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drive

g ’ (e.g. laser)
many-body |
system

/ \_ dissipative environment / \

* natural occurrences of * engineered driven/dissipative
dissipation dynamics

| |

= drive/dissipation as dominant

= no condensed matter analog _
resource of many-body dynamics!

= Think quantum optics in many-body systems!



Outline

* Driven dissipative BEC
Proof of principle

Cold atomic
bosons

* Nonequilibrium phase transitions

New class of interacting
nonequilibrium systems

Cold atomic
fermions

* engineered dissipative
dynamics for fermions
Dissipative pairing
mechanism for fermions




Driven Dissipative BEC

(VAYA)

LGS

SD, A. Micheli, A. Kantian, B. Kraus, H.P. Buchler, P. Zoller, Nature Physics 4, 878 (2008);
B. Kraus, SD, A. Micheli, A. Kantian, H.P. Buchler, P. Zoller, Phys. Rev. A78, 042307 (2008);
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An Analogy

e A-system: three internal (electronic) levels (Aspect, Cohen-Tannoudiji; Kasevich, Chu)

A

g+1) |D)
dark state brlght state
D) ~T1g51) F 19-1) |B) ~ |g+1) — |g—1)

e 1 atom on 2 sites: external (spatial) degrees of freedom

S f\

«
W al + a2 [vac) al - a2 [vac)

e symmetric anti-symmetric

e N atoms on M sites

~ uz 2\/:% i |BEC) = (ZE:%) lvac)

= “phase locking” for many external (spatial) degrees of freedom: BEC



Driven Dissipative lattice BEC

e More precisely: Master Equation evolution of density operator

| CoL 7 Lindblad operators
Orp = —i[H, pl + 1Y _Jipd] — 5{J} Ji, p}
7

L J N2
Y

. . " . -
coherent evolution  dissipative evolution

L[p] - Liouvilian operator

e Goal: choose the Lindblad / jump operators such that

,O(t) — |BEC> <BEO‘ for t — oo BEC) =

Ji = (al +al ) (a; — FRYAYA)

Rl AR I BV VAV VAV VAV
: KA
¢ |nterpretation:

® any antisymmetric component of a particle’s superpositon on i, i+1 mapped onto the symmetric one
® i.e. on each pair of sites, only the symmetric superposition persists:

|BEC) = % ( Z aE) N]vac)
¢

= Long range phase coherence builds up from quasilocal dissipative operations




Uniqueness of the Steady State

(1) BEC state is the only dark state:

. (a;f + aj-)has no eigenvalues (on fixed number (N-1) Hilbert space)

- (ai— Clj) has unique zero eigenvalue

(a; —aj) Vi — E (1 — €9 aq Vq
A
= BEC is the unique dissipative zero mode of the jump operators

(2) IBEC> is the only stationary state (sufficient condition)
pictorially: more precisely:

If there exists no subspace of the full Hilbert space

rn @ which is left invariant under the set{ca}, then the

0“)_. '> only stationary state are the dark states

H

= Uniqueness: Final state independent of initial density matrix
= Therefore: pure (zero entropy) final state




Driven Dissipative lattice BEC: Physical Realization

Ji = (a] + aly1)(ai — aip1)

Ji|BEC)

B AESN AVA VA

LGS

e |Implementation idea for cold atoms: Immersion of driven system into superfluid

reservoir

auxiliary system <

system of interest <

e A-type

(b) A

E
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level structure: optical superlattice
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Driven Dissipative lattice BEC: Physical Realization

Ji = (CL;r + CLIH)(az’ — Qjt1) J;|BEC) =0Vi A /2%/5&/;& ~

e |Implementation idea for cold atoms: Immersion of driven system into superfluid
reservoir

