely this
gauge field.

In the model we introduced in Sec. 5.3.1, the number of particles is clearly not conserved. How-
ever, as we discuss in the following, the corresponding Keldysh action still is symmetric under phase
rotations of a specific kind, and this symmetry is spontaneously broken in the ordered phase with
〈φc〉 , 0. The existence of different types of phase rotations is related to the doubling of degrees of
freedom in the Keldysh formalism, where there are fields ψ± on the forward and backward branches
of the closed time contour, as compared to the equilibrium Matsubara formalism with only a sin-
gle field that is a function of imaginary time τ taking values from 0 to the inverse temperature 1/T .
In fact, the Keldysh formalism for single-component complex bosons allows for exactly two inde-
pendent kinds of phase rotations: (i) A first one, which we denote by Uc, that shifts the phases of
fields ψ± on the forward and backward branches of the closed time path by the same amount αc, i.e.,
ψ± 7→ Ucψ± = ψ±eiαc , and (ii) a second one ψ± 7→ Uqψ± = ψ±e±iαq , such that the phase shifts take
opposite signs on the forward and backward branches.

As we show in the following, the second type of phase rotations, Uq, if it is a symmetry of
the Keldysh action, implies particle number conservation and hence obviously cannot leave the ac-
tion (5.8) for a system with incoherent particle loss and gain invariant. Instead, phase rotations Uc

of type (i) are a symmetry of the action even in this case (this can be seen straightforwardly in the
representation of the Keldysh action Eq. (5.8) in terms of fields ψ± [52]), and consequently there
exists an associated Noether current. This current, however, is just the quantum current Eq. (5.14)
(complemented by the µ = 0 component j0q = ρ+ − ρ− ≡ ρq, where ρ± = ψ∗±ψ± are the local densities
on the forward and backward branches), and the continuity equation 〈∂µ jµq〉 = 0 is trivially satisfied,
since already the expectation value 〈 jµq〉 = 0 vanishes and – obviously – so does its divergence. The
last statement is, in fact, always true, since a non-vanishing average value 〈 jµq〉 , 0 would imply a
violation of causality.2 In other words, we see that while the type (i) phase rotation symmetry under
transformations Uc clearly has physical consequences in that it distinguishes the disordered phase of
the model introduced in Sec. 5.3.1 with 〈ψ+〉 = 〈ψ−〉 = 〈φc〉 = 0 from the ordered phase in which
these expectation values are finite and thus the phase rotation symmetry is spontaneously broken,
leading to the appearance of a Goldstone mode as discussed in Sec. 5.3.3 below, it does not imply a
non-trivial conservation law. The latter is the case only for the phase rotation symmetry of the second
kind, which implies 〈∂µ jµc 〉 = 0, with j0c = (ρ+ + ρ−)/2 ≡ ρc and spatial components jc given by

2In the Keldysh formalism, “causality” or the “causality structure of the action” [55, 56] means the property that the
time evolution on the forward and backward branches of the closed time contour is generated by the same Liouvillian. Then
for any observable A it does not matter on which branch its expectation is evaluated, i.e, we have 〈A+〉 = 〈A−〉 = 〈Ac〉,where
Ac = (A+ + A−)/2, and therefore 〈Aq〉 = 0 for Aq = A+ − A−.
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Eq. (5.13).

For the gauge fields associated with the phase rotation symmetries of type (i) and (ii) the situation
is in a sense reversed: the gauge field that has to be introduced in order to make phase rotations Uc

of type (i) local symmetries is in fact a physical external source, in the sense that its components A±
satisfy A+ = A− ≡ Ac in accordance with causality. In contrast to that, the gauge field that makes
the type (ii) phase rotation symmetry under Uq, which implies particle number conservation, local,
is unphysical and violates causality. To summarize, the current-current response function Eq. (5.15)
determines the physical current 〈jc(X)〉 = 〈j+(X)〉 = 〈j−(X)〉 – which is conserved only for invariance
under phase rotations Uq of type (ii) – that is induced by the physical gauge field Ac. The latter
couples in the action to the current jq which is always conserved due to causality and is the Noether
current associated with phase rotations Uc of type (i).

Let us now proceed to prove the above statements, i.e., to derive the Noether currents and as-
sociated gauge fields for symmetries under global phase rotations Uc and Uq, of type (i) and (ii),
respectively. A straightforward way to do this [77] is to perform in the Keldysh functional integral
a change of integration variables that corresponds a local phase transformation. Such a change of
integration variables leaves the value of the functional integral invariant, and therefore, if we expand
the transformed functional integral in a power series in the local phase shifts, each term in this series
has to vanish individually. The linear contributions yield the continuity equations for the Noether
currents.

Thus we consider transformations ψ± 7→ Ucψ± = eiαcψ± and ψ± 7→ Uqψ± = e±iαqψ±, where
αc,q = αc,q(X) are local (i.e., position- and time-dependent) phase shifts. It is straightforward to check
that these transformations leave the functional integration measure invariant, D[Ψ] = D[Uc,qΨ], and
hence a change of integration variables in the Keldysh partition function and subsequent expansion
of the action in αν, where ν = c, q, leads to

Z =

∫
D[Ψ]eiS [Ψ] =

∫
D[Ψ]eiS [UνΨ] = Z + i

∫

X
αν(X)〈 δS [UνΨ]

δαν(X)

∣∣∣∣∣
αν=0
〉 + O(α2

ν). (5.22)

In the expansion in powers of αc,q each term has to vanish individually, and as we show now, the
expectation value in the linear contribution gives the continuity equations for classical and quantum
currents. In order to find these continuity equations, we have to evaluate the change in the action
induced by a local transformation Uc,q. It is given by the expressions

S [UcΨ] = S [Ψ] +

∫

X
αc

∑

σ=±
σ (∂tρσ + ∇ · jσ) + O(α2

c), (5.23)

S [UqΨ] = S [Ψ] +

∫

X
αq

∑

σ=±

[
∂tρσ + ∇ · jσ − γpψ

∗
+ψ− + γlψ

∗
−ψ+ + 2ud

(
ψ∗−ψ+

)2
]

+ O(α2
q). (5.24)

Inserting Eq. (5.23) in the expectation value in Eq. (5.22) immediately yields the continuity equation
for the quantum current, 〈∂µ jµq〉 = 0. On the other hand, Eq. (5.24) leads to the extended continuity
equation for the classical current,

〈∂µ jµc 〉 − γp〈ψ∗+ψ−〉 + γl〈ψ∗−ψ+〉 + 2ud〈(ψ∗−ψ+

)2〉 = 0, (5.25)

which is just the expectation value of the equation of motion (5.18) for the local density, including
the contributions from the dissipative current defined in Eq. (5.21). In order to see this one has to use
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the relations between expectation values in the Keldysh and operator formalisms, which follow from
Eq. (5.92) in Appendix 5.B for t = t′,

〈ψ∗+(X)ψ+(X)〉 = 〈ψ∗−(X)ψ−(X)〉 = 〈ψ∗−(X)ψ+(X)〉 = 〈n(X)〉,
〈j+(X)〉 = 〈j−(X)〉 = 〈j(X)〉,

〈ψ∗+(X)ψ−(X)〉 = 〈ψ(X)ψ†(X)〉,
〈(ψ∗−(X)ψ+(X)

)2〉 = 〈ψ†2(X)ψ2(X)〉.

(5.26)

Having found the continuity equation for jq, which is implied by the symmetry of the action (5.8)
under global phase rotations Uc of type (i), let us now derive the gauge field that has to be introduced
in the action in order to turn the global symmetry into a local one. For a local symmetry the expansion
in Eq. (5.23) has to terminate after the zeroth order contribution S [Ψ]. Cancellation of the terms at
linear order can be achieved by adding to the Keldysh action a contribution

∫
X Ac,µ jµq, in which the

current couples to a vector potential Ac: assuming that under local gauge transformations of type Uc

the latter transforms as Ac 7→ A′c, we have

S [UcΨ, A′c] = S [Ψ, Ac] +

∫

X

(
A′c,µ − Ac,µ − ∂µαc

)
jµq + O(α2

c), (5.27)

which is invariant to linear order if A′c,µ = Ac,µ + ∂µαc. Full symmetry of the action under local Uc

gauge transformation requires adding another contribution − 1
2m

∫
X A2

cρq, which is quadratic in the
vector potential and when combined with the term that is linear in the quantum current, amounts to
the so-called minimal substitution, replacing ordinary derivatives by covariant ones,

∂t → ∂t − iAc,0, ∇ → ∇ − iAc. (5.28)

Let us emphasize that this construction is indeed physical: in fact, the modifications of the Keldysh
action due to the minimal substitution Eq. (5.28) correspond to adding to the Hamiltonian in Eq. (5.7)
a term

HAc(t) = −
∫

x

[(
Ac,0(t, x) − 1

2m
A2

c(t, x)
)

n(x) + Ac(t, x) · j(x)
]
. (5.29)

To linear order in Ac, such a contribution induces a current 〈j(t, x)〉 which can be written in terms of
the current-current response function Eq. (5.2) as

〈j(t, x)〉 =

∫

t′,x′
χ(t − t′, x − x′)Ac(t′, x′). (5.30)

Finally, these considerations should be contrasted with the analogous derivation of a gauge po-
tential for the case of phase rotations Uq of type (ii), which are a symmetry of systems with particle
number conservation. Again this symmetry can be made local by means of a minimal substitution as
in Eq. (5.28), however, the gauge field Aq has to be introduced with different signs on the forward and
backward branches of the closed time contour, i.e., one has to replace derivatives with respect to time
and space by

∂t → ∂t − iσAq,0, ∇ → ∇ − iσAq, (5.31)

where σ = ± is the contour index. Evidently the gauge field Aq violates causality and hence cannot
be represented as a contribution in the Hamiltonian similarly to Eq. (5.29).
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5.3.3 Density-phase representation of the Keldysh action

As pointed out in Sec. 5.2, the definition of the superfluid density stated in Eq. (5.4) is related to the
static current-current response at long wavelengths. In this section we derive an effective action for
the relevant low-frequency and low-momentum degrees of freedom, starting from the microscopic
Keldysh action Eq. (5.8).

At large scales the properties of 2D condensates are vitally influenced by fluctuations of the Gold-
stone mode, e.g., both in and out of equilibrium these lead to a suppression of long range correlations.
In Ref. [2] an effective long-wavelength description of a driven-dissipative condensate with the con-
densate phase as the single dominant gapless degree of freedom has been formulated starting from the
equations of motion of the complex order parameter. Below we achieve the same within the Keldysh
functional integral formalism [55, 56], thereby avoiding the detour from the Keldysh functional in-
tegral in terms of which the microscopic theory of a bosonic many-body system with particle loss
and gain can be formulated [51, 52], over a Langevin equation that effectively captures the physics
on a mesoscopic scale and on the level of which amplitude fluctuations can be eliminated leading to
the KPZ equation for the phase, back to an MSR functional integral formulation of the KPZ equa-
tion that serves as a convenient starting point for approaching the longest scales in a renormalization
group analysis. In this sense we establish a closer link between microscopic and mesoscopic theo-
ries, which is both appealing from a theoretical point of view and brings about a number of technical
advantages. For example, physical observables are usually represented by quantum mechanical oper-
ators or equivalently in terms of fields in a Keldysh functional integral description of the microscopic
theory; Here our approach comes in handy as it yields the effective long-wavelength form of generat-
ing functionals for expectation values and correlation functions of these observables which can then
be evaluated further utilizing established approximation strategies.

Apart from specific applications, the derivation of the action for the Goldstone mode presented
here deepens our understanding of general properties of the Keldysh formalism with regard to phase
rotation symmetries. The crucial point is that phase rotations of type (i) introduced in Sec. 5.3.2
are a symmetry of the Keldysh action both in a closed system and in the presence of terms that
describe incoherent pumping and losses, and the spontaneous breaking of this symmetry is sufficient
to ensure the appearance of a Goldstone mode that corresponds to fluctuations of the phase of the
order parameter [78, 79] (note, however, that the conservation of particle number entails the existence
of an additional slow mode in model F of Hohenberg and Halperin [27–29]). In the basis of classical
and quantum fields φc,q such phase rotations of type (i) become φc,q 7→ φc,qeiαc with αc = α+ = α−,
showing that the Goldstone mode corresponds to joint phase fluctuations of both the classical and
the quantum fields. Therefore, in order to derive the action for the Goldstone boson we represent the
fields in the form

φc =
√
ρeiθ,

φq = ζeiθ,
(5.32)

where the density ρ is real whereas ζ is a complex variable. For a system with particle number
conservation both types of phase rotations introduced in Sec. 5.3.2 are symmetries of the action and
both are broken in the condensed phase. As we illustrate in Appendix 5.C with the example of a
weakly interacting Bose gas, the Goldstone boson corresponds to the phase θ in Eq. (5.32) also in this
case.
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Let us now discuss how the low-energy effective action for the Goldstone boson θ in a driven-
dissipative system can be derived by integrating out fluctuations of the density ρ in Eq. (5.32) in the
Keldysh partition function with action S given by Eq. (5.8),

Z =

∫
D[φc, φ

∗
c, φq, φ

∗
q]eiS =

∫
D[ρ, θ, ζ, ζ∗]eiS . (5.33)

The equality of the integrals over complex classical and quantum fields and the variables introduced
in the transformation Eq. (5.32) follows from the fact that this transformation leaves the integration
measure invariant, i.e., we have D[φc, φ

∗
c, φq, φ

∗
q] = D[ρ, θ, ζ, ζ∗]. Note that this would not be the case

if instead of the density we introduced the amplitude of φc as a degree of freedom. Our goal is then
to treat the integrals over ρ and ζ in Eq. (5.33) in a saddle-point approximation, which as we show
below is justified since fluctuations of the density are gapped in the ordered phase with rd < 0 and
hence expected to be small. The first step is thus to find the saddle point, i.e., the solutions to the
classical field equations

δS
δρ

= 0,
δS
δζ

= 0. (5.34)

For rd < 0, spatially homogeneous solutions are given by ρ = ρ0 = −rd/ud = −rc/uc (note that the
last equality can always be satisfied by performing a gauge transformation to adjust the value of rc

as described in Sec. 5.3.1) and ζ = 0, and we proceed to expand the action Eq. (5.8) to second order
in fluctuations of ρ and ζ around the saddle point. Note that the quantum vertex in the potential V in
the action Eq. (5.8) that is cubic in the quantum fields does not contribute at this order. Denoting the
density fluctuations as π = ρ − ρ0 we find

S = 2
∫

X

(√
ρ0

{
−ζ1

[
∂tθ + Kc (∇θ)2

]
+ Kcζ2∇2θ − (ucζ1 − udζ2) π

}
+ i (γ + udρ0) |ζ |2

)
, (5.35)

where ζ1 and ζ2 are, respectively, real and imaginary parts of ζ. Here, of all terms involving the
products of fluctuations ζ1π and ζ2π we only keep the dominant ones in the long-wavelength limit,
i.e., we neglect contributions containing temporal derivatives ζ2∂tπ, ζ1π∂tθ, and spatial derivatives
ζ1∇2π, ζ2∇π · ∇θ, and ζ1π (∇θ)2 which are both small as compared to the mass-like contributions
ucζ1π and udζ2π in Eq. (5.35) for the Goldstone mode θ for which ω → 0 for q → 0. Note that
terms of higher order in π and ζ are contained in the original action Eq. (5.8) both in contributions
involving derivatives and in the coherent and dissipative vertices. The validity of the saddle-point
approximation, therefore, is restricted to the low-frequency and low-momentum sector in a weakly
interacting system.

The action (5.35) resulting from this expansion is linear in π and hence integration over this
variable is trivial and yields a δ-functional which in turn facilitates integration over the imaginary part
ζ2 of ζ,

Z =

∫
D[π, θ, ζ1, ζ2]eiS =

∫
D[θ, ζ1, ζ2]δ[ucζ1 − udζ2]eiS ′ =

∫
D[θ, θ̃]eiS KPZ , (5.36)

where at each step a normalization factor is implicitly included in the integration measure, ensuring
Z = 1 [55, 56]. In the last equality we replaced ζ1 by the KPZ response field θ̃ = i2

√
ρ0ζ1, and the

KPZ action S KPZ is given by

S KPZ =

∫

X
θ̃
[
∂tθ − ν∇2θ − λ

2
(∇θ)2 − ∆θ̃

]
, (5.37)
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where the diffusion constant, non-linear coupling, and noise strength, respectively, are expressed in
terms of the microscopic parameters in the original action Eq. (5.8) as

ν = Kc
uc

ud
, λ = −2Kc, ∆ =

γ + udρ0

2ρ0

1 +
u2

c

u2
d

 . (5.38)

Usually, the KPZ action is derived as the MSR functional integral representation [29, 55, 56] of the
KPZ equation, which reads

∂tθ = ν∇2θ +
λ

2
(∇θ)2 + η, (5.39)

where the stochastic noise η has zero mean, 〈η(X)〉 = 0, and is Gaussian with second moment
〈η(X)η(X′)〉 = 2∆δ(X − X′).

At this point, let us come back to the statement made in Sec. 5.3.1, saying that the action in
Eq. (5.8) and the model for exciton-polaritons Eq. (5.10) entail the same universal long-wavelength
physics. Indeed, taking the latter model as the starting point to integrate out density fluctuations leads
us again to the KPZ action Eq. (5.37), however, with parameters [2]

ν = Kc

(
Kd

Kc
+

uc

ud

)
, λ = −2Kc

(
1 − Kduc

Kcud

)
, ∆ =

γ

2ρ0

1 +
u2

c

u2
d

 . (5.40)

Note that if we set Kd = 0 both ν and λ reduce to the corresponding expressions in Eq. (5.38).
On the other hand, the quantum vertex that is proportional to φ∗cφcφ

∗
qφq in the action in Eq. (5.8)

leads to the tree-level shift ∝ udρ0 of the noise strength ∆ in Eq. (5.38), which is absent in Eq. (5.40).
Nevertheless, the fact that both can be mapped to the KPZ action confirms that the action Eq. (5.10) for
exciton-polaritons describes the same universal long-wavelength physics as our microscopic model
of bosons with loss and gain given by Eq. (5.8). There is, however, one caveat: in the special case
that Kc/Kd = uc/ud, the KPZ non-linearity λ in Eq. (5.40) vanishes. Then the phase-only action
reduces to simple diffusive Edwards-Wilkinson dynamics [80], corresponding to an effective thermal
equilibrium at all wavelengths [29, 72–74] as discussed in Sec. 5.3.1 and detailed in Appendix 5.A.
This situation, which corresponds to a fine tuning of parameters that is absolutely non-generic for
driven-dissipative systems, can obviously not be realized in the microscopic model Eq. (5.8) where
Kd = 0. Still it might arise asymptotically at low frequencies and long wavelengths, which is indeed
the case for three-dimensional driven-dissipative condensates [51, 52]. In two spatial dimensions,
though, the non-linear term in the KPZ equation is relevant in the RG sense and, therefore, grows
under renormalization and strongly influences the physics at the largest scales.

What does this mean for the universal physics in two-dimensional driven-dissipative condensates?
It is governed by the SCFP of the KPZ equation, which is genuinely non-perturbative. In particular,
it has been shown in Ref. [81] that the SCFP is out of reach of perturbative RG at arbitrary order.
This fixed point is fully attractive in 2D whereas the Gaussian equilibrium fixed point at which λ = 0
is repulsive, hence generically correlation functions will show non-trivial scaling behavior. From
the point of view of performing practical calculations this implies that more elaborate methods than
mean-field and perturbation theory are required – at least if one wishes to consider phenomena on
asymptotically large scales. In fact, it is possible to estimate the length scale beyond which perturba-
tive methods break down [2]. In this discussion it should be kept in mind that the phase field in the
KPZ equation (5.39) is a compact variable, in contrast to the fluctuation height field the KPZ equation
was originally devised to describe [9]. A compact field contains topological defects, which might thus
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strongly influence the long-wavelength physics of 2D driven-dissipative systems, as has been shown
to be the case in finite size systems in Ref. [50]. Here we neglect topological defects for the time
being and comment on their role in Sec. 5.5.

To conclude this section let us comment on the relation of the approach presented here to Bogoli-
ubov theory. The latter corresponds to integrating out Gaussian fluctuations of the complex fields φc

and φq in a saddle-point approximation, i.e., eliminating four independent degrees of freedom at once
instead of three (as one does when integrating out π and ζ), even though strictly speaking the saddle-
point approximation is not valid for low-momentum modes in the Goldstone direction since the latter
are not gapped, and consequently the classical equation of motion (or saddle-point equation) for the
Goldstone mode θ involves only derivative terms and is thus solved by any spatially and temporally
homogeneous configuration. We can recover the Bogoliubov result from our approach by expanding
the transformation Eq. (5.32) about the arbitrarily chosen value θ = 0, which yields

φc =
√
ρ0 +

π

2
√
ρ0

+ i
√
ρ0θ,

φq = ζ.

(5.41)

In the KPZ action Eq. (5.37) such an expansion in θ would amount to neglecting the non-linearity.
Without the non-linearity, however, the KPZ action describes a free field coupled to a thermal bath.
In other words, by performing a Bogoliubov approximation the non-equilibrium character that is
intrinsic to the microscopic model with action (5.8) is lost in the long-wavelength limit.

5.4 Superfluid density of a driven-dissipative condensate

In this section we derive the result in Eq. (5.1) for the superfluid density. First we describe how
the expectation value in Eq. (5.15) for the current-current response function can be evaluated in a
saddle-point approximation, which results in an expression for the current-current response function
that contains correlation functions of the phase variable θ and the response field θ̃ introduced in the
KPZ action (5.37) in the previous section. Then we use exact relations between these correlation
functions and irreducible vertex functions in order to express the former in terms of low-frequency
and low-momentum approximations to the latter, the form of which is determined by symmetries of
the KPZ equation.

As stated in Sec. 5.2, the superfluid and normal densities are determined by the response current
that is induced by a static force varying slowly in space. Since the physics on long scales is domi-
nated by fluctuations of the massless Goldstone mode, we utilize in the following the hydrodynamic
approach presented in Sec. 5.3.3 to calculate the current-current response function to lowest order in
the saddle-point approximation for the integrals over ρ and ζ, while at the same time retaining un-
restricted fluctuations of the phase. The first step is to express the classical and quantum currents in
Eq. (5.15) in terms of the hydrodynamic variables ρ and θ. With the representation Eq. (5.32) of the
complex fields, the classical and quantum currents, Eqs. (5.13) and (5.14) respectively, become

jc =
1
m

[
ρ∇θ +

1
4

(
ζ1∇ζ2 − ζ2∇ζ1 + |ζ |2 ∇θ

)]
,

jq =
1
m

[√
ρ (∇ζ2 + 2ζ1∇θ) − 1

2
√
ρ
ζ2∇ρ

]
.

(5.42)
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Note, in particular, that jq is linear in the quantum fields and hence vanishes at the saddle point where
ζ = 0, i.e., a straightforward evaluation of the expectation value in the expression for the current-
current response function in Eq. (5.15) in a saddle-point approximation yields zero. Let us illustrate
the problem by drawing an analogy to a one-dimensional integral: then the product of classical and
quantum fields in Eq. (5.15) is replaced by a function f (x), and instead of performing a functional
integral over the density and the quantum field ζ we wish to integrate over x ∈ R. Specifically, we
consider an integral of the form I =

∫ ∞
−∞ dx f (x)e−g(x), where g(x) corresponds to the Keldysh action

Eq. (5.8) for the driven-dissipative system. In a saddle-point approximation one would evaluate f (x)
at the saddle point x0 of g(x), where g′(x0) = 0, and expand g(x) to quadratic order around x0, leading
to I ≈

∫ ∞
−∞ dx f (x0)e−g(x0)−g′′(x0)(x−x0)2/2. However, as pointed out above, jq is linear in the quantum

fields and vanishes at the saddle point, which corresponds to f (x0) = 0 in our one-dimensional
analogy and hence I ≈ 0 in our simple approximation. Then finding the leading order approximation
to the integral I requires us to expand f (x) around x0 [82]. Due to the symmetry of the integrand
the first order expansion still gives I ≈ 0 and one has to go to second order. In the case of the
functional integral, however, we obtain a non-trivial result already for an expansions of jc and jq to
lowest non-vanishing order in ζ,

jc =
ρ0

m
∇θ,

jq =

√
ρ0

m
(∇ζ2 + 2ζ1∇θ) .

(5.43)

These expressions do not involve density fluctuations and, therefore, in the expectation value in
Eq. (5.15) the integral over π can be evaluated as in Eq. (5.36), leading to a δ-functional that al-
lows us to express ζ2 in terms of ζ1. Replacing the latter by the KPZ response field θ̃ = i2

√
ρ0ζ1 we

obtain the following expression for the current-current response function:

χi j(X − X′) = χ(1)
i j (X − X′) + χ(2)

i j (X − X′), (5.44)

with two contributions involving, respectively, two and three-point correlation functions of the phase
variable, where averages are taken with respect to the KPZ action Eq. (5.37),

χ(1)
i j (X − X′) =

ucρ0

2m2ud
〈∂iθ(X)∂ jθ̃(X′)〉, (5.45)

χ(2)
i j (X − X′) =

ρ0

m2 〈∂iθ(X)∂ jθ(X′)θ̃(X′)〉. (5.46)

Let us first consider the contribution Eq. (5.45), which after Fourier transformation and at vanish-
ing external frequency becomes

χ(1)
i j (Q) =

ucρ0

2m2ud
qiq jG(Q), (5.47)

where G(Q) is the retarded response function

G(Q)δ(Q + Q′) =

∫

X
ei(QX+Q′X′)〈θ(X)θ̃(X′)〉 = 〈θ(Q)θ̃(Q′)〉. (5.48)

Similarly, Fourier transformation of Eq. (5.46) involving the three-point function yields

χ(2)
i j (Q) = − ρ0

m2 qi

∫

Q′
q′jG112(Q,Q′). (5.49)
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Our notation, which we choose for later convenience, indicates that G112 is the average value of a
product of fields involving twice the phase field θ1 = θ and once the response field θ2 = θ̃. Moreover,
as in Eq. (5.48) we have singled out a δ-function, which expresses invariance under spacial and
temporal translations and hence fixes the third argument in the Fourier transform of G112,

G112(Q1,Q2)δ(Q1 + Q2 + Q3) = 〈θ(Q1)θ(Q2)θ̃(Q3)〉. (5.50)

Let us recall the discussion in Sec. 5.2, which showed that the superfluid density is determined
by the contribution to the current-current response function which is proportional to qiq j, whereas
the coefficient of δi j is the normal density. Thus by inspection of the momentum dependence in
Eqs. (5.47) and (5.49) we see that the normal density vanishes at the present level of approximation.
In fact, the present approach of completely neglecting excitations of density fluctuations is analogous
to keeping only the zero-loop diagram in Fig. 1 of Ref. [26] – which still gives a non-trivial result
due to the non-equilibrium fluctuations of the phase at the SCFP of the KPZ equation. The leading
contribution to the normal density, however, is encoded in diagrams involving fluctuations of the
density at one-loop order.

Note that evaluating Eqs. (5.47) and (5.49) in a Gaussian approximation would lead to a result for
the superfluid density that is completely different from the one reported in Eq. (5.1). The Gaussian
approximation consists in neglecting the non-linear term in the KPZ action (5.37) or, on the level
of complex bosonic fields in the original action (5.8), to a Bogoliubov expansion in fluctuations
δφc = φc − φ0 and δφq = φq around the mean-field values of the classical and quantum fields.
Then the expectation values in Eqs. (5.47) and (5.49) can be evaluated straightforwardly: since all
odd moments of Gaussian distributed variables vanish, the contribution (5.49) to the current-current
response function evaluates to zero, while the retarded response function in Eq. (5.47) reduces to its
bare value

G0(Q) =
i

ω + iν0q2 , (5.51)

where we have added a subscript in ν0 to emphasize that we mean the microscopic value of this
quantity, ν0 = Kcuc/ud, reported in Eq. (5.38), which, in particular, does not scale with system size
like the renormalized quantities appearing in Eq. (5.1). Inserting the bare retarded response function
in Eq. (5.47) and with Eq. (5.4) we find the superfluid density in the Gaussian approximation,

ρs,0 =
ucρ0

2mudν0
. (5.52)

As pointed out in Ref. [26], the crucial point leading to a finit value of the superfluid density in
the Gaussian approximation is the scaling of the bare retarded response function with momentum as
G0(0,q) ∼ 1/q2, which should be contrasted with the KPZ result G(0,q) ∼ 1/q2−χ, obtained from
scaling analysis as described below around Eq. (5.53), or from the explicit expression Eq. (5.69) upon
identifying the smallest possible momentum with the inverse system size q ∼ 1/L. Remarkably, if
the expectation values in Eqs. (5.47) and (5.49) are evaluated with the KPZ action (5.37) as we do
in the following, it turns out that the mechanism leading to a non-vanishing superfluid density in
Eq. (5.1) in the thermodynamic limit is an entirely different one: In fact, the contribution from the
response function in Eq. (5.47) vanishes for L → ∞, while the three-point function in Eq. (5.49) can
be related to the characteristic non-linear term in the KPZ action (5.37), which is already hinted at
by the observation that both have exactly the same structure of derivatives and fields. The coupling
λ of the non-linear vertex in Eq. (5.37) is protected from renormalization by symmetries of the KPZ
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equation [18, 19, 29, 55]. Then, the precise combination of λ with powers of the renormalized values
of the diffusion constant ν and the noise strength ∆ that appear in the evaluation of Eq. (5.49) gives just
the dimensionless KPZ coupling g = λ2∆/ν3, which takes a universal value g∗ at the SCFP, leading
to the second term in the expression for the superfluid density (5.1), which remains finite even in the
thermodynamic limit. In other words, whereas in the Gaussian approximation the contribution to the
superfluid density due to Eq. (5.47) is finite while the one from the three-point function in Eq. (5.49)
vanishes for L → ∞, non-equilibrium fluctuations at the SCFP of the KPZ equation lead to exactly
the opposite conclusion.

In fact, before going into the details of the derivation of the expression for the superfluid density
in Eq. (5.1), let us show that this conclusion can already be drawn from a simple scaling analysis
for the two terms in the current-current response function in Eq. (5.44). Crucially, the superfluid
density follows from the current-current response function for zero frequency and for q → 0, which
is precisely the limit in which scaling analysis applies. Note that these considerations – as well as
the detailed calculation of ρs presented below – rely on a knowledge of the value of the roughness
exponent χ at the SCFP. This value has to be determined by resorting to renormalization group meth-
ods [17–19] or numerics [20–25]. Indeed it is nothing but the scaling dimension of the phase, i.e.,
we have [θ(X)] = −χ. Here we are counting momentum dimensions such that [q] = 1 and for the
integration measures of time and space we find [dt] = −z and [dx] = −d with the dynamical exponent
z. The scaling dimension of the response field is [θ̃(X)] = −χ̃. Then the Fourier transform of the
contribution to the current-current response function in Eq. (5.45) scales as

[χ(1)
i j (0,q)] = −z − d + 2 − χ − χ̃ = χ, (5.53)

where we used that [∂/∂x] = [q] = 1 and the second equality follows from the scaling relations
d + χ + χ̃ = 0 and χ + z = 2 [55] which in turn follow from symmetries of the KPZ equation. Thus
we obtain precisely the finite size scaling of the first term in Eq. (5.1) (note that [L] = [1/q] = −1 so
that in fact Eq. (5.53) implies χ(1)

i j (0,q) ∼ L−χ). Let us proceed to show that also the scale-invariance
of the second term in this equation can be deduced using scaling arguments. Indeed, for the Fourier
transform of the contribution to the current-current response function in Eq. (5.46) we find

[χ(2)
i j (0,q)] = −z − d + 2 − 2χ − χ̃ = 0, (5.54)

where we used the same scaling relations as above. We note that the contributions to jc in Eq. (5.42),
which we neglect in the saddle-point approximation, contain additional powers of θ̃, scaling quickly
to zero as L−χ−d, and hence omitting these terms is consistent with the scaling analysis. These con-
siderations shows that scaling analysis allows us to correctly predict the dependence of the superfluid
density on the size of the system – however, to obtain the precise form of prefactors in the expression
for ρs in Eq. (5.1), we have to evaluate explicitly the expectation values in Eqs. (5.47) and (5.49).

The main obstacle we are facing in this endeavor is due to the fact that the fluctuations over which
we have to average are governed by the SCFP of the KPZ equation, which makes it difficult to per-
form analytical calculations as pointed out above at the end of Sec. 5.3.3. One of the few methods
that allows one to make progress even under strong-coupling conditions without resorting to numer-
ics from the very beginning (note that the averages we are interested in contain the response field θ̃,
i.e., they are even not accessible to a direct simulation of the KPZ equation (5.39) without introduc-
ing additional source terms and performing a demanding linear response analysis) is the functional
renormalization group [83–87], which has been adopted to the KPZ equation in Refs. [17–19]. The
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functional renormalization group is based on an exact RG flow equation, the solution of which cor-
responds to continuously including fluctuations, starting from a microscopic scale and proceeding up
to the largest relevant scale in the problem, which is typically determined by the size of the system
L. Approximate solutions to this flow equation have to possess the symmetries of the underlying
microscopic model, which are in fact conserved in the RG flow. A very thorough discussion of the
symmetries of the KPZ equation can be found in Ref. [18]. For our present purposes, the attractive-
ness of such an approach lies in the fact, that beyond giving the phase diagram and scaling behavior
at fixed points, the resultant approximate expression for the effective action encodes information on
arbitrary correlation and vertex functions. To be precise, the effective action is the generating func-
tional of irreducible vertex functions [57–59, 88], for which exact relations with correlation functions
exist [88]. In the following we review the derivation of such relations that allow us to express the two-
point and three-point functions in Eqs. (5.48) and Eq. (5.50) in terms of irreducible vertices. Then it
remains to find approximate expressions for these irreducible vertices. In order to do so we will rely
on the same guiding principles that lead to the ansatz for the effective action in Refs. [17–19], i.e.,
the symmetries of the KPZ equation. This ansatz yielded not only quantitatively reasonable values
of the scaling exponents in the strong-coupling phase of the KPZ equation in physical dimensions
(d = 1, 2, 3), but also remarkably good results for scaling functions and amplitude ratios [18, 19, 89],
which hence gives us confidence in the validity of our approximation. The latter effectively amounts
to retaining only the leading contributions in the limit of low frequencies and momenta in the ex-
pressions for the irreducible vertex functions, as appropriate for the evaluation of the current-current
response at zero frequency and in the limit q → 0. Below we show that these leading contributions
follow straightforwardly from the Ward identities associated with the various symmetries of the KPZ
equation.

Let us now proceed to find the explicit form of the correlation functions in Eqs. (5.48) and (5.50).
Our strategy is to first relate these correlation functions to irreducible vertex functions and then ap-
proximate the latter by their low frequency and momentum expansions, which are essentially deter-
mined by symmetries of the KPZ equation. Starting point for the derivation of exact relations between
correlation and vertex functions [88] is the generating functional for correlation functions,

Z[h, h̃] =

∫
D[θ, iθ̃]e−S +

∫
X(hθ+h̃θ̃). (5.55)

(We note that with this convention for coupling external sources h and h̃ to the phase θ and response
field θ̃ a physical source field would be denoted by h̃ whereas h corresponds to an causality violating,
i.e., unphysical, field. This is different from the convention usually used in the Keldysh formalism [55,
56], according to which a classical field couples to a “quantum source” and vice versa.) Connected
correlation functions can then be derived by taking derivatives of the functional W = ln Z with respect
to the sources. In particular, we have for the expectation values of θ and the response field θ̃ (note that
these expectation values are taken in the presence of the auxiliary fields h and h̃; we do not indicate
this explicitly in the notation),

ϕ(X) = 〈θ(X)〉 =
δW
δh(X)

,

ϕ̃(X) = 〈θ̃(X)〉 =
δW
δh̃(X)

.
(5.56)

To make the notation more compact in the following we introduce indices to distinguish between θ
and the response field θ̃, i.e., we set θ1 = θ, θ2 = θ̃ (and correspondingly for the expectation values
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ϕ and ϕ̃ and the sources h and h̃), and use numbers to indicate both the field index α = 1, 2 and
coordinates, e.g., 1 ≡ (α1, X1) such that θ(1) = θα1(X1) and

∫
1 ≡

∑
α1=1,2

∫
X1

. Moreover, for functional
derivatives we use the shorthand notation

δnZ
δh(1)δh(2) · · · δh(n)

= 〈θ(1)θ(2) · · · θ(n)〉 = G(1, 2, . . . , n),

δnW
δh(1)δh(2) · · · δh(n)

= W(1, 2, . . . , n),

δnΓ

δϕ(1)δϕ(2) · · · δϕ(n)
= Γ(1, 2, . . . , n).

(5.57)

The functional Γ in he last equation is the effective action, which generates one-particle irreducible
vertex functions, and is the Legendre transform of the generating functional W,

Γ = −W +

∫

1
h(1)ϕ(1). (5.58)

We obtain the basic relation between correlation functions and vertex functions (or, in other words,
between derivatives of W and Γ), from which all others can be derived by taking functional derivatives,
from the following sequence of equalities:

δ(1 − 2) =
δϕ(1)
δϕ(2)

=
δ2W

δh(1)δϕ(2)
=

∫

3

δ2W
δh(1)δh(3)

δh(3)
δϕ(2)

=

∫

3

δ2W
δh(1)δh(3)

δ2Γ

δϕ(3)δϕ(2)
=

∫

3
W(1, 3)Γ(3, 2). (5.59)

In the second equality we used Eq. (5.56), the third one is just the chain rule and in the fourth one we
replaced the source h(3) by h(3) = Γ(3). The latter relation which follows from Eq. (5.58). Note that
since functional derivatives commute the order of arguments of W and Γ is arbitrary. Differentiating
the basic relation (5.59) – which in fact is just the statement that the irreducible vertex Γ(3, 2) is the
inverse of the connected correlation function W(1, 3) – with respect to ϕ(3) yields

∫

4,5
W(1, 4, 5)Γ(5, 3)Γ(4, 2) = −

∫

4
Γ(2, 3, 4)W(4, 1). (5.60)

This equation can be solved for the connected three-point function by multiplying it with W(3, 6)W(2, 7)
and taking the integral over 2 and 3. Using Eq. (5.59), this results in

W(1, 2, 3) = −
∫

4,5,6
Γ(4, 5, 6)W(1, 4)W(5, 2)W(6, 3). (5.61)

The relations (5.59) and (5.61) hold for arbitrary values of the external sources h and h̃. Setting them
both to zero, we may assume without loss of generality that the expectation values Eq. (5.56) vanish
and consequently the connected two-point and three-point functions become equal to the disconnected
ones, which can be obtained by taking functional derivatives of Z (cf. the first line in Eq. (5.57)), i.e.,
we have

W(1, 2) = G(1, 2) = Gα1α2(X1, X2) = 〈θα1(X1)θα2(X2)〉,
W(1, 2, 3) = G(1, 2, 3) = Gα1α2α3(X1, X2, X3) = 〈θα1(X1)θα2(X2)θα3(X3)〉. (5.62)
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Thus Eqs. (5.59) and (5.61) are in fact the desired relations between vertex and correlation functions.
In the present form, however, they are not very transparent, so let us proceed to make them more
explicit by specifying the field indices. Then we can rewrite Eq. (5.59) as

∫

X3

(
C(X1 − X3) G(X1 − X3)
G(X3 − X1) 0

) (
0 Γ12(X3 − X2)

Γ12(X2 − X3) Γ22(X3 − X2)

)
= δ(X1 − X2)1, (5.63)

where we exploited the fact that due to temporal and spatial translational invariance the correlation
and vertex functions depend only on differences of coordinates. Here and in the following we denote
the two-point response and correlation functions by G and C, respectively,

G(X − X′) = G12(X, X′) = 〈θ1(X)θ2(X′)〉 = 〈θ(X)θ̃(X′)〉,
C(X − X′) = G11(X, X′) = 〈θ1(X)θ1(X′)〉 = 〈θ(X)θ(X′)〉. (5.64)

Note that both G22 and Γ11 vanish due to causality [55, 56]. The matrix equation (5.63) can be inverted
straightforwardly after taking the Fourier transform, which yields

(
C(Q) G(Q)

G(−Q) 0

)
=

(−Γ22(Q)/(Γ12(Q)Γ12(−Q)) 1/Γ12(−Q)
1/Γ12(Q) 0

)
. (5.65)

From this relation we obtain approximate expressions for the response and correlation functions by
inserting for the vertex functions the respective low-frequency and low-momentum expansions. These
follow directly from the Ward identity associated with the shift-gauged symmetry of the KPZ equa-
tion [18, 19]: indeed this symmetry entails that the coefficient of the term

∫
X θ̃∂tθ in the KPZ ac-

tion (5.37) is not renormalized, i.e., exactly the same term appears also in the effective action and we
have

Γ12(ω, 0) = iω. (5.66)

Rotational invariance implies that the lowest order contribution to an expansion in powers of q is
proportional to q2. This leads to

Γ12(ω,q) = iω + νq2 + O(ω2, ωq2, q4). (5.67)

At the strong-coupling fixed point the coefficient ν obeys the finite-size scaling ν ∼ ν∗Lχ [55], where
ν∗ is a non-universal constant. For the Γ22 vertex there is no restriction from the shift-gauged symme-
try and, therefore, its leading contribution in the limit of vanishing frequency and momentum is just
a constant,

Γ22(ω,q) = −2∆ + O(ω, q2), (5.68)

which scales with system size as ∆ ∼ ∆∗L3χ+d−2 [55]. Plugging Eqs. (5.67) and (5.68) into Eq. (5.65)
yields the low-frequency and low-momentum scaling forms of the response and correlation functions

G(Q) =
i

ω + iνq2 ,

C(Q) = 2∆ |G(Q)|2 =
2∆

ω2 + ν2q4 .

(5.69)

Having found the two-point functions, we proceed by specifying the field indices in Eq. (5.61)
for the three-point function to the values required in the current-current response function Eq. (5.49),
i.e., α1 = α2 = 1 and α3 = 2. Then we find

G112(X1, X2, X3) = −
∑

α4,α5

∫

X4,X5,X6

Γα4α51(X4, X5, X6)G1α4(X1, X4)G1α5(X2, X5)G21(X3, X6), (5.70)
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where we used again that due to causality G22 = 0, which fixes the value of α6 to 1. Performing the
remaining sums over α4 and α5 and taking the Fourier transform of the resulting expression we obtain

G112(Q,Q′) = − (
Γ122(−Q − Q′,Q)G(Q)G(Q′) + Γ112(−Q − Q′,Q)C(Q)G(Q′)

+Γ112(Q′,−Q − Q′)C(Q′)G(Q)
)
G(Q + Q′). (5.71)

Here we adopt the notation of Refs. [17–19]: in Fourier space we omit the third argument of the
three-point function and the irreducible vertices, which is determined by frequency and momentum
conservation. In order to make progress with Eq. (5.71) we have to specify the vertex functions.
Let us restrict ourselves to the lowest order in frequency and momentum and consider the following
ansatz,

Γ112(ω,q, ω′,q′) = γ1 + γ2
(
ω + ω′

)
+ γ3q · q′ + γ4

(
q2 + q′2

)
, (5.72)

which incorporates rotational invariance and symmetry of Γ112(Q,Q′) under exchange of its argu-
ments, as follows from the commutativity of the functional derivatives with respect to ϕ(Q) and
ϕ(Q′). The shift-gauged symmetry of the KPZ action implies [18, 19]

Γ112(ω, 0, ω′,q′) = γ1 + γ2
(
ω + ω′

)
+ γ4q′2 = 0, (5.73)

leading to γ1 = γ2 = γ4 = 0. We are left with a single parameter γ3, which is in fact determined by
another symmetry of the KPZ action: the ansatz (5.72) leads to the first equality in

γ3 =
1
d
∇q · ∇q′Γ112(Q,Q′)

∣∣∣∣∣
Q=Q′=0

= −iλ
∂

∂ω
Γ12(ω, 0)

∣∣∣∣∣
ω=0

= λ, (5.74)

whereas in the second one we used the Ward identity associated with the Galilean symmetry of the
KPZ equation [18, 19] in order to express the derivatives with respect to momenta of the vertex Γ112
in terms of a derivative with respect to frequency of the lower order vertex function Γ12, for which we
then inserted Eq. (5.66). Thus we have

Γ112(ω,q, ω′,q′) = λq · q′, (5.75)

which is again just the bare vertex already present in the action (5.37). Renormalization of this
vertex might occur only at higher orders in an expansion in powers of frequency and momentum. An
analogous treatment for the vertex Γ122 leads us to

Γ122(ω,q, ω′,q′) = κq2. (5.76)

Again, the absence of a constant term and of terms proportional to the frequency and to q′2 follows
from the shift-gauged symmetry. However, this vertex is not symmetric with respect to exchange of
its arguments and, therefore, the presence of a term ∝ q2 with an unknown coefficient κ cannot be
excluded. Nevertheless, applying the same logic that lead to γ3 = λ in Eq. (5.74), shows that there is
no contribution ∝ q · q′ in Γ122.

With the expressions for the response, correlation, and vertex functions, we proceed to evaluate
the two contributions to the current-current response function, Eqs. (5.47) and (5.49), at vanishing
frequency. We find

χ(1)
i j (0,q) =

ucρ0

2m2udν

qiq j

q2 , (5.77)
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leading to a contribution to the superfluid density

ρ(1)
s =

ucρ0

2mudν
∼ ucρ0

2mudν∗
L−χ, (5.78)

which vanishes in the thermodynamic limit L → ∞. Note that precisely this contribution involving
the two-point response function remains finite in a Gaussian approximation in which G0(0,q) ∼ 1/q2.
Let us turn now to the evaluation of Eq. (5.49), which can be rewritten as

χ(2)
i j (0,q) =

ρ0

m2 qi

∫

Q′
q′j

[
κ
∣∣∣q − q′

∣∣∣2 G(0,q)G(ω′,q′)

− λ (
q + q′

) · (qC(0,q)G(ω′,q′) + q′G(0,q)C(ω′,q′)
)]

G(ω′,q + q′). (5.79)

The integral over ω′ of the product G(ω′,q′)G(ω′,q + q′) vanishes since the integrand has poles
only in the lower half-plane; hence there is no contribution ∝ κ and also the first term ∝ λ does not
contribute to the current-current response function. For the remaining integral over frequency we find

∫

ω′
C(ω′,q′)G(ω′,q + q′) =

∆

ν2q′2
1

q′2 + |q + q′|2 . (5.80)

The integral over the momentum q′ can be carried out exactly in 2D and we obtain

χ(2)
i j (0,q) = − ln 2

8π
λ∆ρ0

m2ν3

qiq j

q2 , (5.81)

which yields the contribution to the superfluid density

ρ(2)
s = − ln 2

8π
λ∆ρ0

mν3 ∼
ln 2
8π

g∗ρ0, (5.82)

where we used m = −1/λ (cf. Eq. (5.38)) and expressed the final result in terms of the universal value
g∗ of the dimensionless KPZ coupling g = λ2∆/ν3 [18, 19, 55]. The sum of Eqs. (5.78) and (5.82)
yields the final result (5.1) stated in Sec. 5.1.