Rabi frequency |}
( drive: coherent coupling to auxiliary system

auxiliary system - k with double wavelength Raman laser

system of interests Alaser = 2Alattice

= The coherence of the driving laser is mapped on the matter system




Driven Dissipative lattice BEC: Physical Realization

Ji = I—I—aLl

)@

AAA

LGS

i — Qiy1) J;|BEC) =0 Vi

e |Implementation idea for cold atoms: Immersion of driven system into superfluid

reservoir

auxiliary system <

system of interesk

-
“

dissipation: phonon emission
into superfluid reservoir

ra

",

reservoir o

b

+Q superfluid

reservoir

driving laser

",

$

NP

KA

2
a

ai

= The coherence of the driving laser is mapped on the matter system




Competition of Unitary vs. Dissipative
Dynamics

I 1 I 1

thermal state

stable condensed

| | 1
1.5 2.0 2.5 3.0
J/K

Many-Body Physics with Driven-Dissipative Systems

SD, A. Tomadin, A. Micheli, R. Fazio, P. Zoller, arxivi1003.2071, Phys. Rev. Lett. 105, 015702 (2010);
A. Tomadin, SD, P. Zoller, Phys. Rev. A108, 013611 (2011).




Physical Picture: Nonequilibrium Phase Transition

e Nonequilibrium master equation evolution:

<%,7>

drives into BEC with rate
K

_Competition >

« Compare to superfluid / Mott insulator quantum phase transition
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kinetically dominated:
superfluid
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Interference pattern

M. Greiner, |. Bloch, T. Hansch et al.,
Nature Jan 3 2002

]
5 WErOTEEkY | s
Y oy x'\ .

- : :
e
3 :
. 2
- - - »
- a
s

back to superfluid

Matter wave



Physical Picture: Nonequilibrium Phase Transition

e Nonequilibrium master equation evolution: drives into BEC with rate
K

<ij>  Competition >

« Compare to superfluid / Mott insulator quantum phase transition

e E— [efle]le]le][e]

>U/J
* Analogy:

* enhancement of superfluidity: kinetic energy J driven dissipation K

* suppression of superfluidity: interaction U interaction U

= Expect phase transition as function of J / U K / U

= Question: What are the true analogies and differences to equilibrium
(quantum) phase transitions?




Mixed State Gutzwiller Approach

e Argumentation must be based on equation of motion

e Strategy: approximation scheme interpolating between limiting cases

k>U k<< U

dissipative condensate see below!

e Implementation: Gutzwiller product ansatz for the density operator

p(t) = H pi(t)

e onsite (quantum) fluctuations treated exactly

e (connected) spatial correlations neglected
e allows to describe mixed states (unlike zero temperature Gutzwiller)

= Nonlinear Mean Field Master Equation for reduced density operator

e We will additionally account for a finite hopping ./




From Weak to Strong Coupling

Weak interactions: dissipative Gross-Pitaevskii equation (coherent states)

Ouhe = —i(=J Y e + Ulpeve) — 26 > (o — Yo + 957 — [toor )

(£'1) (e'1€)

Strong interaction destroys the phase coherence:

i dephasing & average out
transformation to rotating frame V = ptUn(n—=1)t /

annihilation operator in rotating frame V1 ~1 = ¢~ Unt} — Z et n) (n|b

= suppression of off-diagonal order " \N Qp
at dark state

Master equation reduces to
Ovpe = K[(0 + 1)(2bepb) — {bjbe, pe}) + (26 pebe — {beby, pe})]
Thermal equation with thermal (mixed) state solution

= the system acts as its own reservoir




Dependence of the Steady State on the Interaction

interaction U initial coherent state for any U
n=1,J =0, 2Kt =0,107*,...,10?

| | f(—__

n=1,J =0, zKt =0,10 *, ...,
S S R SR SO S NS RR! I R S R R R

| 1 U-dependent
steady state
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entropy wrt the thermal state

superfluid critical  thermal

point state interaction U

Nonequilibrium phase transition between pure and mixed state,
driven by a competition between unitary and dissipative dynamics
* Development in time of the non-analyticity at the critical point

e Shares features of:
e Quantum phase transition: interaction driven
e C(Classical phase transition: ordered phase terminates in a thermal state

* No signature of commensurability effects (Mott) due to strong mixing of U




Analytical Approach in the Limit of Low Density

e Many-body problem: relevant information in the low order correlation functions

e Study the equations of motion of the correlation functions

{<(bz)nbzn>} in principle: infinite and nonlocal hierarchy

e Introduce a power counting:| by ~ /1, bZ ~\/n

and keep only the leading order for n — 0

= Infinite hierarchy exhibits a closed nonlinear subset for low order correlation functions

e Can be solved exactly in special cases. E.g. hom. steady state condensate fraction

B2 2u? (14 (j +)?)
no 1+ u?+ 7(8u+ 65 (14 2u2) + 2475%u + 853)

J=0 3/2
U. — 4/ cf. BEC: )

J=J/(4K), u=U/(4rz2)]




Critical Exponent of the Phase Transition

Critical exponents can be extracted from approaching the
phase transition in time

ﬁ:l,J‘:U, th:O,u‘rl,‘..,w?