5.5 The influence of topological defects

The calculation of the superfluid density presented in Sec. 5.4 neglects the influence of topological
defects that might occur in the compact phase field θ. At present it is not known to us what the pre-
cise limitations of the validity of this approach are, and in this section we only briefly discuss the
issue based on several scenarios for the possible behavior of vortices in 2D driven-dissipative sys-
tems. The difficulty with rigorously incorporating vortices in our treatment is rooted in the fact that
the KPZ equation (5.39) is non-linear. Indeed, setting the non-linearity λ to zero, the KPZ equation
reduces to purely diffusive dynamics, which describes relaxation to a thermodynamic equilibrium at
a temperature set by the noise strength ∆. In order to evaluate time-independent observables in the
stationary equilibrium state, in this case it is sufficient to consider the thermodynamic partition func-
tion Z =

∫
D[θ]e−S , where the functional integral is over static configurations θ = θ(x) of the phase

field and the action is given by S = ν
∆

∫
r (∇θ)2. Close to the BKT transition, the crucial contributions

to the partition function come from configurations of the phase field which solve the classical field
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equation δS/δθ = 0 and contain vortices [58, 90]. Due to the linearity of the field equation, one
can form superpositions of the single-vortex solution and therefore the relevant field configurations
can be parameterized simply by listing the positions of vortex cores. Then the functional integral
in the partition function can be approximated by a sum over all possible numbers of vortices and
ordinary integrals over the vortex positions. On the other hand, for a finite value of λ in the KPZ
equation (5.39), the stationary probability distribution of the phase field is not know (in particular, it
is not simply the Boltzmann weight as in the equilibrium case), and therefore one has to consider dy-
namical configurations of the phase θ = θ(t, x), i.e., solutions to the field equation δS KPZ/δθ = 0 with
the KPZ action (5.37), containing several vortices (in fact, due to the complex structure of vortices
in the complex Ginzburg-Landau equation [91], it might even be necessary to resort to the original
action Eq. (5.8)). However, the KPZ equation is non-linear, so that linear superpositions of dynamical
single-vortex configurations do not yield solutions to the field equation. Hence the approach taken
in equilibrium cannot be extended to the driven-dissipative case straightforwardly. Let us, therefore,
take what is known about the BKT transition in equilibrium as the starting point and content ourselves
with speculations on how this scenario might change for small values of the bare dimensionless KPZ
non-linearity g = λ2∆/ν3.

If the critical temperature ∆c of the BKT transition is approached from larger values ∆ > ∆c, the
correlation length diverges as ξ ∼ ξ0 exp(b/

√
∆ − ∆c), where ξ0 is a microscopic length scale and b

is a non-universal number, i.e., at high temperatures correlations are strongly suppressed at distances
r > ξ due to the presence of free vortices. For a small value g � 1 of the bare dimensionless KPZ
non-linearity, this picture applies still if the correlation length ξ is smaller than the characteristic KPZ
length L∗ ∼ ξ′0 exp(a/∆) which was identified in Ref. [2], and where again ξ′0 is a microscopic length
scale and the parameter a = 8πν3/λ is determined by the bare values of ν and λ given in Eq. (5.38).
Here we consider ξ and L∗ as functions of the noise strength ∆, however, in experiments with exciton-
polaritons the natural tuning parameter is the pump rate γp, which enters the noise strength ∆ given
in Eq. (5.38) via its dependence on the mean-field density ρ0 = −rd/ud = (γp − γl)/(2ud). Universal
scaling behavior governed by the SCFP of the KPZ equation in 2D sets in at length scales above L∗,
hence the regime of interest for us is L∗ < ξ. The latter is obviously realized for ∆ < ∆c. Then
the renormalized value of g becomes sizable and we expect that the dynamics of vortices will be
influenced by the fluctuations of the non-topological part of the phase field, which are governed by
the KPZ equation. Let us assume that under these conditions vortices lead to exponential decay of
correlations and invalidate KPZ scaling on length scales larger than a characteristic scale Lv, which
might be different from the correlation length ξ in equilibrium. How would the existence of such a
scale affect the validity of the result (5.1) for the superfluid density? Several options, which are listed
below and illustrated in Fig. 5.2, are possible.

(a) Lv ≈ L∗, i.e., vortices proliferate at the scale where the strong coupling regime of the KPZ
equation is reached. Then in a large system L > Lv correlations of the order parameter field
would decay exponentially and the superfluid density would vanish as in the high-temperature
phase of a 2D system in equilibrium.

(b) L∗ < Lv < ∞, so that in systems with size L that satisfies L∗ < L < Lv stretched-exponential
decay of correlations would be observed, and the superfluid density would indeed be given by
Eq. (5.1) for this specific range of system sizes. However, in large systems L > Lv the superfluid
density would again drop to zero.
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Figure 5.2. Possible phase diagrams of a 2D driven-dissipative system in terms of
the noise strength ∆ and the system size L (both are measured in arbitrary units): (a)
The scale Lv at which vortices proliferate coincides with the characteristic KPZ scale
L∗, which thus marks the transition from algebraic to exponential decay of correla-
tions. (b) For L∗ < Lv < ∞ there is a range of system sizes in which KPZ universality
prevails, i.e., order parameter correlations decay stretched-exponentially and the su-
perfluid density is given by Eq. (5.1). (c) Non-equilibrium BKT transition at ∆ = ∆′c:
the low-noise phase is governed by the SCFP of the KPZ equation up to macroscopic
scales. Above ∆′c the situation is as described in (b).

(c) The most intriguing case, however, would be the existence of a non-equilibrium BKT transition,
i.e., the existence of a critical value ∆′c of the noise strength such that Lv → ∞ for ∆ < ∆′c. Then
our result Eq. (5.1) for the superfluid density would be valid in the low-noise phase, where it
would be accompanied by stretched-exponential decay of correlations.

Finding out which of these scenarios is realized in 2D driven-dissipative systems will be the objective
of further studies. Note that the recent numerical work reported in Ref. [50] is not indicative of the
answer to this question, since there system sizes L < L∗, corresponding to a choice of parameters that
is relevant for present experimental setups, have been considered.

5.A Equilibrium symmetry in the density-phase representation

As stated in Sec. 5.3.1, there is a specific symmetry that distinguishes thermodynamic equilibrium
from non-equilibrium stationary states. In particular, the response functional for a classical dynamical
system [29, 55, 56, 58, 67], or the classical limit of a Keldysh action that describes the dynamics of
a corresponding quantum system, possesses this symmetry only if the system resides in equilibrium.
This is the case, e.g., for model A*, which we mentioned as the special instance of the Keldysh
action Eq. (5.10) that is realized if the parameters appearing in the action satisfy the condition stated
in Eq. (5.11). In a driven-dissipative system, where coherent and dissipative contributions to the
Keldysh action have clearly distinct physical origins, this condition amounts to an unphysical fine-
tuning and is generically violated, resulting in the appearance of the characteristic KPZ non-linearity
proportional to λ, which is given in Eq. (5.40), in the action for the condensate phase.

While the equilibrium symmetry transformation has been specified for classical and quantum
fields, in terms of which model A* and Eq. (5.10) are formulated, in Refs. [52, 67–70], here we derive
a representation that can be applied directly to the action for the phase of the classical field, i.e., the
order parameter, which allows us to demonstrated that the appearance of the non-linear term in the
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KPZ action (5.37) is indicative of non-equilibrium conditions. This is of particular interest in the case
of a one-dimensional system, where the KPZ equation “accidentally” satisfies detailed balance [29] –
which can again be seen as following from a specific symmetry given in Eq. (5.90) below – and hence
can occur also in thermodynamic equilibrium (see, e.g., Ref. [92]). Then the form of the equilibrium
symmetry transformation Eq. (5.89) we derive below shows that the 1D KPZ equation, if it emerges
as the dynamical equation for the phase of a driven-dissipative condensate, should indeed be regarded
as describing non-equilibrium conditions.

The Keldysh action in the classical limit for a system with coherent and dissipative dynamics
describes thermodynamic equilibrium at a temperature T , if there exists a real parameters r, the
meaning of which is specified below, such that the following transformation [52] is a symmetry of the
action:

TΦc(t, x) = σxΦc(−t, x),

TΦq(t, x) = (r1 − iσz)σx

(r1 + iσz

1 + r2 Φq(−t, x) +
i
T
∂tΦc(−t, x)

)
.

(5.83)

Here we collect fields and their complex conjugates in spinors, Φν =
(
φν, φ

∗
ν

)T , with ν = c, q indicating
classical and quantum fields; σx and σz are Pauli matrices. The action in Eq. (5.10) (which can be
obtained from the model specified in Eq. (5.8) by taking the classical limit and adding the diffusion
terms proportional to Kd) possess this symmetry if it obeys the equilibrium condition Eq. (5.11), so
that it reduces to model A*, and the parameter r is chosen to be r = Kc/Kd = uc/ud. This parameter
also enters the expression for the effective temperature, which is given by T = γ

(
1 + r2

)
. As a first

step towards deriving the symmetry transformation for the phase field θ, we rewrite Eq. (5.83) in
terms of the variables introduced in the density-phase representation (5.32),

T θ(t, x) = −θ(−t, x),

T ρ(t, x) = ρ(−t, x),

T ζ1(t, x) =
1

1 + r2

[(
r2 − 1

)
ζ1(−t, x) − 2rζ2(−t, x)

]
+

i
T


r∂tρ(−t, x)

2
√
ρ(−t, x)

−
√
ρ(−t, x)∂tθ(−t, x)

 ,

T ζ2(t, x) = − 1
1 + r2

[(
r2 − 1

)
ζ2(−t, x) + 2rζ1(−t, x)

]
− i

T

r
√
ρ(−t, x)∂tθ(−t, x) +

∂tρ(−t, x)

2
√
ρ(−t, x)

 .

(5.84)

Note that under the transformation T the real and imaginary parts of ζ, denoted by ζ1 and ζ2 respec-
tively, explicitly acquire imaginary contributions. This is not surprising since the complex fields φq

and φ∗q are transformed independently, i.e., Tφ∗q is not the complex conjugate of Tφq. The transfor-
mation rules (5.84) mix phase and density fields and are, therefore, not a direct mean to test whether
the phase-only action describes an equilibrium situation. We can still make progress by noting that
the symmetry transformation Eq. (5.84) can be used to derive the equilibrium FDR for the phase. In
the correlation and response functions that appear in this relation and which are defined in Eq. (5.64),
we may integrate out density fluctuations using the procedure described in Sec. 5.3.3, and read off

an effective transformation prescription involving only the phase and the response field θ̃ from the
resulting relation. Reversing the argument we can then say that a sufficient condition for the validity
of the FDR is that the phase-only action is invariant with respect to this effective transformation. The
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FDR follows from the relations, valid in thermodynamic equilibrium,

〈θ(t, x)ζ1(t′, x′)〉 = 〈T θ(t, x)T ζ1(t′, x′)〉,
〈θ(t, x)ζ2(t′, x′)〉 = 〈T θ(t, x)T ζ2(t′, x′)〉. (5.85)

Inserting here the explicit expressions Eq. (5.84) and the decomposition ρ = ρ0 + π of the density
into its average value and fluctuations, we proceed to omit all but the leading order contributions
in a saddle-point approximation (cf. the discussion following Eq. (5.42)). Then, in the correlation
functions that do not involve π, the integration over this variable yields a δ-functional δ[ucζ1 − udζ2]
as in Eq. (5.36), which allows us to replace ζ2 by rζ1. As a result we have

〈θ(t, x)ζ1(t′, x′)〉 = 〈θ(−t, x)ζ1(−t′, x′)〉

− i
T

(
r

2
√
ρ0
〈θ(−t, x)∂tπ(−t′, x′)〉 − √ρ0〈θ(−t, x)∂tθ(−t′, x′)〉

)
,

r〈θ(t, x)ζ1(t′, x′)〉 = r〈θ(−t, x)ζ1(−t′, x′)〉

+
i
T

(
r
√
ρ0〈θ(−t, x)∂tθ(−t′, x′)〉 + 1

2
√
ρ0
〈θ(−t, x)∂tπ(−t′, x′)〉

)
.

(5.86)

These two relations can be combined to eliminate the correlation function 〈θ(−t, x)∂tπ(−t′, x′)〉 from
the RHS. Finally, replacing ζ1 by the response field θ̃ = i2

√
ρ0ζ1 we find

〈θ(t, x)θ̃(t′, x′)〉 = 〈θ(−t, x)θ̃(−t′, x′)〉 − 1
∆
〈θ(−t, x)∂tθ̃(−t′, x′)〉, (5.87)

with the noise strength ∆ given by Eq. (5.40). This relation can readily be seen to be just the equi-
librium FDR by noting that the response function defined in Eq. (5.64) vanishes for t > t′ [29].
Therefore, upon multiplying Eq. (5.87) with the step function θ(t − t′) we obtain the classical FDR in
the time and frequency domains,

G(t − t′, x − x′) = − 1
∆
θ(t − t′)∂tC(t − t′, x − x′),

C(ω,q) =
2∆

ω
Im G(ω,q).

(5.88)

In order to obtain the effective equilibrium transformation of the response field θ̃, in analogy with
Eq. (5.85) we identify the RHS of the relation Eq. (5.87) with 〈T θ(t, x)T θ̃(t′, x′)〉. Then in addition to
the transformation in Eq. (5.84) for the phase θ we obtain for the response field θ̃ the transformation
prescription

T θ̃(t, x) = −θ̃(−t, x) +
1
∆
∂tθ(−t, x), (5.89)

i.e., the fields θ and θ̃ transform as generic real variables with dissipative dynamics [68–70]. The sym-
metry of the action under this transformation is sufficient not only to establish the FDR for two-point
functions but also for arbitrary higher correlation functions [68–70]. We note that the parameter r that
determines the relative strength of coherent and dissipative dynamics appears here only implicitly in
the effective temperature set by the noise strength ∆.

It is straightforward to check that the non-linear term in the KPZ action (5.37) is not symmetric
under the action of T , specified in Eqs. (5.84) and (5.89), while the remaining parts of the action,
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which describe purely diffusive dynamics of the phase realized in model A*, are. We remark that the
violation of the symmetry by the non-linear term occurs in any spatial dimension and, in particular,
in 1D where the KPZ equation has a Gaussian thermal Gibbs distribution as stationary state [29, 55].
This is due to the fact that the 1D KPZ equation does indeed have an equilibrium-like symmetry, if
instead of the transformation Eq. (5.89) one uses [17–19]

T θ̃(t) = θ̃(−t) +
ν

2∆
∇2θ(−t). (5.90)

5.B Retarded response functions in the Keldysh formalism

In this appendix we derive the Keldysh functional integral representation of two-time correlation func-
tions such as the retarded current-current response function Eq. (5.2), for the case that the dynamics
of the system is described by a quantum master equation in Lindblad form. Then, according to the
quantum regression theorem [93], the correlation function of operators A and B at times t > t′, can be
written as

〈A(t)B(t′)〉 = tr (AeL(t−t′)BeLt′ρ0), (5.91)

where ρ(t) = eLtρ0 is the formal solution to the master equation ∂tρ = Lρ, with the initial condition
ρ(0) = ρ0.Note thatL, which is specified in Eq. (5.5), is a superoperator that acts on its argument both
from the LHS and the RHS. The same is true for the exponential eLt, which thus describes evolution
on the forward and the backward branches of the closed time path. Hence, the expression in the
trace on the RHS of Eq. (5.91) should be read as follows: starting at t = 0 with ρ0, time evolution
proceeds on the forward and backward branches up to the time t′, where the operator B is inserted on
the forward branch; Then time evolution continues from t to t′, and finally A is again evaluated on the
forward branch. However, using the cyclicity of the trace, the operator A can equally be shifted to the
very right of the sequence of operators in the trace in Eq. (5.91), i.e., it can also be evaluated on the
backward branch. These considerations lead to the following expression for the two-time correlation
function in terms of Keldysh functional integrals for t > t′:

〈A(t)B(t′)〉 = 〈A+(t)B+(t′)〉 = 〈A−(t)B+(t′)〉. (5.92)

Let us now turn to the retarded response function for operators A and B, which is defined as

χAB(t − t′) = iθ(t − t′)〈[A(t), B(t′)]〉, (5.93)

i.e., it is the sum of two two-time correlation functions. Due to the θ-function appearing in this
definition we have to evaluate the RHS only for t > t′. Then the first term in the commutator can be
written as in Eq. (5.91), while the second one is given by

〈B(t′)A(t)〉 = 〈B−(t′)A+(t)〉 = 〈B−(t′)A−(t)〉. (5.94)

Equations (5.92) and (5.94) show that there is no unique expression for the response function if the
operators A and B are evaluated either on the forward or on the backward branch. This ambiguity
vanishes when we form superpositions corresponding to the classical and quantum components, Ac =

(A+ + A−)/2 and Aq = A+ − A−, respectively. Then we have [94]

〈Aq(t)Bq(t′)〉 = 0, 〈Ac(t)Bq(t′)〉 ∝ θ(t − t′), 〈Aq(t)Bc(t′)〉 ∝ θ(t′ − t), (5.95)

and we find the unique expression for the retarded response function

χAB(t − t′) = i〈Ac(t)Bq(t′)〉. (5.96)



5.C. Density-phase representation for a weakly interaction Bose gas 155

5.C Density-phase representation for a weakly interaction Bose gas

Here we describe how the action for the phase of the order parameter in a weakly interacting Bose
gas in thermodynamic equilibrium can be derived within the Keldysh formalism. As in Sec. 5.3.3,
where we considered the case of a driven-dissipative condensate, the functional integrals over density
fluctuations and the quantum field are solved by expanding the action around the classical saddle
point. We start from the Keldysh action (omitting infinitesimal dissipative regularization terms [55,
56])

S =

∫

X

[
φ∗q

(
i∂t + Kc∇2

)
φc + c.c. − V

]
, (5.97)

where the potential V is given by (note that in contrast to the potential in Eq. (5.8) for the driven-
dissipative case this expression is invariant under phase rotations Uq introduced in Sec. 5.3.2; this
symmetry implies particle number conservation)

V = rc
(
φ∗qφc + c.c.

)
+ uc

(
φ∗qφ

∗
cφ

2
c + 4φ∗qφ

∗
cφ

2
q + c.c.

)
. (5.98)

Inserting here the representation Eq. (5.32) of the classical and quantum fields and keeping only terms
up to second order in products of density fluctuations π = ρ − ρ0 and the quantum field ζ, which we
decompose into its real and imaginary parts, ζ1 and ζ2 respectively, we find for the potential

V ≈ 2uc
√
ρ0ζ1π. (5.99)

This gives a mass-like contribution in sector that involves the fields ζ1 and π, and in order to obtain a
low-energy effective description we will integrate out exactly these two fields. After the expansion in
π and ζ the full action reads

S = − 1√
ρ0

∫

X

(
(π, ζ1)

(
∂tζ2

2ρ0∂tθ

)
+ ucρ0 (π, ζ1)σx

(
π

ζ1

)
− 2Kcρ0ζ2∇2θ

)
, (5.100)

where we neglected three terms ζ1∇2π, ζ1π∂tθ, and ζ1π (∇θ)2 which are dominated by the mass term
Eq. (5.99); Moreover we neglected ζ1 (∇θ)2 � ζ1∂tθ as well as ζ2∇π · ∇θ and ζ2π∇2θ which are small
as compared to ζ2∂tπ since the dynamical exponent is z = 1 as we will verify below. We now perform
the Gaussian integral over π and ζ1 (alternatively we could proceed as in Eq. (5.36), i.e., in a first step
carry out the integral over π which yields a δ-functional that can be used to solve the integral over ζ1)
to obtain the action for the phase θ,

Z =

∫
D[θ, π, ζ1, ζ2]eiS =

∫
D[θ, θ̃]eiS θ . (5.101)

In the last equality we expressed the imaginary part of the quantum field as ζ2 = −uc
√
ρ0θ̃. The action

for the phase reads

S θ =

∫

X
θ̃
(
∂2

t θ − c2∇2θ
)
, (5.102)

where c =
√

2Kcucρ0 is the speed of sound, and describes the dissipationless propagation of sound
waves with linear dispersion ω = cq.
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M. Kamp, and A. Forchel, Phys. Rev. Lett. 110, 137402 (2013).

[9] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. Lett. 56, 889 (1986).

[10] G. Grinstein, D. Mukamel, R. Seidin, and C. Bennett, Phys. Rev. Lett. 70, 3607 (1993).

[11] G. Grinstein, C. Jayaprakash, and R. Pandit, Phys. D Nonlinear Phenom. 90, 96 (1996).

[12] G. Sivashinsky, Acta Astronaut. 4, 1177 (1977).

[13] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984).

[14] L. He, L. M. Sieberer, E. Altman, and S. Diehl, arXiv:1412.5579 (2014).

[15] V. N. Gladilin, K. Ji, and M. Wouters, Phys. Rev. A 90, 023615 (2014).

[16] K. Ji, V. N. Gladilin, and M. Wouters, Phys. Rev. B 91, 045301 (2015).
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[18] L. Canet, H. Chaté, B. Delamotte, and N. Wschebor, Phys. Rev. E 84, 061128 (2011).

[19] L. Canet, Phys. Rev. E 86, 019904(E) (2012).

[20] J. Kim and J. Kosterlitz, Phys. Rev. Lett. 62, 2289 (1989).

[21] V. G. Miranda and F. D. A. Aarão Reis, Phys. Rev. E 77, 031134 (2008).

[22] E. Marinari, A. Pagnani, and G. Parisi, Journal of Physics A: Mathematical and General 33,
8181 (2000).

[23] S. Ghaisas, Phys. Rev. E 73, 022601 (2006).

http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevX.5.011017
http://dx.doi.org/10.1103/PhysRevA.8.1111
http://dx.doi.org/10.1038/nature05131
http://dx.doi.org/10.1126/science.1140990
http://dx.doi.org/10.1103/PhysRevLett.99.126403
http://dx.doi.org/10.1073/pnas.1107970109
http://dx.doi.org/10.1073/pnas.1107970109
http://dx.doi.org/10.1103/PhysRevLett.110.137402
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1103/PhysRevLett.70.3607
http://www.sciencedirect.com/science/article/pii/0167278995000364
http://dx.doi.org/10.1016/0094-5765(77)90096-0
http://arxiv.org/abs/1412.5579
http://dx.doi.org/10.1103/PhysRevA.90.023615
http://dx.doi.org/10.1103/PhysRevB.91.045301
http://dx.doi.org/10.1103/PhysRevLett.104.150601
http://dx.doi.org/10.1103/PhysRevE.84.061128
http://dx.doi.org/10.1103/PhysRevE.86.019904
http://dx.doi.org/10.1103/PhysRevLett.62.2289
http://dx.doi.org/10.1103/PhysRevE.77.031134
http://dx.doi.org/10.1088/0305-4470/33/46/303
http://dx.doi.org/10.1088/0305-4470/33/46/303
http://dx.doi.org/10.1103/PhysRevE.73.022601


BIBLIOGRAPHY 157

[24] C.-S. Chin and M. den Nijs, Phys. Rev. E 59, 2633 (1999).

[25] L.-H. Tang, B. Forrest, and D. Wolf, Phys. Rev. A 45, 7162 (1992).

[26] J. Keeling, Phys. Rev. Lett. 107, 080402 (2011).

[27] P. Hohenberg and B. Halperin, Rev. Mod. Phys. 49, 435 (1977).

[28] R. Folk and G. Moser, Journal of Physics A: Mathematical and General 39, R207 (2006).
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We numerically investigate the scaling properties of a one-dimensional driven-dissipative
condensate described by a stochastic complex Ginzburg-Landau equation (SCGLE). We directly
extract the static and dynamical scaling exponents from the dynamics of the condensate’s phase
field, and find that both coincide with the ones of the one-dimensional Kardar-Parisi-Zhang (KPZ)
equation. We furthermore calculate the spatial and the temporal two-point correlation functions
of the condensate field itself. The decay of the temporal two-point correlator assumes a stretched-
exponential form, providing further quantitative evidence for an effective KPZ description. More-
over, we confirm the observability of this non-equilibrium scaling for typical current experimental
setups with exciton-polariton systems, if cavities with a reduced Q factor are used.

6.1 Introduction

Physical systems driven far away from thermal equilibrium can show intrinsically different proper-
ties from their equilibrium counterparts. One prototypical example is the growing interface, whose
long-wavelength dynamics, described by the so-called Kardar-Parisi-Zhang (KPZ) equation [1], does
not belong to the Halperin-Hohenberg classification of near thermal equilibrium dynamical behavior
[2]. Recent experimental progress in realizing Bose-Einstein condensation of exciton-polaritons in
pumped semiconductor heterostructures [3–5] holds the promise of developing such systems into lab-
oratories for non-equilibrium statistical mechanics. Microscopically, these systems exhibit coherent
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worked out the precise relation to experiments with exciton-polaritons, including the appropriately rescaled stochastic
complex Ginzburg-Landau equation and the experimental parameter values. Furthermore he was involved in preparing the
manuscript.
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and driven-dissipative dynamics on an equal footing, and therefore explicitly violate detailed balance
characteristic of an equilibrium system. This phenomenology can have drastic consequences for the
macrophysics of such systems. Indeed, for the case of driven-dissipative condensates of exciton-
polaritons in two dimensions (2D), it was pointed out recently [6] that quasi-long-range order can not
exist in the long-wavelength limit, in stark contrast to the familiar properties of 2D equilibrium con-
densates. This conclusion was drawn from a connection between the stochastic complex Ginzburg-
Landau equation (SCGLE) and the KPZ equation in the long-wave length limit [6, 7], as also noticed
in 1D [8]. However, direct numerical evidence of this connection is still missing.

As a first step to fill this gap, here we investigate the long-wavelength behavior of the dynamics
of a driven-dissipative condensate in 1D. Our first goal is to study whether scaling properties of the
condensate’s phase field dynamics, in particular static and dynamical exponents, indeed coincide
with those implied by the KPZ equation. The second goal is to directly study both the spatial and
temporal correlation function of the bosonic field for the condensate itself to see whether they match
the prediction from the KPZ picture.

We achieve our goals via direct numerical simulations of the SCGLE which governs the dy-
namics of driven-dissipative condensates. We directly extract both the static and dynamical critical
exponents of the system from the dynamics of the condensate’s phase field. Within numerical error,
we indeed find that the critical exponents of the SCGLE coincide with the ones of the KPZ equation
(see Figs. 6.1, 6.5, and 6.6), and we estimate the crossover time scale (see Fig. 6.2) beyond which the
KPZ scaling behavior can be observed. We further find that the scaling properties of the condensate
field dynamics (see Figs. 6.3 and 6.4) match the expectation from the effective description in terms of
the KPZ equation. Finally, we demonstrate that the KPZ scaling can be seen in current experimental
setups with exciton-polaritons, if cavities with a reduced Q factor are used (see Fig. 6.4).

The paper is organized as follows: In Sec. 6.2, we specify the system and model under study, and
the theoretical approach used. In Sec. 6.3, we present a detailed discussion of the scaling properties of
the phase field correlations. This contains in particular the static and dynamical exponents of the con-
densate’s phase field dynamics. In Sec. 6.4, we discuss the scaling properties of two-point correlation
functions of the condensate field itself. In Sec. 6.5, we investigate the experimental observability of
the scaling properties discussed in Sec. 6.4 in exciton-polariton condensate experiments. We conclude
and give an outlook in Sec. 6.6.

6.2 Model and Theoretical Approach

The dynamics of driven-dissipative condensates, which have been realized in experiments with exciton-
polariton systems [3–5], can be modeled by the SCGLE with a complex Gaussian white noise (units
are chosen such that ~ = 1) which reads in 1D as [6, 9]

∂

∂t̃
ψ̃ =

[
r̃ + K̃

∂2

∂x̃2 + ũ|ψ̃|2
]
ψ̃ + ζ̃ (6.1)

with r̃ = −r̃d − ir̃c, K̃ = K̃d + iK̃c, ũ = −ũd − iũc, 〈ζ̃(x̃, t̃)ζ̃(x̃′, t̃′)〉 = 0, 〈ζ̃∗(x̃, t̃)ζ̃(x̃′, t̃′)〉 = 2σ̃δ(x̃ −
x̃′)δ(t̃ − t̃′). The second moment of the noise σ̃ = γ̃l with γ̃l being the single particle loss, while
r̃d = γ̃l − γ̃p is the difference between the single particle loss and pump. For the existence of a
condensate in the mean field steady state solution, r̃d has to be negative, i.e., the single-particle pump
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rate has to be larger than the loss rate. ũd is the positive two-particle loss rate; Kc = 1/(2mLP) with
mLP being the mass of polaritons and Kd is an effective diffusion constant. For convenience, we use
the following rescaled form of Eq. (6.1),

∂

∂t
ψ =

[
r + K

∂2

∂x2 + u|ψ|2
]
ψ + ζ, (6.2)

where

t = |r̃d |t̃, x =

√
|r̃d |
K̃d

x̃, ψ =

√
ũd

|r̃d | ψ̃, ζ =

√
ũd

|r̃d |3
ζ̃, (6.3)

rc =
r̃c

|r̃d | , Kc =
K̃c

K̃d
, uc =

ũc

ũd
, r = 1 − irc, K = (1 + iKc), u = (−1 − iuc) (6.4)

and the second moment of the rescaled Gaussian white noise ζ(x, t) is σ = σ̃ũd |r̃d |−3/2 K̃−1/2
d .

Adopting the amplitude-phase representation of the complex bosonic field ψ(x, t) = ρ(x, t)eiθ(x,t),
it was shown [6–8] that, assuming that spatial-temporal fluctuations of the amplitude field ρ(x, t)
are small, the dynamical equation of the phase field θ(x, t) assumes in the low-frequency and long-
wavelength limit the form of the KPZ equation, which reads

∂tθ(x, t) = D∂2
xθ(x, t) +

λ

2
(∂xθ(x, t))2 + η(x, t), (6.5)

where η(x, t) is an effective Gaussian white noise, with mean 〈η(x, t)〉 = 0, and correlations

〈η(x, t)η(x′, t′)〉 = 2σKPZδ(x − x′)δ(t − t′).

Here σKPZ = (ũ2
d + ũ2

c)γ̃l/(2ũd(γ̃p − γ̃l)) is the effective noise strength, D = K̃d(1 + K̃cũc/K̃dũd) is
the diffusion constant, and λ = 2K̃c

(
K̃dũc/K̃cũd − 1

)
is the non-linear coupling strength [6]. With a

simple rescaling, i.e., θ = Θ
√

2σKPZ/D, t = τ/D, η = ξ
√

2σKPZD, the KPZ equation Eq. (6.5)
can be recast into a form where only one dimensionless parameter, the non-linear coupling strength
g, enters, i.e.

∂τΘ(x, τ) = ∂2
xΘ(x, τ) + g (∂xΘ(x, τ))2 + ξ(x, τ), (6.6)

where

g = λ

√
σKPZ

2D3 , (6.7)

and 〈ξ(x, τ)ξ(x′, τ′)〉 = δ(x−x′)δ(τ−τ′). Importantly, the magnitude of g directly characterizes how far
the dynamics of the complex field ψ is driven away from thermal equilibrium. More precisely, g = 0
is guaranteed by symmetry in a thermal equilibrium system which obeys global detailed balance [10,
11], in which case Eq. (6.6) reduces to the so-called Edwards-Wilkinson (EW) dynamical equation
[12], while g , 0 indicates that the system is driven away from thermal equilibrium.

In the following, we investigate the scaling properties of various correlation functions of the phase
field θ(x, t), in particular the static and dynamical critical exponent, as well as the correlation proper-
ties of the complex bosonic field ψ(x, t) which are of most direct physical interest for experiments.

To put our investigation in a more general context, here we mention a few situations where similar
dynamical equations appear. Without the noise term in (6.2), the above equation reduces to the deter-
ministic complex Ginzburg-Landau equation (CGLE). One key feature of the latter is the existence
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of a so-called Benjamin-Feir unstable parameter region [13] specified by 1 + Kcuc < 0, where the
dynamics described by the deterministic CGLE develops spatiotemporal chaotic behavior (see e.g.
[14]) which has been extensively studied in the literature [15, 16]. As we are interested in the param-
eter regime with both Kc and uc being positive, the Benjamin-Feir unstable region is not relevant for
the current investigation. However, it can be relevant if one is interested in turbulence of the bosonic
fluid in the presence of external noise [17]. Moreover, a similar stochastic dynamical equation, the
so-called stochastic Gross-Pitaevskii equation [18, 19], is used to describe, e.g. the BEC formation
dynamics of alkali atoms at finite temperature. Here, however, the constraints resulting from detailed
balance in stationary state are built in. Finally, we mention that recently in Ref. [8] a higher order
spatial derivative term was included in the effective description of the 1D SCGLE. This study focuses
on the static correlation properties of the system, where a crossover in the spatial correlation function
at intermediate scale is identified.

We finally give some general information concerning our numerical simulations. We use the
semi-implicit algorithm developed in [20] to solve the stochastic partial differential equation (6.2)
numerically. In all the simulations spatial periodic boundary conditions of the complex field ψ(x, t)
are assumed and the winding number of the phase field θ(x, t) across the whole system is chosen to
be zero. We work in the low noise regime, where we find defects of the phase field to be absent. If
not specified in text, we use NTraj = 102 stochastic trajectories to perform ensemble averages.

6.3 Scaling properties of the phase correlations

6.3.1 KPZ exponents

In order to characterize the phase dynamics we extract the phase field θ(x, t) from the simulations of
the condensate field ψ(x, t). We then investigate the following correlation function associated with the
phase field:

w(L, t) ≡
〈

1
L

∫

x
θ2(x, t) −

(
1
L

∫

x
θ(x, t)

)2〉
, (6.8)

where L is the linear size of the system and “〈 〉” indicates ensemble average over stochastic trajec-
tories. In the context of the KPZ equation, w(L, t) is usually referred to as “roughness function”.
Regarding θ(x, t) as the crystal height variable as in the conventional KPZ equation, w(L, t) measures
the spatial fluctuations of that height. Later we discuss subtleties involved in the definition of w(L, t)
due to the fact that the phase field θ is in fact compact, i.e. defined on the circle. Measuring the
scaling properties of w(L, t) allows to extract both static and dynamic exponents and thus establish a
connection to KPZ universality (see e.g. [21]):

1. In a large system we expect to see a wide range of time-scales over which w(L, t) ∝ t2β, where
the dynamical exponent β is usually referred to as growth exponent in the KPZ context. It relates
to the conventional dynamical exponent z according to β = α/z, with α being the roughness
exponent to be explained in the following.

2. Because of the finite system size, the roughness function will saturate at ws(L) beyond a satu-
ration time. We expect the saturation value to scale as ws(L) ∼ L2α, where the static exponent
α is called the roughness exponent in the KPZ context.
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Figure 6.1. (Color online) Finite-size scaling collapse of w(L, t) in the 1D KPZ
universality class with α = 1/2 and z = 3/2. Ensemble averages were performed over
a number of NTraj = 1000 stochastic trajectories. Values of the parameters used in the
simulations are rc = −0.1, uc = 0.1, σ = 0.1,Kc = 3.0.

3. The roughness function reaches its saturation value ws(L) at a time Ts, which thus separates the
growth period 1. from the long time regime 2. This saturation time scales with system size as
Ts ∼ Lz.

These scaling features are demonstrated by the finite-size scaling of w(L, t) shown in Fig. 6.1.
Perfect data collapse is obtained using the 1D KPZ exponents α = 1/2 and z = 3/2. During the
growth period the roughness increases nearly linearly on the log-log scale, which indicates power-
law growth w(L, t) ∝ t2β. For different system sizes saturation is reached at the same point on the
rescaled time axis, confirming the scaling behavior Ts ∼ Lz. Finally, the saturation values ws(L) of
the roughness function collapse upon rescaling w(L, t) with L2α.

A more precise numerical determination of the exponents α and β, which confirms that their
values are given by the ones of the KPZ equation, i.e. α = 1/2 and β = 1/3, is presented in the
appendix. This provides us with strong evidence that the phase field dynamics of a driven-dissipative
condensate is indeed described by the KPZ equation, in contrast to the thermal equilibrium case, in
which the dynamics of the phase is purely diffusive and thus belongs to the EW universality class
[22]. The corresponding dynamical exponent β = 1/4 is different from KPZ universality, however,
the value of the static roughness exponent, α = 1/2, is exactly the same in both cases. This is due
to a symmetry of the KPZ equation that is present only in one spatial dimension, and which allows
one to show that the static correlations in stationary state are Gaussian [23]. On the other hand, the
dynamical exponent β (or equivalently z) witnesses quantitatively the difference between KPZ and
EW universality.

Before we proceed, let us emphasize an important difference between the phase of a complex field
we consider here and the crystal height: The phase is a compact field variable defined on a circle.
Without loss of generality the value of θ(x, t) is in fact bounded to the interval (−π, π]. Consequently,
the value of w(L, t) is also bounded from above by 4π2, which inevitably invalidates the static scaling
behavior ws(L) ∼ L2α if α is positive as expected from the conventional KPZ scenario. However, as
long as the field amplitude remains nonvanishing we can let the value of ψ be defined on the Riemann
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Figure 6.2. (Color online) Dependence of the crossover time tc on the non-
equilibrium strength |g|. tc decreases pronouncedly as |g| increases. In the numerical
results presented here, |g| is tuned by changing Kc = 2.4, 2.2, 2.0.1.8, 1.6 while keeping
the other parameters unchanged. Their values are L = 215, rc = −0.1, uc = 0.1, σ =

0.1.

surface, where the value of θ is in the interval (−∞,+∞). With this choice there is no upper bound
imposed on ws(L). In numerical simulations, we ensure the requirement |ψ(x, t)| > 0 by working
with low noise. In this regime phase defects do not occur within the spatio-temporal range of our
simulations. θ(x, t) is constructed from ψ(x, t)’s complex argument by requiring the phase difference
between neighboring space-time points to be less than π.

6.3.2 Crossover time scale

In the above subsection we have established that the phase field dynamics indeed belong to the KPZ
universality class. However, it is important to notice that the scaling behavior of w(L, t) ∝ t2β, where
β = 1/3 is the KPZ growth exponent, is reached only after a crossover time tc. In particular, for weak
nonlinearity (i.e. |g| � 1) the KPZ renormalization group equations lead to a crossover time that
scales as tc ≈ t0|g|−4 [24], where t0 is a microscopic time scale. Scaling behavior of w(L, t) before tc
is expected to be governed by the EW growth exponent β = 1/4. In Fig. 6.2, we investigate the |g|
dependence of the crossover time tc at moderate values of |g| (the numerical scheme for the extraction
of tc can be found in App. 6.A.2), since extraction of tc in the near equilibrium case, |g| � 1, is
numerically very demanding and tc quickly exceeds the accessible simulation runtimes. We observe
that tc increases pronouncedly as |g| decreases (but not yet according to the weak coupling scaling
pointed out above). The rapid decrease of tc with increasing non-equilibrium strength is promising for
the experimental observation of KPZ scaling behavior, rather than transient EW-like dynamics, before
finite size effects set in. We discuss possible experimental settings for observing these phenomena in
Sec. 6.5.

6.4 Scaling of the condensate field correlations

In the previous section we have demonstrated numerically that the dynamics of the phase of a one-
dimensional polariton condensate follows universal KPZ scaling. In this section we investigate how
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this scaling manifests in directly observable correlations of the condensate field. Specifically, we
consider the correlation functions

Cx(x1, x2; t) ≡ 〈ψ∗(x1, t)ψ(x2, t)〉,
Ct(x; t1, t2) ≡ 〈ψ∗(x, t1)ψ(x, t2)〉, (6.9)

i.e. the equal time two-point correlation function in space and the temporal autocorrelation function,
respectively. These are directly accessible in experiments with exciton-polaritons: Both spatial and
temporal coherence can be probed by interference measurements, on the photoluminescence emitted
from different regions of the exciton-polariton condensate [3, 5] and by combining two images of
the condensate taken at different times using, e.g., a Mach-Zehnder interferometer [25], respectively.
The visibility of interference fringes yields the correlation functions. Assuming spatial translational
invariance of the correlation functions, we calculate the following spatially averaged correlation func-
tions, which are equivalent to the corresponding correlation functions above but in practice help to
reduce the statistical error

C̄x(x1, x2, t) ≡ 1
L

∫
dy〈ψ∗(x1 + y, t)ψ(x2 + y, t)〉,

C̄t(t1, t2) ≡ 1
L

∫
dx〈ψ∗(x, t1)ψ(x, t2)〉.

(6.10)

6.4.1 Spatial correlations

We start with the spatial correlation function C̄x(x1, x2, t). In Fig. 6.3 we show the dependence of∣∣∣C̄x(x1, x2, t)
∣∣∣ on the distance |x1 − x2| at time t > Ts, from which we clearly identify exponential

decay on the semi-logarithmic scale plot. This coincides with the prediction from the effective KPZ
description in 1D, and with previous numerical results [8]. However, as anticipated in Sec. 6.3, this
static signature would in fact be compatible with thermal equilibrium dynamics of the field ψ and
does not unambiguously demonstrate KPZ physics.

6.4.2 Temporal correlations

In contrast to the time-independent spatial correlation function discussed in the previous section,
the temporal correlation function shows distinct properties depending on whether the system is in
thermal equilibrium or not: indeed, based on the effective long-wavelength description of the out-
of-equilibrium condensate dynamics in terms of the KPZ equation, we expect stretched-exponential
decay of the autocorrelation function, i.e.,

∣∣∣C̄t(t1, t2)
∣∣∣ = Ae−B|t1−t2 |2β , with the KPZ growth exponent

β = 1/3 and non-universal numbers A and B. On the other hand, the purely diffusive EW dynamics of
the phase of a condensate in equilibrium entails simple exponential decay, corresponding to β = 1/2.
Hence both cases lead to linear growth of − log

(∣∣∣C̄t(t1, t2)
∣∣∣ /

∣∣∣C̄t(t2, t2)
∣∣∣
)

with a slope of 2β in the
double-logarithmic scale used in Fig. 6.4, which is clearly visible for the upper (at large |t1 − t2|)
curves shown in blue and yellow. Performing linear fits to the data points with |t1 − t2| ∈ [102, 103]
we find β = 0.311 and β = 0.317, respectively, in reasonable agreement with the KPZ prediction of
β = 1/3 and evidently distinct from the value β = 1/2 for a condensate in equilibrium. For these
curves KPZ scaling sets in after a short crossover time difference tc, which is due to the relatively
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Figure 6.3. (Color online) Behavior of the translation invariant two-point function
C̄x(x1, x2, t = 2.9 × 105 > Ts) at linear system size L = 212 on a semi-logarithmic
scale. NTraj = 800 stochastic trajectories are used to perform the ensemble average.
Values of other parameters used here are rc = −0.1, uc = 0.1, σ = 0.1,Kc = 3.0. The
exponential decay of

∣∣∣C̄x(x1, x2, t)
∣∣∣ with respect to |x1 − x2| can be clearly identified

from this plot.

large value of the effective non-linear coupling strength |g| in both cases. On the contrary, for the
parameters that yield the lowermost (red) curve, the value of |g| is small, and as a result in this case
universal scaling behavior is approached only at the largest time differences shown. A fit with |t1 − t2|
lying in the last half decade of the data shown in the Figure gives β = 0.307, and we expect a value
closer to β = 1/3 at time differences larger than those that are accessible within the temporal range of
our simulations. The parameters leading to the two lower (red and yellow) curves shown in Fig. 6.4
are relevant for current experiments with exciton-polaritons as is discussed in the following section.

6.5 Predictions for experimental observation

In the preceding sections we studied the SCGLE as an effective description of the long-wavelength
dynamics of a generic driven-dissipative condensate. The microscopic model for the specific case of
exciton-polaritons [9] differs from the SCGLE in that the diffusion constant is essentially absent and
instead of an explicit two-body loss term the pump itself is assumed to be non-linear and saturates at
high densities. Slightly above the condensation threshold the saturable pump term can be expanded
in the polariton field and we recover the SCGLE, which then reads in dimensionless form

∂tψ =

[
i∂2

x + (i + ud)
(

p
ud
− |ψ|2

)]
ψ + ζ. (6.11)

Here the effective dimensionless two-body loss coefficient ud and the dimensionless pump strength p
are given by

ud =
~γ̃lR

2γRũc
(1 + 2p), p =

1
2

(
P

Pth
− 1

)
, (6.12)

with P and Pth = γ̃lγR/R being pump rate of the excitonic reservoir and its value at threshold, re-
spectively; R is the condensate amplification rate and γR denotes the relaxation rate of the reservoir.
Finally, γ̃l is the inverse lifetime of polaritons and ũc their interaction strength. Here we measure time
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Figure 6.4. (Color online) The dependence of − log
(∣∣∣C̄t(t1, t2)

∣∣∣ /
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∣∣∣
)

on |t1− t2|
for three different sets of parameters in the SCGLE and system sizes. The system
size and the parameters for the uppermost (blue) curve are the same as those used
in Fig. 6.3. For the lowermost (at large time differences) curve shown in red, the
dimensionless linear system size is 29, and the parameters are chosen to match typical
values in current experiments with exciton-polaritons (see Sec. 6.5 for details). Finally,
assuming that a cavity with reduced Q factor is used we obtain the parameters for the
middle (yellow) curve, which corresponds to a system size of 27. KPZ behavior is
revealed by performing linear fits to the data points: with |t1 − t2| ∈ [102, 103] we find
β = 0.311 and β = 0.317 for the blue and yellow curves, respectively, while for the
red curve a fit with |t1 − t2| lying in the last half decade in the above plot, gives rise to
β = 0.307. These values should be compared with the KPZ prediction β = 1/3. For
all curves NTraj = 103 stochastic trajectories are used.
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and space in units of γ̃−1
l and

√
~/2mLPγ̃l respectively with mLP being the effective mass of lower

polaritons. The strength of the dimensionless noise field ζ is σ = ũc
√

2mLP/~3γ̃l. Typical values of
experimental parameters in 1D exciton-polariton systems are (see, e.g., Ref. [26]),

mLP = 4 × 10−5me, ũc = 5 × 10−4 meV µm, γ̃l = 0.03 ps−1, R = 3 µm ps−1, γR = 0.06 ps−1,

(6.13)
where me is the mass of the electron.