Expect form of the order parameter evolution

2
e—m t

()| ~ o N real part of lowest

eigenvalue: “mass”

At criticality: zero eigenvalue and thus dominant polynomial decay




Critical Exponent of the Phase Transition

Critical exponents can be extracted from approaching the
phase transition in time

ﬁ:l,J‘:U, th:O,u‘rl,‘..,w?

Expect form of the order parameter evolution

2
e—m t

‘@b( )| ~ t—aw real part of lowest

eigenvalue: “mass”

At criticality: zero eigenvalue and thus dominant polynomial decay ° ' o
<

m2<0 m?2>0
e Numerical Result (high density): e Analytical Result (n — O) :

: : at criticality, Landau-Ginzburg type

+ exponential cubic but dissipative nonlinearity

runaway

scaling _ -0 hb( )‘ ~ t_1/2, = 1/2

-~ 7 .
O o0 OFC

o~ 1/2 initial Mean field value as expected.

transient But governs the time evolution.
9 1 0 |

log,q(1/1)
= Critical behavior could be studied experimentally from following the time evolution of
condensate fraction




Dynamical Instability

e Numerical experiment to probe the stability: subject the inhomogeneous system
to a “kick” (instantaneous perturbation of the density matrix)

initial preparation in the homogeneous steady state

/kick / exponential increase of the fluctuation on all sites with uniform rate

e (t) = n(0)] ~ e sin gf

long-wavelength density wave

0.0015

0.0010
0.0005
0.0000
—0.0005
—0.0010

- - —0.0015
10 15 y :

t K

e This is a computation on 22 sites, linearization makes larger systems accessible

e \Very slow effect: linearization of the master equation around the initial state,
computation of the rate of the instability.




Linear Response around Homogeneous State
e Imaginary part of the Liouvillian as function of quasimomentum, J << g
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= Existence of dissipatively unstable modes is a universal feature of the regime J <& K

= Jlow density limit: the unstable modes belong to single particle sector



Reduction to the Low-Lying Modes

e Adiabatic elimination of the fast-decaying modes (two times)

8,5 v 1 M1 1 M12 g 1 collection of low
0= 875\1/2 — M21 M22 \112 density correlation

functions

solve for the fast modes W, and obtain slow modes equation only

e Low momentum equation of motion for of the condensate fluctuations only

8t( A, >:<Un—|—eq—i/<:q Un—|—9un/<c.q )( A, )

AY* —Un —9unkg —Un —€q — ikq

N

bare hopping at low momentum bare dissipative rate

= renormalization of the off-diagonal terms
= absent in the dissipative GPE




Origin of the Instability

renormalization correction

e Complex spectrum of the low-lying single particle excitations: f

Yq = Kq +tclq|, c= \/ZUn(J—QUn/(Qz))

e |Interpretation: Below a critical value

J=9Un/(2z2)

the speed of sound becomes imaginary.
This term always dominates at sufficiently small momenta. Its sign is opposite to Kq

e The fate of the system beyond linear response:
sU0 T T T T
700 density profile signature:
600 spontaneous breaking of
500 P translation symmetry
= 400
300 maximum instability
200 Acnwi momentum transmuted
100 into CDW wavelength

i 1 1 1

1.0 2.0 3.0 1.0
tr % lll;‘:

The dynamical instability is fluctuation induced, a weak coupling phenomenon, and an
intrinsic many-body effect




The Steady State Phase Diagram

I

thermal
n = 0.1 analytical

n = (0.1 numerical (linear instability)
n=1

condensed,
homogeneous

Strong coupling second order phase transition to a thermal-like disordered state

Homogeneous dissipative condensate is unstable against CDW order for
infinitesimal interaction