The lowermost (red) curve in Fig. 6.4 shows the temporal correlation function C̄t(t1, t2) in the
stationary state for the values given in Eq. (6.13) and at a dimensionless pump power of p = 0.3.
Due to fact that the corresponding |g| is relatively small, the red curve approaches linear growth
characteristic of KPZ scaling only after a large crossover time difference tc. As already mentioned in
the previous section, a linear fit to the data points with |t1 − t2| lying in the last half decade in Fig. 6.4
yields β = 0.307, indicating that signatures of KPZ physics are nevertheless observable. However,
we note that the physical system size corresponding to the dimensionless linear system size of L = 29

chosen in this simulation is ∼ 3×103 µm, which is considerably larger than the typical scale ∼ 102 µm
of current experiments.

Here we propose to make the KPZ physics observable with current experimental system sizes
by reducing the cavity Q factor. To this end, we note that KPZ scaling is still observable when,
while reducing the physical system size, the dimensionless effective system size can be kept large.
A convenient knob to achieve this goal is indeed a reduction of the cavity Q (and thus increase of
the decay rate γ̃l), which leads to a decrease of the unit of length. (We note that this also facilitates
observation of KPZ scaling behavior in equal-time spatial correlations in 2D [6].) The middle (yellow)
curve in Fig. 6.4 shows C̄t(t1, t2) for γ̃l = 1 ps−1 and a dimensionless linear system size of L = 27,
corresponding in physical units to ∼ 1.5×102 µm. In addition to the increase of γ̃l, for this simulation
we chose a larger value of 6 for the dimensionless prefactor in ud in Eq. (6.12) instead of ∼ 1 which
we obtain for the parameters given in Eq. (6.13). This choice magnifies the effective KPZ non-
linearity and corresponds to a moderate variation of the experimental parameters only. In fact, the
latter are often determined only indirectly via fitting simulations to experimental measurements, and
are thus not known with very high precision. In this setting, the exponent of β = 0.317 obtained from
the middle (yellow) curve in Fig. 6.4 indicates that it is promising to search for signatures of KPZ
physics in the first-order temporal coherence of 1D exciton-polariton systems when the lifetime of
polaritons is rather short, so that the intrinsic non-equilibrium nature is strongly pronounced.

6.6 Conclusions and Outlook

We investigated scaling properties of the long-wavelength dynamics of 1D driven-dissipative conden-
sate via direct numerical simulations of the SCGLE, and numerically established the connection to
1D KPZ universality. We further numerically confirmed the experimental observability of the non-
equilibrium scaling properties of the first order temporal coherence within the typical current exper-
imental setups of exciton-polariton condensates if cavities with a reduced Q factor are used. Similar
investigations will be extended to higher dimensions in the future. Moreover, it is intriguing to in-
vestigate the dynamics of the driven-dissipative condensates at higher noise level, where in particular
phase defects, e.g. phase slips in 1D or vortices in 2D, are expected to play a role in determining the
long-wave length scaling properties of the system’s dynamics.



6.A. Extraction of α, β, and tc 171

Note added– Upon completion of this manuscript, we became aware of the work by K. Ji et al.
reporting similar results [27].
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6.A Extraction of α, β, and tc

In this appendix we present a more precise determination of the static roughness exponent α and the
dynamical growth exponent β, and describe how the crossover time scale tc is extracted in numerical
simulations.

6.A.1 Static roughness exponent α

We extract α from the finite-size scaling of ws(L). For given system size L, we monitor the value
of w(L, t) during a simulation and wait until it reaches a stable value up to statistical fluctuations at
the saturation time Ts. After Ts, we continue simulating the dynamics to the final time point T f with
T f − Ts at least two times larger than Ts. Afterwards ws(L) is extracted according to ws(L) = (T f −
Ts)−1

∫ T f

Ts
dt w(L, t). In Fig. 6.5 we show the finite size scaling of ws(L) from the direct simulations

of the SCGLE. The extracted roughness exponent is α = 0.499, which is in good agreement with the
roughness exponent αKPZ of the KPZ dynamics being αKPZ = 1/2 in 1D [22].

6.A.2 Dynamical growth exponent β and cross over time scale tc

We extract β from the time dependent roughness function w(L, t). As pointed before, this exponent is
related to the dynamical exponent z and the roughness exponent α via the relation β = α/z. Its value
is expected to be 1/3 and 1/4 for effective KPZ and EW dynamics, respectively [22].

In order to reliably extract the exponent β it is important to note that w(L, t) ∝ t2β is reached only
after the initial crossover time scale tc discussed in Sec. 6.3.2. In practice we fit w(L, t) to a power
law over a long time window t ∈ [te, te + T ]. We identify the asymptotic scaling by observing how
the exponent depends on the lower cutoff time te. As shown in Fig. 6.6, the fitted exponent β first
grows with te but then rapidly reaches a plateau. The value at this plateau represents the asymptotic
scaling behavior. We note however that for this scheme to reflect the KPZ scaling, the upper cutoff

time te + T should not reach the finite size saturation time Ts ∼ Lz of the roughness function. If it
does, then we expect the extracted exponent β to start decreasing again. Thus we extract β from the
maximum value of the fitted exponent β(te). This gives the estimate β = 0.335 consistent with KPZ
dynamics, for which β = 1/3 .
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we obtain the dynamical exponent β = 0.335 from the maximum value of β(te), which
is in good agreement with βKPZ = 1/3.
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To extract the crossover time tc from the simulations we use the following scheme. At given
system size L, we fit the time dependent roughness function w(L, t) to a double scaling function
cEWt1/2 + cKPZt2/3 in a time interval that extends from zero until a final time t f well before the finite
system size effects set in, i.e. t f � Ts. We then identify tc as the time point where the two scaling
functions have the same contribution to the roughness function, i.e. cEWt1/2

c = cKPZt2/3
c , giving rise to

tc = (cEW/cKPZ)6.
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The time evolution of an extended quantum system can be theoretically described in terms
of the Keldysh functional integral formalism, whose action conveniently encodes the information
about the dynamics. We show here that the action of quantum systems evolving in thermal equi-
librium is invariant under a symmetry transformation which distinguishes them from generic open
systems. A unitary or dissipative dynamics having this symmetry naturally leads to the emergence
of a Gibbs thermal stationary state. Moreover, the fluctuation-dissipation relations characterizing
the linear response of an equilibrium system to external perturbations can be derived as the Ward-
Takahashi identities associated with this symmetry. Accordingly, the symmetry unveiled here
provides an efficient check for the onset of thermodynamic equilibrium and it makes testing the
validity of fluctuation-dissipation relations unnecessary. Remarkably, in the classical limit, this
symmetry renders the one which is known to characterize equilibrium in the stochastic dynamics
of classical systems coupled to thermal baths, described by Langevin equations.

7.1 Introduction

In recent years, the question under which conditions and how a quantum many-body system thermal-
izes has received ever-growing attention. This interest has been primarily triggered by the increasing
ability to prepare and manipulate such systems, which might be either isolated [1, 2] — as it is typ-
ically the case of experiments with cold atoms [3, 4] — or in contact with an environment (open),
e.g., a thermal bath, and therefore subject to losses and driving. Examples for the latter case include
exciton-polaritons [5–8] or photons [9, 10] in semiconductor or non-linear microcavities. In general

†The author of the thesis performed the main calculations presented in this chapter and wrote substantial parts of the
manuscript. This chapter is the basis of a preprint that is currently being written.
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it is unclear, a priori, by which physical mechanism an effective temperature is possibly established
in these systems and, in case, what determines its value. In isolated systems, for instance, thermal-
ization of local quantities might not eventually take place because of the presence of an extensive
amount of conserved quantities induced by integrability [11–15] or many-body localization [16–19].
Although it is possible to define a variety of effective temperatures based on the static [20–22] and
dynamic properties [23, 24] of the system, the lack of thermal behavior is witnessed by the fact that
these temperatures do not assume all the same thermodynamic value. In open systems, instead, an
effective temperature can be set by the level of noise induced by the environment [25–31]. In these
cases effective thermalization often occurs only in the low-energy degrees of freedom. Alternatively, a
completely different mechanisms such as dephasing due to interactions [26] can effectively determine
the value of the temperature. All these examples show clearly that, on the one hand, the presence of
effective thermodynamic equilibrium (which might be established only in a subsystem) is often by no
means obvious while, on the other, it is not straightforward to give a precise instruction on how to act
on a system in order to drive it into a non-equilibrium stationary state at all scales.

Before addressing the question of whether a certain system thermalizes or not, it is imperative to
identify criteria which allow a clear-cut detection of thermodynamic equilibrium. In this direction it
is important to consider of the system not only the properties of the density matrix which describes
its stationary state, but also the dynamics which might or might not be compatible with equilibrium.
In turn, from the theoretical point of view, the time evolution of statistical systems (both classical
and quantum) is often conveniently studied in terms of the so-called dynamical functionals which
are used in order to generate expectation values of physical observables in the form of functional
integrals over a suitable set of fields. It is then natural to address the issue of thermalization by inves-
tigating the properties of the corresponding dynamical functional. In the case of classical statistical
systems evolving under the effect of an external stochastic noise of thermal origin, this issue has been
discussed to a certain level of detail in the past [32–37] and, in fact, it was found that the dynam-
ical functional acquires a certain symmetry in equilibrium. Remarkably, the fluctuation-dissipation
theorem which connects dynamical responses to correlation functions in equilibrium can be actu-
ally derived as a consequence of this symmetry. For quantum systems, instead, we are not aware of
any analogous derivation based on the symmetries of the corresponding dynamical functional, which
takes the form of the so-called Schwinger-Keldysh action (see, e.g., Refs. [38–40]).

The aim of the present work is to fill in this gap by showing that the Schwinger-Keldysh dynamical
functional of a quantum system in thermal equilibrium is characterized by a symmetry which may
be considered as the generalization of the classical one, to which it reduces in a suitable classical
limit. In particular: (i) this symmetry holds for any Schwinger-Keldysh action associated to a time-
independent Hamiltonian which generates the unitary dynamics of a closed quantum system, while
(ii) it constraints the form of possible dissipative contributions to this action emerging, e.g., from
a coupling with a thermal bath. For bosonic systems, we show that requiring the symmetry to be
realized naturally leads to the emergence of the equilibrium Bose-Einstein distribution. Accordingly,
this symmetry distinguishes between the unitary or dissipative dynamics leading to a stationary state
of thermal equilibrium and those which do not.

Some of the consequences of this symmetry can be worked out rather conveniently within the
field theoretical formalism: for example, the Ward-Takahashi identities associated with the symmetry
constitute a hierarchy of generalized quantum fluctuation-dissipation relations (FDRs) for multi-time
correlation functions of arbitrary order; in turn, these FDRs were shown to be equivalent to a combi-
nation of the quantum mechanical time reversal transformation [41] and the Kubo-Martin-Schwinger
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(KMS) condition [42, 43]. Heuristically, this condition expresses the fact that the Hamiltonian ruling
the time evolution of a system is the same as the one determining the density matrix of the canon-
ical ensemble which characterizes the system when it is weakly coupled to athermal bath. Hence a
key conceptual step forward we take in this paper is to provide a compact formulation of the KMS
condition (or, alternatively, of the equivalent hierarchy of FDRs) in terms of a single symmetry trans-
formation. This is of great practical value, as it reduces answering the question about the possible
presence of thermodynamic equilibrium to verifying a symmetry of the Schwinger-Keldysh action in-
stead of having to check explicitly the validity of all FDRs. In particular, we show that the Markovian
quantum dynamics described by a Lindblad master equation [44, 45] explicitly violates the symme-
try. This reflects the driven nature of the system — indeed, the Lindblad equation may be viewed
as resulting from the coarse graining of the evolution of an underlying time-dependent system-bath
Hamiltonian, where the time dependence is dictated by coherent external driving fields.

The existence of this symmetry, beyond unifying the quantum and classical description of equilib-
rium systems, may play a crucial role in the study of the effective thermalization in non-equilibrium
quantum statistical systems, for which the Schwinger-Keldysh formalism is a rather natural ap-
proach; in fact, the latter allows one to take advantage of a number of very powerful and efficient
renormalization-group techniques for studying the possible emergence of collective behaviors, and for
monitoring how the effective description of a statistical system depends on the length and time scale
at which it is analyzed. The possible scale-dependence of the restoration/violation of the equilibrium
symmetry could shed light on the mechanism underlying the thermalization of extended systems.

The rest of the presentation is organized as follows: in Sec. 7.2 we specify the symmetry trans-
formation, collect various representations, and list a number of properties, which are then detailed in
Sec. 7.3. In particular, in Sec. 7.3.1 we discuss the invariance of an Hamiltonian (unitary) evolution,
while in Sec. 7.3.2 we consider possible dissipative terms which are invariant under the transforma-
tion, and show that any system governed by a quantum master equation in the Lindblad form violates
it, due to the driven nature underlying the rotating wave and Markov approximations. In Sec. 7.3.3
we show that the quantum symmetry reduces to the one known in classical stochastic system in the
limit ~ → 0. In Sec. 7.4 we show that the symmetry unveiled here can be interpreted as a practical
implementation on the Schwinger-Keldysh functional integral of the KMS conditions [42, 43], which
in Ref. [46] were instead formulated as identities within the full hierarchy of time-ordered correlation
functions. Finally, Sec. 7.5 presents two applications of the equilibrium symmetry: in Sec. 7.5.1 we
derive the single-particle fluctuation-dissipation relation, while in Sec. 7.5.2 we show that the steady
states of a simple quantum master equation violates the symmetry.

7.2 Symmetry transformation

As we anticipated above, a convenient framework for the theoretical description of the time evolu-
tion of interacting quantum many-body systems is provided by the Keldysh functional integral for-
malism [38, 39]. In fact, it offers full flexibility in describing both non-equilibrium dynamics and
equilibrium as well as non-equilibrium stationary states, which is not possible, e.g., within the finite-
temperature Matsubara technique [47]. In addition, it is amenable to the well-established toolbox of
quantum field theory. The simplest way to illustrate the basic ingredients of the Keldysh formalism is
to consider the functional integral representation of the so-called Keldysh partition function Z. For a
system with unitary dynamics generated by the Hamiltonian H and initialized in a state described by
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the density matrix ρ0, this function is given by Z = tr
(
e−iHtρ0eiHt

)
. (Note that, as it stands, Z = 1;

however, it is convenient to think of its structure independently of its actual value.) In this expres-
sion, time evolution is interpreted as occurring along a closed path: starting in the state described
by ρ0, the exponential e−iHt to the left of ρ0 corresponds to a “forward” evolution up to the time t,
while the exponential eiHt to its left corresponds to an evolution going “backward” in time. The trace
tr (· · · ) connects, at time t, the forward with the backward branch of the time path and therefore it
produces a closed path-time integral. Along each of these two branches, the temporal evolution can
be represented in a standard way as a functional integral of an exponential weight eiS over suitably
introduced (generally complex) integration variables, i.e., fields, ψ+(t, x) and ψ−(t, x) on the forward
and backward branches, respectively. The Keldysh action S is a functional of these two fields and
it is generally obtained as a temporal integral along the close path in time of a Lagrangian density.
(Explicit forms of S will be discussed further below, but they are not relevant for the present discus-
sion.) By introducing different (time-dependent) sources J± for the fields ψ± on the two branches, the
partition function Z[J+, J−] is no longer identically equal to 1 and its functional derivatives can be
used in order to generate various time-dependent correlation functions (see, e.g., Refs. [38–40]).

Within the formalism recalled above, the transformation Tβ which is a symmetry of the action
S is specified by the way it acts on the fields along the closed time path, which are conveniently
collected into two spinors Ψσ(t, x) =

(
ψσ(t, x), ψ∗σ(t, x)

)T with σ = + and − indicating the forward
and backward branch, respectively. In the following we focus on the case of a single complex bosonic
field which is simple enough but, at the same time general enough to introduce and illustrate all
the basic ideas. The transformation Tβ is actually composed of a complex conjugation of the field
components ψ±, an inversion of the sign of the time variable, as well as a translation of the time
variable into the complex plane by an amount iσβ/2 where β is a real parameter. In fact it acts on the
fields ψσ(t, x) and ψ∗σ(t, x) as

Tβψσ(t, x) = ψ∗σ(−t + iσβ/2, x),

Tβψ∗σ(t, x) = ψσ(−t + iσβ/2, x).
(7.1)

For convenience and future reference we provide a representation of the action of Tβ both in the time
and real space domain (t, x) as well as in frequency-momentum domain (ω,q). The convention for
the Fourier transforms of the fields is the following:

Ψσ(t, x) =

∫
ddq

(2π)d

∫ +∞

−∞
dω
2π

ei(q·x−ωt)Ψσ(ω,q), (7.2)

where field spinors are defined as Ψσ(ω,q) =
(
ψσ(ω,q), ψ∗σ(−ω,−q)

)T and d is the spatial dimen-
sionality of the problem. In these terms, the symmetry Tβ reads, alternatively:

TβΨσ(t, x) = Ψ∗σ(−t + iσβ/2, x) = σxΨσ(−t + iσβ/2, x),

TβΨσ(ω,q) = e−σβω/2Ψ∗σ(ω,−q) = e−σβω/2σxΨσ(−ω,q).
(7.3)

Here we introduced the standard Pauli matrix σx =
(

0 1
1 0

)
. The transformation in real time requires

evaluating the fields for complex values of the time argument, which in principle is not defined; how-
ever, the complementary representation in Fourier space indicates how this can be done in practice:
in fact, in frequency space the shift of time by an imaginary part iσβ/2 amounts to a multiplication by
a prefactor e−σβω/2. In Sec. 7.3 we will show that while a Keldysh action S describing coherent (i.e.,
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unitary) time evolution is invariant under Tβ independently of the value of the parameter β, dissipa-
tive contributions to the action do not break such a symmetry only if β is identified with the inverse
temperature, β = 1/T (see Sec. 7.3). As usual within the Keldysh formalism, it is convenient to in-
troduce the classical and quantum fields defined as the symmetric and antisymmetric superpositions,
respectively, of fields on the forward and backward branches:

φc =
1√
2

(ψ+ + ψ−) , φq =
1√
2

(ψ+ − ψ−) , (7.4)

which can also be combined in the spinors Φν(ω,q) = (φν(ω,q), φ∗ν(−ω,−q))T , where the index
ν = c, q distinguishes classical and quantum fields. In these terms, the transformation Tβ becomes

TβΦc(ω,q) = σx
(
cosh(βω/2)Φc(−ω,q) − sinh(βω/2)Φq(−ω,q)

)
,

TβΦq(ω,q) = σx
(
− sinh(βω/2)Φc(−ω,q) + cosh(βω/2)Φq(−ω,q)

)
,

(7.5)

which we report here for future convenience.

Here we anticipate and summarize a number of properties of the equilibrium transformation Tβ
which are going to be discussed in detail in Secs. 7.3 and 7.4:

1. The transformation is discrete, and involutive, i.e., T 2
β = 1. This property follows straightfor-

wardly from Eqs. (7.1) or (7.3).

2. Tβ can be written as a a composition Tβ = T ◦ Kβ of a time reversal transformation T and an
additional transformationKβ, which we will identify in Sec. 7.4.3 as the implementation of the
KMS condition within the Keldysh functional integral formalism.

3. Tβ is not uniquely defined, due to a certain freedom in implementing the time-reversal transfor-
mation within the Keldysh functional integral formalism, as discussed in Sec. 7.4.2. However,
without loss of generality we stick to the definition provided in Eq. (7.1) and comment on the
alternative forms in Sec. 7.4.2.

4. The transformation Tβ leaves the functional measure invariant, i.e., the absolute value of the
Jacobian determinant associated with Tβ is equal to one, as we show in Sec. 7.4.4.

5. The various forms of the transformation Tβ presented above apply to the case of a system of
bosons with vanishing chemical potential µ. In the presence of µ , 0, Eq. (7.1) becomes

Tβψσ(t, x) = eσβµ/2ψ∗σ(−t + iσβ/2, x),

Tβψ∗σ(t, x) = e−σβµ/2ψσ(−t + iσβ/2, x),
(7.6)

with a consequent modification of Eq. (7.3), which can be easily worked out. After transfor-
mation to the basis of classical and quantum fields in Eq. (7.4) this modification amounts to
shifting the frequency ω in the arguments of the hyperbolic functions in Eq. (7.5) according to
ω→ ω − µ.

6. In taking the Fourier transforms in Eqs. (7.3) and (7.5) one implicitly assumes that the initial
state of the system was prepared at time t = −∞, while its evolution extends to t = ∞. In
the following we will work under this assumption, commenting briefly on the role of an initial
condition imposed at a finite time in Sec. 7.3.3.
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7.3 Invariance of Keldysh action

As we demonstrate further below, a system is in thermodynamic equilibrium if its Keldysh action S
is invariant under the transformation Tβ, i.e.,

S [Ψ] = S̃ [TβΨ], (7.7)

where, for convenience of notation, Ψ = (Ψ+,Ψ−)T =
(
ψ+, ψ

∗
+, ψ−, ψ∗−

)T collects all the fields intro-
duced in the previous section into a single vector. The tilde in S̃ indicates that the parameters in S
which are related to external fields have be replaced by their corresponding time-reversed values (e.g.,
the signs of magnetic fields is inverted), while in the absence of these parameters the tilde may be
dropped. In Sec. 7.3.1, we demonstrate the invariance of the action associated with time-independent
Hamiltonian dynamics. We then take the point of view that the microscopic dynamics of a system
can always be thought as being generated by such a Hamiltonian, appropriate for a closed quantum
system. In a renormalization group picture, such a setting does not exclude the possibility that dis-
sipative contributions to the effective low-frequency and long-wavelength dynamics are generated
upon coarse graining. The system may act as its own reservoir, as witnessed by the phenomenon of
thermalization, or the finite lifetimes of low-energy single particle excitations in many-body systems.
Indeed, in Sec. 7.3.2 we explicitly construct dissipative terms which comply with the thermal symme-
try Tβ of the microscopic dynamics. In particular, we find that the noise components associated with
these dissipative terms must necessarily have the form of the equilibrium Bose-Einstein distribution
function, as appropriate to the bosonic fields which we are presently focussing on. This fact is often
implicitly used in the very construction of the Keldysh action S of a certain system, especially when
the interest is in the long-time stationary dynamics. In order to avoid keeping track of the initial state
ρ0 of the system at time t0, it is convenient to imagine that such a state was prepared in the remote
past and to add even infinitesimally small dissipative terms [38, 39] compatible with the symmetry Tβ
to the Keldysh action of the system. In fact, in the limit t0 → −∞ they ensure that the dynamics of the
system is the equilibrium one independently of the specific choice of ρ0, which can therefore be omit-
ted in S . From a practical point of view, the requirement of invariance under Tβ provides stringent
constraints on the possible form of a low-energy effective action in thermal equilibrium, such that it
captures properly both static and dynamic properties of system. Conversely, given a generic effec-
tive action S eff , one can decide whether it gives rise to an equilibrium dynamics or not solely on the
basis of Tβ being a symmetry of S eff or not, without the need to verify if the fluctuation-dissipation
relations typical of equilibrium are satisfied.

7.3.1 Invariance of Hamiltonian dynamics

The microscopic Keldysh action associated to time-local, time independent Hamiltonian dynamics
generated by H can be written as (for integrals we use the shorthand

∫
t ≡

∫ ∞
−∞ dt,

∫
x =

∫
ddx; in the

following σz =
(

1 0
0 −1

)
is the standard Pauli matrix)

S = S dyn + SH , (7.8)

S dyn =
1
2

∫

t,x

(
Ψ
†
+iσz∂tΨ+ − Ψ

†
−iσz∂tΨ−

)
, (7.9)

SH = −
∫

t,x
(H+ −H−) (7.10)
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We show below that the invariance of microscopic Keldysh action is directly related to the fact that it
can be written as the sum of terms containing, respectively, only fields on the forward and backward
branches. For concreteness, from now on we consider the Keldysh action for a bosonic many-body
system with contact interactions, i.e., the Hamiltonian density in Eq. (7.10) is given by

Hσ =
1

2m
|∇ψσ|2 + τ |ψσ|2 + λ |ψσ|4 . (7.11)

Here m is the mass of bosons, τ sets the minimal energy of single particles, and λ parametrizes two-
body interactions. We choose this model for the sake of convenience: it is sufficiently general to illus-
trate all basic concepts associated with the thermal symmetry and, moreover, in the classical limit it
allows for a direct comparison to dynamical equilibrium models [48, 49], where φc = (ψ+ + ψ−) /

√
2

takes the role of a bosonic order parameter field.

Dynamical term

To begin with, here we show that the dynamical contribution Eq. (7.9) to the Keldysh action is in-
variant under the equilibrium transformation Tβ, i.e., we have S dyn[TβΦ] = S dyn[Φ], where Φ =(
Φc,Φq

)T
=

(
φc, φ

∗
c, φq, φ

∗
q

)T
. Rewriting the contribution S dyn in the Keldysh basis and in frequency-

momentum space we obtain (
∫
ω,q ≡

∫ dωddq
(2π)d+1 )

S dyn[TβΦ] =

∫

ω,q
ω

[
cosh2(βω/2)Φ†q(ω,q)σzΦc(ω,q) − sinh2(βω/2)Φ†c(ω,q)σzΦq(ω,q)

+ sinh(βω/2) cosh(βω/2)
(
Φ†c(ω,q)σzΦ

†
c(ω,q) − Φ†q(ω,q)Φq(ω,q)

)]
. (7.12)

The combination Φ
†
ν(ω,q)σzΦν(ω,q) = φ∗ν(ω,q)φν(ω,q) − φν(−ω,−q)φ∗ν(−ω,−q) with ν = c, q is an

odd function of (ω,q), whereas ω cosh(βω/2) sinh(βω/2) is even, and the integral over the product of
these terms, therefore, vanishes. Then with some simple manipulations of the first line in Eq. (7.12)
invariance of S dyn follows straightforwardly. We note that this property is independent of the value
of β in the equilibrium transformation Tβ.

Hamiltonian contribution

We proceed to consider the transformation properties of the Hamiltonian contribution Eq. (7.10) under
the thermal symmetry. First we argue that the strictly local terms (i.e., does that do not contain
derivatives) in the Hamiltonian density (7.11) obey the symmetry, and then generalize the reasoning
to the case of quasilocal terms such as the kinetic energy contribution or even non-local interactions.
Hence let us consider an expression of the form

V[Ψ] =

∫

t,x
(v+(t, x) − v−(t, x)) , (7.13)

where vσ(t, x) =
(
ψ∗σ(t, x)ψσ(t, x)

)N . For N = 2 this is just the contact interaction of Eq. (7.11). Since
vσ(t, x) is real, under the equilibrium transformation only its time argument is shifted according to
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Tβvσ(t, x) = vσ(−t + iσβ/2, x), and taking the Fourier transform with respect to time of this relation
yields

Tβvσ(ω, x) = e−σβω/2vσ(−ω, x). (7.14)

The vertex (7.13), then, is invariant under Tβ: it is local in time and, therefore, in a diagrammatic
representation where fields ψσ(t, x) are represented by ingoing lines and complex conjugates ψ∗σ(t, x)
by outgoing lines, it obeys frequency conservation for in- and outgoing lines, as can be seen by taking
the Fourier transform of each of the fields in vσ(t, x) individually. In particular, the frequency variable
ω appearing in Eq. (7.14) corresponds to the difference of the sums of in- and outgoing frequencies
respectively, and only the ω = 0 component contributes to Eq. (7.13). This component, however is
evidently invariant under Tβ, and hence the same is true for the vertex,V[TβΨ] = V[Ψ]. Clearly, the
invariance of the coherent interaction vertex (and also of the dynamical term Eq. (7.9)) relies on the
fact that time-local vertices obey frequency conservation, and this invariance is realized for any value
of the parameter β. From this we conclude that any contribution to the Hamiltonian which is local in
time and does not explicitly depend on time is invariant. Thus the derivation presented here for the
vertex Eq. (7.13) can straightforwardly be generalized to expressions containing derivatives such as
the kinetic energy in Eq. (7.11) and even non-local interactions. Note that these considerations do not
rule out the emergence of time-nonlocal terms upon renormalization, as long as they are consistent
with the symmetry.

Enhanced symmetry for simple integrable systems

In the form presented in Sec. 7.2 the equilibrium transformation Tβ contains a single parameter β.
While this form is appropriate for systems in thermodynamic equilibrium, where (as we show below)
β = 1/T is the inverse temperature, an enhanced form of the symmetry is realized in simple inte-
grable systems which have single-particle states as eigenmodes. The stationary state of such systems
is a generalized Gibbs ensemble [13, 50–57], determined (in the cases we consider) by the exten-
sive amount of conserved eigenmode occupation numbers. Here we provide an example where the
Lagrangian multipliers associated with these conserved occupations correspond to parameters in a
generalization of the equilibrium transformation Eq. (7.3) or, more specifically, to inverse tempera-
tures of the individual eigenmodes of the system. In the non-integrable case the eigenstates of the
system Hamiltonian are not single-particle states and the symmetry is realized only with a single
parameter β.

As an example of a non-integrable system, let us consider bosons on a d-dimensional lattice with
hopping and on-site interactions, such that the Hamiltonian is given by

H = Hkin + Hint,

Hkin = −T
∑

〈l,l′〉
a†l al′ ,

Hint =
U
2

∑

l
a†l al

(
a†l al − 1

)
,

(7.15)

where al is the annihilation operator for bosons on the lattice site l; T is the hopping matrix element
between site l and its nearest neighbors l′, and finally U determines the strength of on-site interac-
tions. The kinetic energy contribution to the Hamiltonian is diagonal in momentum space and the
corresponding eigenmodes are the Bloch states. In the non-interacting limit U = 0 the occupation
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numbers of Bloch states become conserved quantities, making the model integrable. Then the contri-
bution from each individual quasi-momentum q and band index n to the Keldysh action corresponding
to the kinetic energy

Hkin =
∑

q,n
εq,na†q,naq,n, (7.16)

where aq,n is the annihilation operator for a particle in the Bloch state with quantum numbers q and

n, is invariant under the transformation (cf. Eq. (7.3); here Aq,n,σ(ω) =
(
aq,n,σ(ω), a∗−q,n,σ(−ω)

)T
)

Tβq,n Aq,n,σ(ω) = e−σβq,nω/2A∗−q,n,σ(ω), (7.17)

where crucially βq,n can be chosen to depend on the state indices, indicating that to each eigenmode of
the system can be assigned an individual “temperature” Tq,n = 1/βq,n such that the mean occupation
number of the state q, n is determined by a Bose distribution with precisely this “temperature.”

Let us now consider the opposite limit in which the hopping amplitude vanishes, J = 0, while
the interaction strength remains finite. The interaction energy in Eq. (7.15) is diagonal in the basis of
Wannier states localized at specific lattice sites and occupation numbers of these sites are conserved,
hence also in this case the system is integrable. The proper generalized symmetry transformation is
obtained from Eq. (7.17) by replacing the quasi-momentum and band index by the lattice site index l
or, in other words, there are local “temperatures” Tl = 1/βl.

In the generic case, when both hopping and interactions are non-zero, the system is not integrable.
Then neither the generalized transformation Eq. (7.17) nor the variant with local “temperatures” are
symmetries of the corresponding Keldysh action, showing that this case allows only for one single
global temperature determining mean occupation numbers of single-particle states.

7.3.2 Dissipative contributions in equilibrium

The functional integral with action (7.8) is not convergent but can be made so by supplying infinites-
imal imaginary or, in other words, dissipative contributions [38, 39]. In a renormalization group
picture, these infinitesimal imaginary parts may be seen as the microscopic initial values of finite dis-
sipative contributions which are obtained upon coarse graining by means of the renormalization group
flow, and result in, e.g., finite lifetimes of excitations of the effective low-energy degrees of freedom.
The precise form of the effective low-energy action and, in particular, its dissipative contributions, is
strongly constrained by the presence of the equilibrium symmetry at the microscopic starting point:
terms which violate the symmetry will not be generated in the renormalization group flow. There-
fore, by identifying dissipative contributions to the Keldysh action which posses the symmetry in the
following sections, we are able to anticipate the structure of the low-energy effective action.

Finite dissipative terms even at a microscopic scale can be due to, e.g., coupling the system to
a bath. Below we consider two examples for this case: in Sec. 7.5.2 we show that the equilibrium
symmetry is broken explicitly if the system is coupled to Markovian baths and driven – a situation
described by a quantum master equation. Another specific example in which the equilibrium sym-
metry is obeyed is the particle number non-conserving coupling of the Keldysh action Eq. (7.8) to
an Ohmic bath. This situation, which we discuss in Sec. 7.3.3, is of particular interest since it leads
in the classical limit to the dynamical model A [48] with reversible mode couplings (termed model
A* in Ref. [49]), allowing us to establish the connection to the known equilibrium symmetry of the
classical generating functional.
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Single particle sector

Dissipative contributions to the single-particle sector that are compatible with the symmetry take the
form

S d = i
∫

ω,q
h(ω,q)

(
φ∗q(ω,q)φc(ω,q) − φq(ω,q)φ∗c(ω,q) + 2 coth(βω/2)φ∗q(ω,q)φq(ω,q)

)
(7.18)

with a real function h(ω,q) that transforms under time reversal as h̃(ω,q) = h(ω,−q). The typical
choice made in regularizations of the Keldysh functional integral is h(ω,q) = ε [38, 39] with ε → 0
and ensures that the bare Green’s functions, i.e., those that are obtained by ignoring the influence of
interactions, satisfy a fluctuation-dissipation relation (we postpone the detailed discussion of the FDR
to Sec. 7.5.1). Crucially, the function coth(βω/2) is uniquely fixed by the requirement of invariance
under the symmetry, as can be verified following the subsequent discussion. In particular, S d with a
certain value of β in the argument of coth(βω/2) is invariant under Tβ′ if and only if β′ = β. This
shows that the thermodynamic equilibrium Bose distribution function n(ω) at a temperature T = 1/β
appearing implicitly in coth(βω/2) = 2n(ω) + 1 can be traced back to the symmetry. The appearance
of the Bose distribution function n(ω) is entirely due to the required invariance under the equilibrium
transformation! Note that here for simplicity we consider only the case of vanishing chemical poten-
tial. For finite µ, the frequency in the argument of the hyperbolic cotangent in Eq. (7.18) should be
shifted according to ω→ ω − µ.

We proceed by showing the invariance of S d as given by Eq. (7.18). This is most conveniently
done by assuming that the function h(ω,q) has definite parity and considering separately the cases of
odd and even parity in frequency, ho(−ω,q) = −ho(ω,q) and he(−ω,q) = he(ω,q), respectively. The
general case follows straightforwardly by linear combination. Thus we consider

S d = iε
∫

ω,q
Φ†q(ω,q)

{
ho(ω,q)

he(ω,q)σz

} (
Φc(ω,q) + coth(βω/2)Φq(ω,q)

)
. (7.19)

Inserting here the transformed fields, Eq. (7.5), where for the moment we assume that the parameter
in the transformation takes the value β′ which is different from the β in Eq. (7.19), we obtain

S d[Tβ′Φ] = iε
∫

ω,q

(
sinh(β′ω/2)Φ†c(−ω,q) + cosh(β′ω/2)Φ†q(−ω,q)

)
σx

{
ho(ω,q)

he(ω,q)σz

}
σx

×
[
cosh(β′ω/2)Φc(−ω,q) − sinh(β′ω/2)Φq(−ω,q)

+ coth(βω/2)
(
− sinh(β′ω/2)Φc(−ω,q) + cosh(β′ω/2)Φq(−ω,q)

)]
. (7.20)

Note that only for β′ = β the terms in the second and third lines involving the classical field spinor
Φc cancel each other. Otherwise, terms ∼ Φ

†
cΦc remain, violating causality. For β′ = β instead, using

the identities for Pauli matrices σ2
x = 1 and σxσzσx = −σz, and performing a change of integration

variables ω→ −ω (keeping in mind the parity of ho(ω,q) and he(ω,q)) we find

S d[TβΦ] = −iε
∫

ω,q

(
− sinh(βω/2)Φ†c(ω,q) + cosh(βω/2)Φ†q(ω,q)

) { ho(ω,q)
he(ω,q)σz

}

× (sinh(βω/2) − coth(βω/2) cosh(βω/2)) Φq(ω,q). (7.21)

Finally, using the hyperbolic identity

sinh(x) − coth(x) cosh(x) = −1/ sinh(x), (7.22)

after some straightforward algebraic manipulations we find S d[TβΦ] = S d[Φ].
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Dissipative vertices

Dissipative contributions in the quadratic part of the Keldysh action discussed in the previous section
occur, e.g., when the system is coupled to a thermal bath such that the system-bath interaction is linear
in the system field operators. This type of coupling explicitly breaks particle number conservation,
which is not the case if instead the bath couples to a system operator which commutes with the total
number of particles, e.g., the local density n(x) = ψ†(x)ψ(x). In other words, to ensure particle
number conservation it is necessary that the coupling terms are quadratic or of higher order in the
system operators. Then dissipative vertices appear after integrating out the bath degrees of freedom,
and the requirement of invariance under the equilibrium symmetry allows us to infer a priori what the
structure of such vortices might be. In particular, we find a frequency-independent number-conserving
quartic vertex (i.e., the direct dissipative counterpart to the two-body interaction in the Hamiltonian
Eq. (7.11)) is forbidden by the thermal symmetry. We note, however, that below in Sec. 7.3.3 we will
encounter a case where this type of vertex emerges effectively in the classical limit.

A general number-conserving time-local quartic vertex is given by (for notational convenience
we suppress the spatial arguments of fields)

S d = −i
∫

ω1,...,ω4

δ(ω1 − ω2 + ω3 − ω4)
(
f1(ω1, ω2, ω3, ω4)ψ∗+(ω1)ψ+(ω2)ψ∗+(ω3)ψ+(ω4)

+ f2(ω1, ω2, ω3, ω4)ψ∗−(ω1)ψ−(ω2)ψ∗−(ω3)ψ−(ω4)

+ f3(ω1, ω2, ω3, ω4)ψ∗+(ω1)ψ+(ω2)ψ∗−(ω3)ψ−(ω4)
)
, (7.23)

where f1,2,3 are real functions. Conservation of particle number is ensured in each term separately
by the appearance of an equal number of fields and complex conjugate fields with the same contour
index; The δ-function enforces locality in time. Without loss of generality we may assume that f1 and
f2 are invariant under a simultaneous exchange of ω1 with ω3 and ω2 with ω4, respectively. Causality
then implies that the contribution S d to the action must vanish for ψ+ = ψ−, i.e.,

f1(ω1, ω2, ω3, ω4) + f2(ω1, ω2, ω3, ω4) +
1
2

( f3(ω1, ω2, ω3, ω4) + f3(ω2, ω1, ω4, ω3)) = 0. (7.24)

Note that only the part of f3 that is symmetric with respect to the exchange of frequencies mentioned
above enters this condition. Now let us consider Eq. (7.23) with transformed fields TβΨσ. Requiring
invariance, we find the conditions

f1(ω1, ω2, ω3, ω4) = f1(ω2, ω1, ω4, ω3),

f2(ω1, ω2, ω3, ω4) = f2(ω2, ω1, ω4, ω3),

f3(ω1, ω2, ω3, ω4) = eβ[ω1−ω2−(ω3−ω4)]/2 f3(ω2, ω1, ω4, ω3),

(7.25)

where it is implicitly assumed that frequency is conserved according to the δ-function in Eq. (7.23).
To begin with we investigate the possibility of a frequency-independent solution. Then the system of
equations (7.24) and (7.25) is solved by

f1 = − f2 = const., f3 = 0. (7.26)

This solution, however, is unphysical and can hence be ruled out for the following reasons: insert-
ing (7.26) in Eq. (7.23) yields a vertex that is equal to the two-body interaction in Eq. (7.11) apart
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from an overall factor of i, i.e., such a vertex would originate from an imaginary two-body coupling
in a Hamiltonian, clearly violating hermiticity. In addition, this term, which could be written as iH′

with Hermitean H′† = H′, would change sign under the time reversal transformation that is included
in Eq. (7.7): TiH′T† = −iH′. Equations (7.25) should then be replaced by

fi = − fi, i = 1, 2, (7.27)

which is solved by fi = 0. While this demonstrates that a frequency-independent number-conserving
quartic vertex is not compatible with equilibrium conditions, Eqs. (7.24) and (7.25) do allow for
solutions fi that depend on frequency. One particular solution is given by

f3(ω1, ω2, ω3, ω4) = −4 (ω1 − ω2) (n(ω1 − ω2) + 1) ,

f1(ω1, ω2, ω3, ω4) = f2(ω1, ω2, ω3, ω4) = (ω1 − ω2) coth(β (ω1 − ω2) /2) .
(7.28)

with the Bose distribution function n(ω). It is interesting to note that in the basis of classical and
quantum fields this corresponds to a generalization of Eq. (7.18) with h(ω,q) = ω in which the fields
are replaced by the respective densities defined as ρc = ψ∗+ψ+ + ψ∗−ψ− and ρq = ψ∗+ψ+ − ψ∗−ψ−.
The functions fi in Eq. (7.28) approach a constant value as the difference ω1 − ω2 goes to zero, and
therefore this solution gives the leading dissipative contribution to the action of a number-conserving
system in the low-frequency limit.

7.3.3 Classical limit, detailed balance and microreversibility

An analogous equilibrium symmetry was previously derived for the stochastic evolution of classi-
cal statistical systems in contact with an environment which acts as a source of noise, within the
response functional formalism [32, 34, 35, 58–61]. This formalism allows one to determine expec-
tation values of relevant quantities as a functional integral with a certain “action” known as response
functional, which can also be derived from a suitable classical limit of the Keldysh action for quantum
systems [38, 39].

Here, we show that the classical limit of Tβ yields exactly the transformation which implements
the equilibrium symmetry known for classical systems [36]. In order to consider the classical limit
within the Keldysh formalism it is convenient to express the Keldysh action in Eq. (7.8) in terms of
the classical and quantum fields defined in Eq. (7.4), while reinstating the Planck constant according
to [38, 39]

S → S/~, coth(βω/2)→ coth(β~ω/2), φq → ~φq (7.29)

for ~ → 0. Then the action can be formally expanded in powers of ~. The classical part of the
Keldysh action is then given by the contribution which remains for ~ = 0. Note that the same formal
simplifications apply at finite temperatures in the vicinity of a critical point, m/T → 0, where m is the
mass scale in the retarded Green’s function, by applying power counting arguments (see, e.g., [31]).
This conforms with the expectation that quantum fluctuations generically play only a subdominant
role at high temperatures.

In order to see the emergence of a stochastic dynamics driven by incoherent (thermal) noise from
a quantum coherent dynamics, we supplement the Keldysh action in Eq. (7.8) describing the latter
with dissipative terms arising from its coupling to a bath. For simplicity, we assume this bath to
be characterized by an ohmic spectral density. This physical situation can be formally implemented
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based on Eq. (7.77) under the assumption that γ(ω)ν(ω) = 2κω is linear in the frequency, and by
choosing Lσ(ω) → ψσ(ω,q) (note that we now consider a multimode system). The thermal bath is
thus assumed to act independently on each momentum mode [39]. Then, in the classical limit with
coth(βω/2) ∼ 2T/ω we find

S =

∫

t,x
Φ†q

{[
(σz + iκ1) i∂t +

1
2m
∇2

]
Φc + i2κTΦq

}
− λ

∫

t,x

(
φ∗2c φcφq + c.c.

)
. (7.30)

The action in Eq. (7.30) is of the form of the equilibrium dynamical models considered in Ref. [48]: it
includes a contribution which is linear and one which is quadratic in the quantum field. After having
transformed the latter quadratic term into a linear one via the introduction of an auxiliary field (which
is eventually interpreted as a Gaussian additive noise), the quantum field can be integrated out and
one is left with an effective constraint on the dynamics of the classical field which takes the form of a
Langevin equation, namely

(i − κ) ∂tφc =

(
− 1

2m
∇2 + λ|φc|2

)
φc + η, (7.31)

where η = η(x, t) is a Gaussian stochastic variable which satisfies

〈η(x, t)〉 = 0, 〈η(x, t)η∗(x′, t′)〉 = κTδ(t − t′)δ(d)(x − x′), 〈η(x, t)η(x′, t′)〉 = 0. (7.32)

This equation describes the dynamics of the non-conserved (complex scalar) field Φc without ad-
ditional conserved densities, which is known in the literature as model A [48]. However, as it can
be seen from the complex prefactor of the time derivative in Eq. (7.30), the dynamics is not purely
relaxational as in model A but it has additional coherent contributions, also known as reversible
mode couplings [61]. The fact that the simultaneous appearance of dissipative and coherent dynam-
ics can be described by a complex prefactor of the time derivative is specific to thermal equilibrium
– dividing Eq. (7.31) by it, one may think of reversible and irreversible generators of the Langevin
dynamics which are not independent of each other, but whose coupling constants share a common
ratio [34, 35, 62]. In a more general non-equilibrium situation, these reversible and irreversible gen-
erators result from different microscopic origins and no common ratio thus exists. In the present equi-
librium context, however, the action Eq. (7.30) corresponds to model A∗ in the notation of Ref. [49],
and the form of the equilibrium symmetry appropriate for this case was given in Ref. [31]. Here we
show that this equilibrium symmetry emerges as the classical limit of the equilibrium transformation
Tβ. In fact, for β → 0 and neglecting the contribution of the quantum fields in the transformation of
the classical fields (i.e., at the leading order in ~), Eq. (7.5) becomes

TβΦc(t, x) = σxΦc(−t, x),

TβΦq(t, x) = σx

(
Φq(−t, x) +

i
2T

∂tΦc(−t, x)
)
,

(7.33)

after a transformation back to the time and space domains. Upon identifying the classical field Φc with
the physical field and Φq with the response field Φ̃, according to Φq = iΦ̃, Eq. (7.33) takes the form
of the classical symmetry introduced in Ref. [36]. Note, however, that the transformation (7.33) is not
the only form in which the equilibrium symmetry in the classical context can be expressed. In fact, the
transformation of the response field can also be expressed [34, 35] in terms of a functional derivative
of the equilibrium distribution rather than of the time derivative of the classical field as in Eq. (7.33).
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The existence of these different but equivalent transformations might be related to the freedom in the
definition of the response field, which is introduced in the theory as an auxiliary variable in order to
enforce the dynamical constraint represented by the Langevin equation [34, 35, 61, 63]. This has the
well-known consequence [63] that the related action acquires the so-called Slavnov-Taylor symmetry.
As far as we know, the consequences of this symmetry have not been thoroughly investigated in the
classical case and its role in the quantum case surely represents an intriguing issue for future studies.