Condensed phase and homogeneous condensate can be stabilized by finite
coherent hopping




Nonlinear Dynamics in Finite Systems

Study the response of the nonlinear dynamical system to sudden
parameter changes, here: phase quench in 1D periodic chain:

Ji = (af +al,))(ai — ais1) —l_@z—l—l ‘z+1)

New steady state: Bloch wave
’BEC>(Q) ~ (Z eiqgr:ia””t}a@ q = ¢CL <£U@‘BEC>(Q) ~ 6iq:Bq;

Study equilibration dynamics: lattice spacing

amplitude dynamics phase dynamics

L T L

lattice site A/

_—

100 200 300 400 500 0 20 40 60 \()1()(11 20140160180
LK time time

| 1




Role of Collective Variables

e Three stages in equilibration dynamics:

amplitude dynamics phase dynamics

phase only

- o 1 - 1 l ] time

t L 200 Bl o SO0 0
‘-'J tx \ v J

amplitude only amplitude only

lattice site

20 40 60 SO TOU 200 401601 0
In

* Phase dynamics governed by collective variables: external phase

Ag0(t
%Bt()[(t) = 28in (—% COs (9[+1 — 95_1 + 2d))

lattice Laplacian

e Ansatz with kinks/instantons

Oc(t) = Q(t) =5 + 00 (1)

e Stable solutions:
Q = 27N (5(9£ = O
— L
periodic bc!

e Picture: transitions between different kink configurations driven by quantum noise




Dissipative D-Wave States of Fermions

4+ /2

SD, W.Yi, A. J. Daley, P. Zoller, Phys. Rev. Lett. 105, 227001 (2010);
W.Yi, SD,A. J. Daley, P. Zoller, in preparation.




Motivation: Fermi-Hubbard model Quantum Simulation

e (lean realization of fermion Hubbard model possible
e Detection of Fermi surface in 40K (M. Kéhl et al. PRL 94, 080403 (2005))

e Fermionic Mott Insulators (R. Jordens et al. Nature 455, 204 (2008); U.
Schneider et al., Science 322, 1520 (2008))

e (Cooling problematic: small d-wave gap sets tough requirements

| T -

F

Unitary continuum Fermi gas SF transition

0.001

BCS superconductors

0.01 0.1

Critical temperature Current lattice experiments
for d-wave SF

= Still need to be 10-100x cooler




Motivation: Fermi-Hubbard model Quantum Simulation

e (lean realization of fermion Hubbard model possible
e Detection of Fermi surface in 40K (M. Kéhl et al. PRL 94, 080403 (2005))

e Fermionic Mott Insulators (R. Jordens et al. Nature 455, 204 (2008); U.
Schneider et al., Science 322, 1520 (2008))

e (Cooling problematic: small d-wave gap sets tough requirements

0.001 0.01 0.1 F

BCS superconductors Unitary continuum Fermi gas SF transition

Critical temperature Current lattice experiments
for d-wave SF

= Still need to be 10-100x cooler

* Roadmap via dissipative quantum state engineering approach:

(1) Dissipatively prepare pure (zero entropy) state close to the expected ground state:
- energetically close
- symmetry-wise close

(2) Adapted adiabatic passage to the Hubbard ground state
- gap protection via auxiliary Hamiltonian




The State to Be Prepared

High-Tc cuprate phase
diagram

d-wave SC

product state

BCS) ~ (&) |vac) T =3[l 4

(




The State to Be Prepared

High-Tc cuprate phase -
diagram A

_— d-wave SC I(_\-\7.‘. / 9

# +

vl

X

Ry : i i i
dT R Z[Ci‘f—ewa/]\ —i_ Ci_eaw/];_ (Ei—i_ey’T —I_ Ci_ey’L)]Ci’\L

Aango rets

N—

—_—

1
Features shared with expected Hubbard ground state:

(1) Quantum numbers
- pairing in the singlet channel

- transformation under spatial rotations: “d-wave”
- phase coherence: delocalization of singlet pairs

= State shares the symmetries of (conjectured) Hubbard GS
= No phase transition crossed in preparation process: gap protection