We emphasize the fact that the derivation of the symmetry in the classical case involves explic-
itly the equilibrium probability density [34, 35]. In fact, the response functional contains also the
probability distribution of the value of the fields at the initial time, after which the dynamics is con-
sidered. This term breaks, in general, the time translational invariance of the theory [34, 35], unless
the probability distribution is the equilibrium one. Therefore, when the classical equilibrium symme-
try Tβ is derived under the assumption of time-translational invariance, the equilibrium distribution is
explicitly taken into account in calculations. In the quantum case, time-translational symmetry was
implicitly imposed by extending the time integration in the action from −∞ to +∞, which is equiv-
alent to the explicit inclusion of the initial condition (in the form of an initial density matrix) and
makes the analysis simpler, though less transparent from a physical standpoint.

Although in classical systems this equilibrium symmetry takes (at least) two different but equiv-
alent forms due to some arbitrariness in the definition of the response functional, it can always be
traced back to the condition of detailed balance [34–36]. Within this context, detailed balance is
defined as the request that the probability of observing a certain (stochastic) realization of the dy-
namics of the system equals the probability of observing the time-reversed realization, and therefore
it encodes the notion of microreversibility. This condition guarantees the existence and validity of
fluctuation-dissipation relations, which can be proved on the basis of this symmetry. In addition,
detailed balance constrains the form that the response functional can take as well as the form of the
equilibrium probability distribution for this stochastic process.

The situation in the quantum case appears to be significantly less clear. In fact, a precise notion of
quantum detailed balance and quantum microreversibility is seemingly still lacking. The first attempt
to introduce a principle of quantum detailed balance dates back to Ref. [64], where it was derived
from a condition of microreversibility in the context of Markovian quantum dynamics described by a
Lindblad master equation. The mathematical properties of this conditions were subsequently studied
in detail (see, e.g., Refs. [65–69]) and were shown to constrain the form of the Lindblad super-operator
in order to admit a Gibbs-like stationary density matrix. However, these Lindbladians are not able
to reproduce the KMS conditions and the fluctuation-dissipation relations because of the underlying
Markovian approximation, as we discussed in Sec. 7.5.2.

The notion of quantum microreversibility in quantum systems appears to have received even less
attention, as well as its connection with some sort of statistical reversibility. The definition proposed
in Ref. [64] (also discussed in Ref. [70]) appears to be a natural generalization of the definition in the
classical case, as it relates the correlation of operators at two different times with the correlation of
the time-reversed ones. However, to our knowledge, the relationship between this condition and ther-
modynamic equilibrium has never been fully elucidated. Although addressing these issues goes well
beyond the scope of the present paper, they represent an interesting subject for future investigations.
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7.4 Physical interpretation

In this section we show that if the Keldysh action of a certain system is symmetric (as specified
in Sec. 7.3) under the equilibrium transformation Tβ, then the multi-time correlation functions of
the relevant fields satisfy the KMS condition [42, 43]. As the latter can be considered the defining
property of thermodynamic equilibrium, this shows that the same can be said of the invariance under
the equilibrium symmetry.

The KMS condition involves both the Hamiltonian generator of dynamics and the thermal nature
of the density matrix which describes the stationary state of the system: heuristically this condition
amounts at requiring that the many-body Hamiltonian which determines the (canonical) population of
the various energy levels is the same as the one which rules the dynamics of the system. The equiva-
lence proved here allows us to think of the problem from a different perspective: taking the symmetry
as the fundamental property and observing that any time-independent Hamiltonian respects it, we may
require it to hold at any scale, beyond the microscopic scale governed by reversible Hamiltonian dy-
namics alone. In particular, upon coarse graining in a renormalization group picture, only irreversible
dissipative terms which comply with the symmetry can be generated in stationary state, and the hi-
erarchy of correlation functions respect thermal fluctuation-dissipation relations. Thus we see how
Hamiltonian dynamics favors thermal stationary states (with static correlation functions described by
e−βH) over arbitrary functionals ρ = ρ(H). One explicit technical advantage of the symmetry point of
view is that it allows us to utilize the toolbox of quantum field theory straightforwardly and study the
implications of its obedience; this is exemplified here by considering the associated Ward-Takahashi
identities and by showing the absence of this symmetry in dynamics described by Markovian quantum
master equations. We also note that the symmetry can be used as a diagnostic tool for equilibrium
states, applied to the dynamic action functional directly instead of testing the whole hierarchy of
fluctuation-dissipation relations. It may be present in open system actions with both reversible and
dissipative terms.

In the following we consider a quantum system with coherent dynamics generated by the Hamil-
tonian H, which is in thermal equilibrium at temperature T = β−1 with density matrix ρ = e−βH/Z.
The KMS condition relies on the observation that for an operator in Heisenberg representation A(t) =

eiHtAe−iHt, we have the identity
A(t)ρ = ρA(t − iβ) (7.34)

(for simplicity we do not include here a chemical potential but we indicate the necessary modifications
at the end of the discussion). This identity effectively corresponds, up to a translation of the time by an
imaginary amount, to exchanging the order of the density matrix and of the operator A and therefore,
when Eq. (7.34) is applied to a multi-time correlation function, it turns out to invert the time order,
which can be subsequently restored by means of the quantum-mechanical time-reversal operation.
Accordingly, time reversal naturally appears as an element of the equilibrium symmetry Tβ; however,
invariance under Tβ does not necessarily require that H is invariant under the time-reversal operation.
A simple example is provided by systems which are subject to an external magnetic field, which,
strictly speaking, are not invariant under the quantum-mechanical time reversal, but might still be
compatible with the equilibrium symmetry. The application of time reversal yields a representation
of the KMS condition that can be readily translated into the Keldysh formalism, as it was first noted
in Ref. [46]. In particular, it results in an infinite hierarchy of generalized multi-time quantum FDRs
which include the usual FDR for the single-particle correlation and response functions as a special
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case (see Ref. [46] and Sec. 7.5.1). One of the main points of this paper is that these FDRs can be
also regarded as the Ward-Takahashi identities 1, and that the full hierarchy of FDRs is equivalent to
the invariance of the Keldysh action with respect to the equilibrium symmetry transformation.

The argument outlined below, which shows the equivalence between the KMS condition and the
thermal symmetry, proceeds in several steps: as preliminaries we review in Secs. 7.4.1 and 7.4.2
how time-ordered and anti-time-ordered multi-time correlation functions can be expressed using the
Keldysh technique, and we specify how these correlation functions transform under time reversal. We
apply these results to the KMS condition in Sec. 7.4.3: first we discuss its generalization to multi-time
correlation functions and then the translation of this generalized version to the Keldysh formalism.
This part proceeds mainly along the lines of Ref. [46] with some technical differences. Finally, we
establish the equivalence between the resulting hierarchy of FDRs and the thermal symmetry at the
end of Sec. 7.4.3.

7.4.1 Multi-time correlation functions in the Keldysh formalism

Two-time correlation functions. Let us first consider a two-time correlation function

〈A(tA)B(tB)〉 ≡ tr (A(tA)B(tB)ρ) (7.35)

between two generic operators A and B evaluated at different times tA and tB, respectively, in a system
described by the density matrix ρ. We assume that the dynamics of the system is coherent and gener-
ated by the Hamiltonian H. The two-time correlation function can be represented within the Keldysh
formalism as

〈A(tA)B(tB)〉 = 〈A−(tA)B+(tB)〉, (7.36)

irrespective of the relative order of the times tA and tB. Hereafter, by O+/− we indicate that a certain
operator O has been evaluated in terms of the fields defined on the forward/backward branch of the
temporal contour associated with the Keldysh formalism (see, e.g., Refs. [38, 39]). In order to fix
the notation and as a preparation for the subsequent discussion of a multi-point correlation function,
let us recall here the derivation of Eq. (7.36). The Heisenberg operator A at time tA is related to the
Schrödinger operator at a certain initial time ti < tA via

A(tA) = eiH(tA−ti)Ae−iH(tA−ti), (7.37)

with an analogous relation for B. In what follows we are particularly interested in considering the
case in which A and B are the field operators ψ(x) or ψ†(x) evaluated at positions xA and xB. In order
to derive Eq. (7.36) we insert the explicit expressions (7.37) for A(tA) and B(tB) in the trace which
defines the l.h.s. of Eq. (7.36), see Eq. (7.35). Then, by introducing an additional and arbitrary time
t f such that ti < tA,B < t f , and by using the property of cyclicity of the trace we may write

〈A(tA)B(tB)〉 = tr
(
e−iH(t f−tB)Be−iH(tB−ti)ρeiH(tA−ti)AeiH(t f−tA)) . (7.38)

The evolution of the density matrix is adjoint to the evolution of Heisenberg operators, i.e., ρ(t) =

e−iHtρeiHt. Thus, the operator e−iH(t−t′) / eiH(t−t′) acting from the left/right on the density matrix

1We use the word “Ward-Takahashi identity” in the sense of Eqs. (7.55,7.57), which is shown to be a consequence
of the obedience of the equilibrium symmetry (7.3) in Sec. 7.4.4. Oftentimes, this word is used only if the symmetry
transformation is continuous and can thus be presented in a differential form, unlike our case of a discrete transformation.
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corresponds to the evolution in time from t′ to t. In the correlation function (7.38), the time evolution
from ti to t f on the left/right of ρ is intercepted by the operator B at time tB/A at time tA. In order to
convert the r.h.s. of Eq. (7.38) into a path integral, the standard procedure (see, e.g., Refs. [38, 39])
to be followed consists in writing the exponentials of the evolution operators as infinite products of
infinitesimal and subsequent temporal evolutions (Trotter decomposition), in between of which one
can introduce resolutions of the identity in terms of coherent states carrying an additional label “+” on
the left of the density matrix, and a “−” on its right. These coherent states eventually carry a temporal
index on the forward (+) and backward (−) branches of the close-time path which characterizes the
resulting action; Correspondingly, the operators on the left and on the right of the density matrix
turn out to be evaluated on the fields which are defined, respectively, on the forward and backward
branches of the closed time path and this yields immediately the equality in Eq. (7.36).

We note, for the sake of completeness, that the expression as a Keldysh functional integral of
a simple two-time function is not unique: in fact, it is straightforward to check that rearranging
operators in Eq. (7.38) one can equivalently arrive at

〈A(tA)B(tB)〉 =


〈A+(tA)B+(tB)〉 for tA > tB,

〈A−(tA)B−(tB)〉 for tA < tB.
(7.39)

However, as we discuss in the following, the choice of Eq. (7.36) naturally lends itself to a general-
ization to multi-time correlation functions.

Multi-time correlation functions. We define multi-time correlation functions in terms of time-
ordered and anti-time-ordered products of operators

A(tA,1, . . . , tA,N) = a1(tA,1)a2(tA,2) · · · aN(tA,N) ti < tA,1 < · · · < tA,N < t f ,

B(tB,1, . . . , tB,M) = bM(tB,M)bM−1(tB,M−1) · · · b1(tB,1) ti < tB,1 < · · · < tB,M < t f ,
(7.40)

where again the operators an and bm are bosonic field operators. The specific sequence of time
arguments in A and B (increasing and decreasing from left to right, respectively) leads to a time-
ordering on the Keldysh contour: indeed, the multi-time correlation function can be expressed as a
Keldysh functional integral in the form

〈A(tA,1, . . . , tA,N)B(tB,1, . . . , tB,M)〉 = 〈B+(tB,1, . . . , tB,M)A−(tA,1, . . . , tA,N)〉. (7.41)

The functional integral on the r.h.s. of this relation can be constructed from a straightforward general-
ization of Eq. (7.38): after a reshuffling of the operators such that A and B appear respectively on the
left and right of the density matrix — as we did above — the temporal evolution can be artificially
extended from ti to t f and is intercepted on the l.h.s. of the density matrix by operators b1, . . . , bM at
times tB,1, . . . , tB,M and on the r.h.s. by operators a1, . . . , aN at times tA,1, . . . , tA,N . Again, the result-
ing expression for the correlation function can be converted directly into a path integral by inserting
resolutions of the identity in terms of coherent states carrying the label “+” corresponding to the for-
ward contour on the l.h.s. of the density matrix and the label “−” for the backward contour on the
r.h.s. which leads us to Eq. (7.41).

Anti-time-ordered correlation functions. Not only time-ordered correlation functions such as
Eq. (7.41) can be expressed in terms of functional integrals, but also correlation functions which are
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anti-time-ordered and which, e.g., are obtained by exchanging the positions of A(tA,1, . . . , tA,N) and
B(tB,1, . . . , tB,M) on the l.h.s. of Eq. (7.41). The construction of the corresponding functional integral
can be accomplished with a few straightforward modifications to the procedure summarized above
(and presented, e.g., in Refs. [38, 39]). In a stationary state [ρ,H] = 0 we can relate all Heisenberg
operators on the l.h.s. of Eq. (7.41) to the Schrödinger operators at a later time t f . Then one finds

〈B(tB,1, . . . , tB,M)A(tA,1, . . . , tA,N)〉 = 〈A+(tA,1, . . . , tA,N)B−(tB,1, . . . , tB,M)〉S b , (7.42)

where the action S b that describes the backward evolution is related to the action S which enters the
forward evolution in Eq. (7.41) simply by a global change of sign.

7.4.2 Time reversal

In this section we first recall some properties of the time-reversal operation T [41] and then discuss
its implementation within the Keldysh formalism. T is an antiunitary operator, i.e., it is antilinear
(such that Tλ = λ∗T for λ ∈ C) and unitary (T† = T−1). Scalar products transform under antiunitary
transformations into their complex conjugates, 〈ψ|A|φ〉 = 〈ψ̃|Ã|φ̃〉∗, where we denote by |ψ̃〉 = T|ψ〉
and Ã = TAT† the state and the Schrödinger operator obtained from the state |ψ〉 and the operator A,
respectively, after time reversal. Accordingly, expressing the trace of an operator in a certain basis
{ψn}n, one finds

tr A =
∑

n

〈ψn|A|ψn〉 =
∑

n

〈ψ̃n|Ã|ψ̃n〉∗ = (tr Ã)∗. (7.43)

In the last equality we used the fact that, due to the unitarity of T also the time-reversed set {ψ̃n}n
forms a basis. Below we find it convenient to define the Heisenberg representation of time-reversed
operators such that it coincides with the Schrödinger representation at time −t f (cf. Eq. (7.37)), i.e.,
we set

Ã(tA) = eiH̃(tA+t f )Ãe−iH̃(tA+t f ). (7.44)

Note that this is distinct from the Heisenberg representation defined in Eq. (7.37), according to which
Heisenberg and Schrödinger representations coincide at ti. In a slight abuse of notation we do not in-
dicate this difference explicitly which, however, will not cause confusion: for time-reversed operators
we always assume Ã(−t f ) = Ã etc. whereas for the “original” operators we have A(ti) = A.

Let us now study the effect of time reversal on the multi-time correlation function (7.41). Due to
translational invariance in time, all time arguments of the various operators can be shifted by ti − t f

without affecting the correlation function. Then, by using Eqs. (7.43) and (7.44), we have

〈A(tA,1, . . . , tA,N)B(tB,1, . . . , tB,M)〉 = 〈Ã(−tA,1, . . . ,−tA,N)B̃(−tB,1, . . . ,−tB,M)〉∗ρ̃
= 〈B̃†(−tB,1, . . . ,−tB,M)Ã†(−tA,1, . . . ,−tA,N)〉ρ̃,

(7.45)

where the subscript 〈· · · 〉ρ̃ indicates that the average is taken with respect to the time-reversed density
operator ρ̃ ≡ TρT†, which is time-independent. The expectation value on the r.h.s. of Eq. (7.45) is anti-
time ordered and therefore it can be rewritten as a Keldysh functional integral by using Eq. (7.42). The
l.h.s., instead, is time-ordered and therefore it can be expressed as in Eq. (7.41), such that Eq. (7.45)
becomes

〈B+(tB,1, . . . , tB,M)A−(tA,1, . . . , tA,N)〉 = 〈Ã∗+(−tA,1, . . . ,−tA,N)B̃∗−(−tB,1, . . . ,−tB,M)〉S̃ b
, (7.46)
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where the subscript b in S̃ b indicates that the sign of the action which describes the Hamiltonian
evolution on the r.h.s. of this relation has to be reversed, as explained below Eq. (7.42). Such a time-
reversed action S̃ differs from the action S which enters Eq. (7.41) because, in the former, the time
evolution is generated by H̃, the initial state is the time reversed density matrix ρ̃, and the integration
over time extends from −t f to −ti. However, this latter difference in the integration domains vanishes
as ti → −∞ and t f → ∞.

Let us now consider the case in which A and B are products of bosonic field operators. There are
no further restrictions on A and B and therefore the l.h.s. of Eq. (7.46) can be generically indicated as
〈O[Ψ]〉, where O[Ψ] is the corresponding product of fields on the Keldysh contour, which according
to the notation introduced in Sec. 7.2 are collected in Ψ =

(
ψ+, ψ

∗
+, ψ−, ψ∗−

)T . With this shorthand
notation, Eq. (7.46) can be cast in the form

〈O[Ψ]〉 = 〈O[TΨ]〉S̃ b
, (7.47)

where
TΨσ(t, x) = Ψ∗−σ(−t, x), (7.48)

which we thus interpret as the implementation of time reversal in the Keldysh formalism. (With a
slight abuse of notation, the same symbol T is used to indicate both the quantum-mechanical time re-
versal operator introduced above and the transformation of fields on the Keldysh contour in Eqs. (7.47)
and (7.48).) Note that this matches the intuition, that the dynamics of a system is time reversal in-
variant (TRI), if – loosely speaking – the forward and backward branches of the closed time path
are equivalent, in the sense that the sole effect of exchanging the contour indices of the fields as in
Eq. (7.48) is a global sign change of the action S b on the r.h.s. of Eq. (7.47) [38]. In Eq. (7.48)
we took into account that that the bosonic field operators in the Schrödinger picture and in the real
space representation are time reversal invariant, i.e., ψ̃(x) = Tψ(x)T† = ψ(x), which allows us to drop
the tilde on the transformed field on the r.h.s. of Eq. (7.48). However, we note that in the last line of
Eq. (7.45) the Hermitean adjoint operators of those on the l.h.s. appear and this is the reason why both
the r.h.s. of Eq. (7.46) and the transformation prescription Eq. (7.48) involves complex conjugation
of the fields.

While Eq. (7.46) follows from the second line of Eq. (7.45), one could have equivalently taken
its first line as the starting point for deriving a Keldysh time-reversal transformation. Then one would
have been lead to

T′Ψσ(t, x) = Ψσ(−t, x), (7.49)

with an additional overall complex conjugation of the correlation function. In some sense, the trans-
formation T′ is closer than T to the common way of representing the quantum mechanical time rever-
sal, which amounts to a mapping t 7→ −t and i 7→ −i [41]. For our purposes, however, T is of main
interest, since it is part of the equilibrium transformation as we describe below.

7.4.3 KMS condition

We now move on to formulate the KMS condition for multi-time correlation functions and its rep-
resentation in terms of Keldysh functional integrals. For the specific case of a four-time correlation
function this is illustrated in Fig. 7.1: as anticipated after Eq. (7.34), the KMS condition involves a
contour exchange of the multi-time operators A and B. Graphically speaking, this exchange effectively
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reverses the arrows in the second equality in Fig. 7.1 (b), since both A and B turn out to be anti-time
ordered when moved to the opposite contour. The appropriate time-ordering can be restored by means
of the time reversal transformation introduced in Eq. (7.48) of the previous section. This is a crucial
step, as only time-ordered correlation functions can be directly translated into the functional integral
by means of the usual Trotter decomposition, which makes the time-reversal transformation indis-
pensable in the construction. In Fig. 7.1 (b) this step is performed after the third equality. However,
this does not mean that properties related to equilibrium conditions such as fluctuation-dissipation re-
lations are fulfilled only if the Hamiltonian is invariant under the time-reversal transformation. Indeed,
it turns out that multi-time (number of field operators involved n > 2) FDRs always involve both the
Hamiltonian and its time-reversed counterpart [46], while as we show in Sec. 7.5.1 the single-particle
FDR can be stated without reference to the time-reversed Hamiltonian, even if the Hamiltonian is not
TRI.