(2) Energetically close? Not known, but:
- off-site pairing avoids excessive double occupancy

= Given the state, we want to find the Lindblad operators: “parent Liouvillian”
= “cooling” into the d-wave




Pairing mechanism

* Consider 1D cut only Antiferromagnet

 Half filling: Neel state for antiferromagnetism

\VAVAVAY

* Lindblad operators (1D): e.g. ]Z — CZ 1,161

full set:

-4 -2
— {]i:ta ]i:l:}

= Action of jump operators
* Pauli blocking
* spin transport




Pairing mechanism

* Consider 1D cut only Antiferromagnet

 Half filling: Neel state for antiferromagnetism

\VAVAVAY

* Lindblad operators (1D): e.g. ]Z — C@ 1,161

full set:

4+ .o
— {]izlz7 ]i:l:}

= Action of jump operators
* Pauli blocking
* spin transport

« D-wave (analog) state: interpret the state as a symmetrically delocalized Neel order

* Lindblad operators (1D): e.qg. JJr = J@ 4T jz ( Civ14 T Cz 1.1 )Ci |

\ phase locking

= Combine fermionic Pauli blocking with delocalization as for bosons
= Pauli blocking is the key for single particle nature of operators




Dissipative Pairing: The d-wave jump operators
e The full set of Lindblad operators is

JE = (C;;r+1 + el )o e,

e.g. 1D <\ flip &

JF = (el h el ey W TelocalzS
| | T WWW

e Discussion: These operators

form exhaustive set: d-wave steady state unique, reached for arbitrary initial state
(symmetry argument + verified in small scale simulations)

describe the redistribution of the superposition of a single particle

generate dissipatively bound pairs, which delocalize over the whole lattice

generalized for larger class of off-site paired fermion states: different symmetries

= Novel dissipative pairing mechanism, does not rely on attractive conservative forces




Late Time Dynamics
damping rates K

e “near” final BCS state: Bogoliubov-type analysis: (U=0)

L[p] = Vq,amil,a — 24 oo PY
q,0

fermions

q
7q,0|d'BCSO> =0 {%1707 73;’,0—’} — 501,01’50,0’ bosons

with effective fermionic late time Lindblad operators T §

and effective damping rate
Kq = kn (1 + \gpq\Q) 2@ with a “dissipative gap”

= |nterpretation: approach to the steady state is universal and exponentially fast
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Late Time Dynamics
damping rates K

e “near” final BCS state: Bogoliubov-type analysis: (U=0)

L[p] = vq,amil,a — 24 oo PY |
q,0 fermidn

with effective fermionic late time Lindblad operators T § :
q

7q,0|d'BCSO> =0 {%1707 73;’,0—’} — 501,01’50,0’ bosons

and effective damping rate

Kq = k(1 + \¢q\2) 2@ with a “dissipative gap”

= |nterpretation: approach to the steady state is universal and exponentially fast

e numerical illustration: Uniqueness and exponential approach
entropy fidelity of d-wave BCS

S = trp(t)log p(t) + * trlp(t)|BCSY(BCS]], |

N

5
Time (1/T)

log(Entropy)
b oo e
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-l‘k =)}
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log(1-Fidelity)
b

o &

<
o

]

25

60

o

0 40
Time (1/T)



Schematic implementation of d-wave jump operators

e one-dimensional analog:

_‘.
. ; 4+ c. )c-
_17T +1aT Z’l
— \/
We need:

* spin flip
* spatial redistribution of atom over neighboring sites
e dissipative process, but coherence over several lattice sites

1
Setting: Py

» Earth Alkaline atoms in superlattices * Level scheme
placed in microcavity

Earth alkaline features (Schreck, Grimm; Killian):
* metastable long-lived triplet states
« different, tunable lattice potentials
for ground and excited state E

—
physical spins




Schematic implementation of d-wave jump operators
™ spin flip

+ _ (.F T
J;m = (Cz’—l,T + Ci—l—l,T)C’i,l

e Level scheme * Manipulation sequence

auxiliary <

system spont.