The KMS condition for a two-time function reads2

〈A(tA)B(tB)〉 = 〈B(tB − iβ/2)A(tA + iβ/2)〉. (7.50)

This relation can be proved by writing down explicitly the expectation value on the l.h.s. with ρ =

e−βH/Z and by inserting the definition of the Heisenberg operators reported in Eq. (7.37). The gen-
eralization of this procedure to the case of multi-time correlation functions is straightforward and
yields

〈A(tA,1, . . . , tA,N)B(tB,1, . . . , tB,M)〉
= 〈B(tB,1 − iβ/2, . . . , tB,M − iβ/2)A(tA,1 + iβ/2, . . . , tA,N + iβ/2)〉. (7.51)

The real parts of the time variables on the r.h.s. of this equation are such that the corresponding
product of operators is anti-time-ordered (see Fig. 7.1). According to their definition (7.40), A and B
correspond to products of operators with, respectively, decreasing and increasing time arguments from
right to left. Consequently Eq. (7.51) can be expressed as a functional integral by using Eqs. (7.41)
and (7.42) on the l.h.s. and r.h.s., respectively (the presence of an imaginary part in the time arguments
of Eq. (7.51) does not constitute a problem: in fact, the vertical part of the time path in Fig. 7.1 can
be decomposed as usual in the Matsubara formalism):

〈B+(tB,1, . . . , tB,M)A−(tA,1, . . . , tA,N)〉
= 〈A+(tA,1 + iβ/2, . . . , tA,N + iβ/2)B−(tB,1 − iβ/2, . . . , tB,M − iβ/2)〉S b . (7.52)

As we did in Eq. (7.47) for the case of time reversal, we may rewrite this equation in the form

〈O[Ψ]〉 = 〈O[KβΨ]〉S b , (7.53)

where we define
KβΨσ(t) = Ψ−σ(t − iσβ/2). (7.54)

2We note that this condition is usually expressed in the form

〈A(tA)B(tB)〉 = 〈B(tB)A(tA + iβ)〉.
However, an equilibrium state is also stationary and therefore both time arguments on the r.h.s. can be translated by −iβ/2
which leads us immediately to Eq. (7.50). Here we are assuming that the analytic continuation of real-time correlation
functions into the complex plane is possible and unambiguous.
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Figure 7.1. (a) Schematic representation of the Keldysh partition function [38,
39]. The time evolution of the density matrix ρ(t) = e−iHtρeiHt can be represented by
introducing two time lines to the left and right of ρ. These time lines correspond to
the + and − parts of the Keldysh contour, respectively. (b) Schematic representation of
the KMS condition for a four-time correlation function 〈a1(ta,1)a2(ta,2)b2(tb,2)b1(tb,1)〉
with ta,1 < ta,2 and tb,1 < tb,2, where a1,2 and b1,2 are bosonic field operators. As
illustrated by the first equality (light blue box), this correlation function is properly
time-ordered and therefore it can be directly represented within the Keldysh formalism
with the operators a1,2 and b1,2 evaluated along the − and + contours, respectively.
The thermal density matrix ρ = e−βH/Z can be first split into the products of e−βH/2 ×
e−βH/2 and these two factors can then be moved in opposite directions along the two
time lines, with the effect of adding +iβ/2 and −iβ/2 to the time arguments of a1,2 and
b1,2, respectively. After these two factors have been moved to the end of the timelines,
due to the cyclic property of the trace, they combine as represented by the second
equality (orange box), where the time lines now take detours into the complex plane
and the overall time order is effectively reversed as indicated by the arrows which
converge towards ρ instead of departing from it as in the case of sketch (a) or of
the first equality of sketch (b). The original time ordering can be restored by means
of the time-reversal operation T, upon application of which operators are replaced
by time reversal transformed ones, ρ̃ = TρT† etc., and signs of time variables are
reversed. In addition, due to the anti-unitarity of T one has to take the Hermitian
adjoint of the expression inside the trace. As a result, the order of operators is inverted
and one obtains the third equality (green box) which is again properly time ordered.
This construction can be generalized to to arbitrary correlation functions, leading
to Eq. (7.55).
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This transformation Kβ can be combined with the time reversal T defined in Eq. (7.48) in order to
express the equilibrium transformation Tβ as Tβ = T ◦ Kβ.3 By using Eq. (7.47) on the r.h.s. of
Eq. (7.53), one concludes that the KMS condition implies

〈O[Ψ]〉 = 〈O[TβΨ]〉S̃ , (7.55)

which indeed provides a generalized FDR for the correlation function 〈O[Ψ]〉 [46]. For various
choices of the observable O[Ψ] we obtain the full hierarchy of multi-time FDRs which contains as a
special case the single-particle FDR (see Sec. 7.5.1). Before demonstrating that this hierarchy (which
follows from the validity of the KMS conditions) is equivalent to the invariance of the Keldysh action
as expressed by Eq. (7.7), several remarks are in order:

1. Although by means of the time reversal transformation T we were able to restore the time
ordering in Eq. (7.52), Eq. (7.55) still involves the time-reversed action S̃ and not the original
action S . However, in practice it will typically be clear how S̃ can be obtained from S , e.g., by
reversing the signs of external magnetic fields. In the absence of such time-reversal invariance
breaking fields the tilde in Eq. (7.55) may be dropped.

2. Eq. (7.55) provides a generalized FDR expressed as products O[Ψ] of fields on the forward
and backward branches, which we collect in the four-component vector Ψ =

(
ψ+, ψ

∗
+, ψ−, ψ∗−

)T .
A more familiar formulation is provided in the Keldysh basis of classical and quantum fields,
which allows one to more directly discriminate correlations (expectation values involving only
classical fields) from responses (expectation values involving both classical and quantum fields).
FDRs provide relations between correlation and response functions.

In order to specify FDRs in the Keldysh basis, let us single out the first factor in this product:
assuming it is ψ+(X), we may write O[Ψ] = ψ+(X)O′[Ψ], where O′[Ψ] denotes the remaining
factors in the product. By forming the linear combination of the expectation value of this
expression and of ψ−(X)O′[Ψ],

1√
2

(〈ψ+(X)O′[Ψ]〉 + 〈ψ−(X)O′[Ψ]〉) = 〈φc(X)O′[Ψ]〉, (7.56)

and proceeding analogously with the remaining factors in O′[Ψ], we arrive at a generalized
FDR for classical and quantum fields, which we can again write as (note that the O appearing
here is different from the one in Eq. (7.55)),

〈O[Φ]〉 = 〈O[TβΦ]〉S̃ , (7.57)

where Φ =
(
φc, φ

∗
c, φq, φ

∗
q

)T
. The transformation of these fields underTβ is reported in Eq. (7.5).

The best known FDR concerns the single particle sector. For this case, the explicit FDR is
derived in Sec. 7.5.1.

3. In a grand canonical ensemble with density matrix ρ = e−β(H−µN)/Z, where N =
∫

x ψ
†(x)ψ(x) is

the particle number operator, the KMS condition Eq. (7.51) has to be generalized. To derive the

3Note that it is straightforward to verify that the transformation T is not modified in the presence of complex time
arguments.
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generalization, again the density matrix has to be split into a product e−β(H−µN)/2 × e−β(H−µN)/2

(cf. the caption of Fig. 7.1). Then, moving one of the two factors through each of the blocks of
operators A and B has not only the effect of adding +iβ/2 and −iβ/2 to the time arguments of
the field operators in A and B respectively, as would be the case if µ = 0; Instead, the operators
should additionally be transformed as

e±βµN/2ψ(x)e∓βµN/2 = e∓βµ/2ψ(x),

e±βµN/2ψ†(x)e∓βµN/2 = e±βµ/2ψ†(x),
(7.58)

where the upper and lower signs in the exponents apply to operators which are part of the time-
ordered and anti-time-ordered blocks A and B, respectively. This transformation of operators
leads to the appearance of factors e±σβµ/2 in Eq. (7.6).

7.4.4 From KMS to a symmetry of the Keldysh action

In the previous section we showed that the KMS condition within the Keldysh functional integral
formalism takes the form of Eq. (7.55). Here we argue further that the latter relation is equivalent to
requiring the invariance of the Keldysh action under the equilibrium symmetry Tβ. To this end, we
express the expectation values on the left and right hans sides of Eq. (7.55) as the functional integrals

〈O[Ψ]〉 =

∫
D[Ψ]O[Ψ]eiS [Ψ] (7.59)

and 〈
O[TβΨ]

〉
S̃

=

∫
D[Ψ]O[TβΨ]eiS̃ [Ψ], (7.60)

respectively. Performing a change of integration variables Ψ → TβΨ in the last expression, the
argument of O simplifies as TβΨ → T 2

β Ψ = Ψ since Tβ is involutive (see Sec. 7.2). In addition, we
show below that the absolute value of the determinant of the JacobianJ = D[TβΨ]/D[Ψ] associated
with the equilibrium transformation is equal to one, i.e., |DetJ| = 1, and therefore the integration
measure does not change. Accordingly, one has

〈
O[TβΨ]

〉
S̃

=

∫
D[Ψ]O[Ψ]eiS̃ [TβΨ], (7.61)

and by comparing this expression to Eq. (7.59) a sufficient condition for their equality is indeed
Eq. (7.7), which expresses the invariance of the Keldysh action under the equilibrium transformation.
In addition, since the observable O[Ψ] in Eqs. (7.55), (7.59), and (7.61) is arbitrary, the condition is
also necessary, which proves that Eqs. (7.7) and (7.55) (and, consequently, the KMS condition) are
equivalent.

It remains to be shown that the Jacobian of the equilibrium transformation Tβ has a determinant
with unity absolute value. In frequency and momentum space the Jacobian associated with Eq. (7.3)
reads

J(ω,q, ω′,q′) = (2π)d δ(d)(q + q′)J(ω,ω′), (7.62)

where

J(ω,ω′) = 2πδ(ω − ω′)



0 eβω/2 0 0
e−βω/2 0 0 0

0 0 0 eβω/2

0 0 e−βω/2 0


. (7.63)
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The eigenvectors and eigenvalues of the frequency-dependent part, i.e., the solutions to the equation
∫

dω′

2π
J(ω,ω′)vi(ω′) = λivi(ω), (7.64)

are
v1(ω) =

(
0, 0,−eβω/2, 1

)T
, v2(ω) =

(
−eβω/2, 1, 0, 0

)T
,

v3(ω) =
(
0, 0, eβω/2, 1

)T
, v4(ω) =

(
e−βω/2, 1, 0, 0

)T
,

(7.65)

with λ1 = λ2 = −1, and λ3 = λ4 = 1, so that Det J = 1. As for the momentum-dependent part of the
Jacobian matrix Eq. (7.62), we note that its eigenvectors can be constructed with any function f (q)
by taking the even and odd combinations f (q) ± f (−q):

∫

q′
(2π)d δ(d)(q + q′)

(
f (q′) ± f (−q′)

)
= ± ( f (q) ± f (−q)) . (7.66)

Thus the eigenvalues of this part are ±1, and hence the absolute value of the Jacobian matrix is
|Det(J)| = 1 as anticipated above.

7.5 Examples

In this section we discuss some concrete examples how the invariance of a given Keldysh action
under the equilibrium transformation Tβ can be used in practice. First we show that Eq. (7.55) (or,
equivalently, Eq. (7.57)) contains as special case the quantum single-particle FDR. This was also
noted in Ref. [46], however, the conceptual difference is that here we may regard the FDR as a
Ward-Takahashi identity associated with the equilibrium symmetry. In Sec. 7.5.2 we elaborate on the
non-equilibrium nature of Markovian quantum master equation dynamics, which is seen to explicitly
violate the equilibrium symmetry.

7.5.1 Single-particle fluctuation-dissipation relation

If we regard the symmetry of the Keldysh action with respect to Tβ in Eq. (7.5) as the defining
property of thermodynamic equilibrium, we may consider the generalized FDR in Eq. (7.57) which –
as the discussion in the previous section shows – is nothing but the Ward-Takahashi identity associated
with the symmetry, as a consequence of equilibrium conditions. Then, from the generalized FDR the
single-particle FDR [38, 39] can indeed be derived as a special case. The latter reads

GK(ω,q) =
(
GR(ω,q) −GA(ω,q)

)
coth(βω/2) = i2 Im GR(ω,q) coth(βω/2), (7.67)

where the Keldysh, retarded, and advanced Green’s functions are related to expectation values of
classical and quantum fields via

iGK(ω,q) (2π)d+1 δ(ω − ω′)δ(d)(q − q′) = 〈φc(ω,q)φ∗c(ω′,q′)〉,
iGR(ω,q) (2π)d+1 δ(ω − ω′)δ(d)(q − q′) = 〈φc(ω,q)φ∗q(ω′,q′)〉,
iGA(ω,q) (2π)d+1 δ(ω − ω′)δ(d)(q − q′) = 〈φq(ω,q)φ∗c(ω′,q′)〉.

(7.68)
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Here we are assuming translational invariance in both time and space, which is reflected in the
appearance of frequency- and momentum-conserving δ-functions. The FDR valid in classical sys-
tems [36, 37] can be recovered from the quantum FDR Eq. (7.67) by taking the classical limit as
described in Sec. 7.3.3. Contrary to what one might suspect a first glance from the appearance of
the time-reversed action S̃ in the generalized FDR in Eq. (7.57), the derivation of the single-particle
FDR we present in the following is valid irrespective of whether the action contains external fields
that break TRI.

Let us consider the Ward-Takahashi identity Eq. (7.57) for specific choices of the functionalO[Φ].
In particular, by taking O to be equal to the product of two quantum fields, the expectation value on
the l.h.s. of Eq. (7.57) has to vanish due to causality and therefore

0 = 〈φq(ω,q)φ∗q(ω′,q′)〉 = 〈Tβφq(ω,−q)Tβφ∗q(ω′,−q′)〉S̃ . (7.69)

Upon inserting the expression of the fields transformed according to Eq. (7.5), one readily finds the
FDR

GK
S̃ (ω,q) =

(
GR

S̃ (ω,q) −GA
S̃ (ω,q)

)
coth(βω/2) (7.70)

with the time-reversed action S̃ . Repeating the same steps for the expectation value of the product of
two classical fields (i.e., considering the Keldysh Green’s function GK in Eq. (7.68)) and by using the
FDR in Eq. (7.70) we find the relation

GK
S̃ (ω,q) = GK(ω,−q), (7.71)

which expresses the transformation behavior of the exact single-particle Keldysh Green’s function
under time reversal of the Hamiltonian. Finally, by replacing O[Φ] in Eq. (7.57) with the product
φc(ω,q)φ∗q(ω′,q) of one classical and one quantum field, the l.h.s. renders by definition the retarded
Green’s function GR while the r.h.s. can be worked out as explained above. Taking into account
Eq. (7.70), one can eliminate the Keldysh Green’s function GK appearing on the r.h.s. in favor of the
retarded and advanced Green’s functions GR and GA, respectively, and eventually finds

GR
S̃ (ω,q) = GR(ω,−q). (7.72)

This relation, together with its complex conjugate (which relates the advanced Green’s functions
calculated from the original and time-reversed Hamiltonians, respectively) and Eqs. (7.71) and (7.70),
yields the FDR (7.67).

7.5.2 Non-equilibrium nature of steady states of quantum master equations

In the realm of classical statistical physics, the coupling of a system to a heat bath and the result-
ing relaxation to thermodynamic equilibrium are commonly modelled in the framework of Marko-
vian stochastic processes, which can be encoded, e.g., in Langevin equations with Gaussian white
noise [61]. The Markovian dynamics of a quantum system, on the other hand, is described by a mas-
ter equation in Lindblad form [44, 45] (or an equivalent Keldysh functional integral). Under specific
conditions [69, 71], also in this case the stationary state of this dynamics is described by a thermal
Gibbs distribution, such that all static properties (equal-time correlation functions etc.) are indis-
tinguishable from thermodynamic equilibrium. However, at the same time dynamical signatures of
thermodynamic equilibrium such as the KMS condition (see Sec. 7.4.3) and the FDR (see Sec. 7.5.1)
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are violated [72, 73]. This violation can be traced back to the fact that the Markovian approximation,
which is usually done in deriving this master equation leads to an explicit breaking of the equilib-
rium symmetry as we show in this section – i.e., even though the system is coupled to a bath which
resides in thermodynamic equilibrium, the system itself does not reach equilibrium. Physically, this
can be understood by noting that the microscopic dynamics underlying an approximate Markovian
description is indeed driven. A typical example in the context of quantum optics is an atom with two
relevant energy levels separated by a level spacing ω0 and connected by an external driving laser with
frequency ν detuned from resonance by an amount ∆ = ν − ω0 � ω0. Only the driving laser makes
the excited level accessible, and the large scale controlling the Markov approximation is given by ω0.
The upper level is unstable and can undergo spontaneous decay by emitting a photon to the radiation
field, which acts as a reservoir. This underpins the combined driven and dissipative nature of such
quantum optical systems.

Let us now consider a dissipative contribution to the action that arises upon integrating out a bath
that couples linearly to the system degrees of freedom both before and after the Markov approxima-
tion, and show that the Markov approximation breaks symmetry with respect to the transformation
Tβ. We assume that the bath consists of non-interacting harmonic oscillators bµ,σ(t), labelled by an
index µ, which are in thermodynamic equilibrium at a temperature β = 1/T . The action of the bath is
given by

S b =
∑

µ

∫

t,t′

(
b∗µ,+(t), b∗µ,−(t)

) (G++
µ (t, t′) G+−

µ (t, t′)
G−+
µ (t, t′) G−−µ (t, t′)

)−1 (
bµ,+(t′)
bµ,−(t′)

)
, (7.73)

where the Green’s functions iGσσ′
µ (t, t′) = 〈bµ,σ(t)b∗µ,σ′(t

′)〉 for the oscillators of the bath read [38, 39]

G+−
µ (t, t′) = −in(ωµ)e−iωµ(t−t′),

G−+
µ (t, t′) = −i

(
n(ωµ) + 1

)
e−iωµ(t−t′),

G++
µ (t, t′) = θ(t − t′)G−+

µ (t, t′) + θ(t′ − t)G+−
µ (t, t′),

G−−µ (t, t′) = θ(t′ − t)G−+
µ (t, t′) + θ(t − t′)G+−

µ (t, t′).

(7.74)

Here n(ω) = 1/
(
eβω − 1

)
is the Bose distribution function. The coupling between the system and the

bath is linear in the bath variables and has strength √γµ,

S sb =
∑

µ

√
γµ

∫

t

(
L∗+(t)bµ,+(t) + L+(t)b∗µ,+(t) − L∗−(t)bµ,−(t) − L−(t)b∗µ,−(t)

)
. (7.75)

Here Lσ(t) are the so-called to the quantum jump operators which we assume to be quasilocal poly-
nomials of bosonic fields resulting from normally ordered operators in a second quantized description
(the simplest choice would be Lσ(t) = ψσ(t, x)). The Keldysh functional integral including both sys-
tem and bath degrees of freedom is quadratic in the latter and, therefore, the bath can be integrated
out, which yields a contribution to the action

S ′ = −
∫ ω0+ϑ

ω0−ϑ
dωγ(ω)ν(ω)

∫

t,t′

(
L∗+(t),−L∗−(t)

) (G++
ω (t, t′) G+−

ω (t, t′)
G−+
ω (t, t′) G−−ω (t, t′)

) (
L+(t′)
−L−(t′)

)
. (7.76)

To obtain this form of the action we made the additional assumption that the bath modes form a
dense continuum, centered around some central frequency ω0 and with bandwidth ϑ, which allows
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us to replace the sum over µ by an integral over frequencies ω, weighted by a (phenomenologically
introduced) density of states ν(ω) of the bath modes,

∑
µ γµ ∼

∫ ω0+ϑ

ω0−ϑ dωγ(ω)ν(ω). Inserting the
explicit expressions (7.74) for the bath Green’s functions we obtain

S ′ = −i
∫ ω0+ϑ

ω0−ϑ
dω
2π
γ(ω)ν(ω)

(
n(ω)L∗+(ω)L−(ω) + (n(ω) + 1) L∗−(ω)L+(ω)

−
∫ ∞

−∞
dω′

2π
{[
θ(ω′ − ω) (n(ω) + 1) + θ(−ω′ + ω)n(ω)

]
L∗+(ω′)L+(ω′)

+
[
θ(−ω′ + ω) (n(ω) + 1) + θ(ω′ − ω)n(ω)

]
L∗−(ω′)L−(ω′)

} )
, (7.77)

Lσ(ω) are the quantum jump operators in frequency space, and θ(ω) = iP 1
ω + πδ(ω), where P 1

ω

denotes the Cauchy principal value, is the Fourier transform of the Heaviside step function. The
terms involving the principal value contribute to the Hamiltonian part of the system Keldysh action
and thus can be interpreted as an energy shift. Assuming that the jump operators are quasilocal
polynomials of bosonic field operators, Lσ(ω) transform as the basic fields, i.e.,

Tβ′Lσ(ω) = e−σβ
′ω/2L∗σ(ω), Tβ′L∗σ(ω) = eσβ

′ω/2Lσ(ω), (7.78)

and inserting these expressions in Eq. (7.77) we find that the contour-diagonal terms (i.e., those in-
volving products L∗σ(ω)Lσ′(ω) withσ = σ′, which include, in particular, the energy shift) are invariant
due to frequency conservation (cf. the discussion in Sec. 7.3.1) if the value of β′ matches the inverse
temperature β = 1/T of the bath modes. On the other hand, for the contour-off-diagonal contributions
we have

S ′off−diag[Tβ′Ψ] = −i
∫ ω0+ϑ

ω0−ϑ
dω
2π
γ(ω)ν(ω)

[
n(ω)eβ

′ωL+(ω)L∗−(ω) + (n(ω) + 1) e−β
′ωL−(ω)L∗+(ω)

]
.

(7.79)
Again, if β′ = β, it is easy to see that also the off-diagonal terms are invariant under the thermal
transformation by using the relation n(ω)eβω = n(ω) + 1. Then indeed we have S ′[TβΨ] = S ′[Ψ].

Let us now consider the same expression Eq. (7.77) after the Markov approximation. For this
approximation to be valid, we assume that it is possible to choose a rotating frame in which the
evolution of the system is slow compared to the scales of the bath ω0 and ϑ. This is possible if the
system is driven by an external classical field such as a laser, so that the drive frequency bridges the
gap between the natural system and bath time scales. Then all jump operators in Eq. (7.76) may be
evaluated at the same time t. Additionally we assume that the density of bath states and the coupling
of the system to bath are well approximated as constant over the relevant reservoir width, i.e., we set
γ(ω)ν(ω) ≈ γ(ω0)ν(ω0). Finally, we discard the contour-diagonal terms, which are symmetric under
Tβ also after performing the Markov approximation, and focus on the contour-off-diagonal terms

S ′off−diag = −iγ(ω0)ν(ω0)
∫ ∞

−∞
dω
2π

[
n̄L∗+(ω)L−(ω) + (n̄ + 1) L∗−(ω)L+(ω)

]
. (7.80)

Here n̄ = n(ω0) is the occupation number of the bath mode with frequency ω0. Applying the trans-
formation Tβ we have

S ′off−diag[TβΨ] = −iγ(ω0)ν(ω0)
∫ ∞

−∞
dω
2π

[
n̄eβωL+(ω)L∗−(ω) + (n̄ + 1) e−βωL−(ω)L∗+(ω)

]
. (7.81)
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The contour-off-diagonal terms are invariant under Tβ only for n̄eβω = n̄ + 1 which is obviously
not possible for all ω and, therefore, the equilibrium symmetry is explicitly broken by the Markov
approximation.

7.6 Conclusions

We demonstrated here that the Keldysh action describing the dynamics of a generic quantum many-
body system acquires a certain symmetryTβ if the evolution occurs in thermal equilibrium. The origin
of this symmetry is traced back to the Kubo-Martin-Schwinger (KMS) condition which establishes
a relationship between multi-time correlation functions in real and imaginary times of a system in
canonical equilibrium at a certain temperature. Fluctuation-dissipation relations are then derived as
the Ward-Takahashi identities associated with Tβ. Remarkably, in the classical limit, this equilibrium
symmetry reduces to the one known in classical stochastic systems, where it was derived from the
assumption of detailed balance. By comparing with this classical case, important questions on the
nature of equilibrium in quantum systems arise. In particular, while microreversibility and detailed
balance of the dynamics are deeply entangled with the notion of equilibrium in classical stochastic
systems, an analogous relationship for quantum systems does not clearly emerge and surely deserves
to be investigated further.

The equilibrium symmetry Tβ is expected to play a crucial role in the study of thermalization in
quantum systems, in particular when combined with a renormalization-group analysis. In fact, on
the one hand, it provides a simple but powerful theoretical tool to check whether a certain system is
able to reproduce thermal equilibrium. This can indeed be accomplished by a direct inspection of
the microscopic Keldysh action (or of the effective one generated after integrating out some degrees
of freedom, e.g., along a renormalization-group flow) which describes the dynamics of the system,
rather then checking, for instance, the validity of the fluctuation-dissipation relations among various
correlation functions. On the other hand, the equilibrium symmetry might be useful also in order
to investigate or characterize possible departures from equilibrium and, in this respect, it would be
interesting to consider the case in which the system evolves in a generalized Gibbs ensemble [13, 50–
57]. Finally, while we focussed here on the case of bosons, the extension of our analysis to different
statistics, for instance fermionic and spin systems, represents an interesting issue.
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