emission:
cavity mode

system of
interest

physical spins




Schematic implementation of d-wave jump operators
™ spin flip

Ji" = (C;r—m + CI+1,T)Cz’,l

e Level scheme * Manipulation sequence
period-3 superlattice

coherent
excitation with

auxiliary < spin flip

system

spont.
emission:
cavity mode

system of
interest

physical spins




Schematic implementation of d-wave jump operators

+ i | 1 spin flip
Jit = (Ci—lvT T CHLT)CW 4 spatial redistribution
A coherence over several lattice sites

* Manipulation sequence

* Level scheme
period-3 superlattice

coherent
excitation with
spin flip

auxiliary {
system

spont.
emission:
cavity mode

adiabatic coherent
splitting: period-2
superlattice

system of
interest

induced spont.
emission.
physical spins no which-path-info
due to cavity

repeat sequence stroboscopically for every A S @
subpartition of lattice into site triples cav latt




Conclusions and Outlook

By merging techniques from quantum optics and many-body systems:
Driven dissipation can be used as controllable tool in cold atom systems.

* Pure states with long range correlations from quasilocal dissipation
* Nonequilibrium phase transition driven via competition of unitary and dissipative dynamics

* Pairing mechanism for fermions with potential applications for quantum simulation

Questions for future research:

» Additional physical platforms for dissipation engineering: trapped ions, microcavity arrays
* Bosons: What is the nature / universality class of the dynamical phase transition?

* Close analogies to the problem of directed percolation
» Needs field theoretical framework: Keldysh path integral for quantum optical many-body systems
* Fermions: Cool quasi-locally into topologically ordered states (e.g. complex p-

wave superconductors)? -> SD, E. Rico, M. Baranov, P. Zoller, arxiv:1105.5947







Cooling a Superfluid with a Superfluid?

* There is a large energy scale in our system-bath setting: band separation Whrd
superfluid reservoir

b 2~

0 %’&Q

auxiliary system <

WhHd =>> (other scales)
system of interest< w

~

ai an
* |n particular, under typical conditions e temperature of surrounding BEC

Whd > IBEC

» Therefore, the reservoir acts as an effective zero temperature reservoir, i.e. n. << 1

Orp = —i[H, p| + k(0 + 1) JipJ] — ${J Ji,p} + 60> T, T, p

1

* More generally, the existence of such large scale exceeding all scales relevant for
many-body physics ensures validity of many-body master equation

e dissipative dynamics temporally and spatially local

e allows for a microscopic modelling of dissipative dynamics with similar accuracy

as for Hamiltonian




Validity of Inhomogeneous Gutzwiller Approximation

e The instability arises at weak coupling already, where the system is well
described by the inhomogeneous Gutzwiller mean-field theory.

The instability is due to a renormalization of the single particle (complex) excitation
spectrum, and thus encoded in the evolution of (Av;(t), Ay; (1))

The exact equation of motion is a nonlinear equation, with nonlocal spatial
correlations

The Gutzwiller approximation factorizes the correlations functions in real space,
but treats onsite correlations exactly

The factorization is real space is justified at weak coupling (large condensate):
The dominant scattering processes are those for (-q, g) off the macroscopically
occupied condensate

In contrary, treating the onsite correlations properly is mandatory for the effect:
Further (onsite) factorization of correlation functions (GP approximation) is
insufficient

e Picture: Onsite (temporal, quantum) correlations prepare the ground for long
wavelength spatial (classical) fluctuations becoming unstable




Uniqueness

» Understanding can be gained from symmetry considerations
* Uniqueness of dark state equivalent to uniqueness of ground state (GS) of

> At [ = o mestosi! = sfrar' 0} ]

1, a==1,2
* H is semi-positive .2
» an exact GS is the above d-wave (E=0) X (—1 )
 unique iff no symmetry T such that

THT ' =H, T|D)+# E|D)

Lt

-> effective Hamiltonian

* Symmetries:

- global spin rotations SU(2) for A, = AL /2,

- additional discrete symmetry on bipartite lattice for A, = 0 spoils uniqueness
Ty : Cit — —Cits Ci| — Ci| for 7 € A,

cit — Cit; ci| — ¢ forte B SU(2) symmetry:

A B are SU(2) vectors

B A A A B S, Jf] = ieapyJ;] Vi
= Avoid symmetries

= All three operators needed for uniqueness




Comments on the effective Hamiltonian

* Amusing parallel: Above Hamiltonian is a parent Hamiltonian for the d-wave state

Ha =) AoJPTIr =) b

(e

* H is semi-positive
* an exact unique GS is the above d-wave state(E=0)
« GS is GS for each h; separately: projectors on GS

= completely analogous to e.g. AKLT model

= there, ground state is valence bond solid with exponentially decaying correlations

= different: state has long range order due to strong delocalization

= it has a physical role that will be important in the adiabatic passage to the Fermi-Hubbard model

= study excitation spectrum




Adapted Adiabatic Passage

* Naive adiabatic passage: ramp up FH Hamiltonian, switch off dissipation
* Fails: competing unitary and dissipative dynamics

= Adapted adiabatic passage: use auxiliary “parent Hamiltonian”:

jump operators  fidelity to Hubbard GS
Hy=h Y Jin—= w

0=i,{+,2} o

* has the d-wave state as exact unique ground state bg'g :

* its single particle excitation spectrum is gapped: g o5/
9 E 04; o 5000 10000
€q = hn (1 + ) >hn. n~0.72 03! ramp parameters
q/ — )
0.2}
0.1}

T i et T g 1 ot

: . o 0 5000 10000
= single fermion excitations gapped Time(l/Uf)

= d-wave state has identical symmetry and similar small scale numerical simulation
_ (2x6 ladder, 4 atoms)

energy to the (conjectured) GS of the Hubbard model

= gap protection throughout adiabatic passage path




Open Quantum Systems

drive
* The setting: —‘—.
HZHS"‘HB"‘Hint

B i continuum bath of
Hp = /dw wb,by, harmonic oscillators

Hy = i/dwﬁ;(w) [bT J—0b M Lindblad operators

polynomial in system operat

linear bath operator coupling to the system

®* The quantum optical case: scale separations

k(w) — Ko
() weak coupling K(w)/wo < 1

(W) A
-

/ Markovian bath k(w) = const.

wo
system frequency
ﬁ—l
wo — U wo + vV

reservoir bandwidth




environment /
bath

wo
system frequency

—
wo — VU wo + U

Three approximations: reservoir bandwidth

(1) Born approximation: k(w)/wy < 1

(2) Markov approximation: r(w) ~const.= k(t —t') ~o(t—t")

W
(3) Rotating wave approximation: & <1 =

MWQ—I—V

wp — vV =A detuning

in this example:

N A e
system Hamiltonian H = (]e),]g))( a0 ) ( ig} ) jump operator

= These approximations give rise to well structured non-equilibrium
evolution which can be implemented in cold atom systems




Open Quantum Systems

* temporally local evolution
atptot — —i[HS + Hp + Hint, ;OSdslﬂ]cture: second order perturba

= Eliminate bath degrees of freedom * but:

r 3\

' :
Tr < o . quantum jump operators
bath N

.

7

effective system dynamics from Master Equation (zero temperature bath)

Oip = —i[Hs, p| + £ JapJl, — ${J]Ja, p}

—& _J

L|p] Liouvillian operator in Lindblad form

= the separation of scales gives rise to a temporally local well
structured

= this gives rise to a microscopic modelling of many-body systems
of similar accuracy as for the Hamiltonian




Dark States in Quantum Optics

e Goal: pure BEC as steady state solution, independent of initial density matrix:

p(t) — |[BECY(BEC]| for t — o

e Such situation is well-known quantum optics (three level system): optical pumping
(Kastler, Aspect, Cohen-Tannoudji; Kasevich, Chu; ...)

;% % g4) (g4 ]
Dy

= Driven d|SS|pat|ve dynamics “purifies” the state
= | D) is a “dark state” decoupled from light
Jo|D) = 0

= Dark state is eigenstate of Lindblad operators with zero eigenvalue
= Time evolution stops when system is in DS: pure steady state




An Analogy

e A-system: three internal (electronic) levels (Aspect, Cohen-Tannoudiji; Kasevich, Chu)

A A

g+1) D) |B)
dark state bright state

e 1 atom on 2 sites D) ~ |gy1) +g-1) [B)~|g+1) — |g-1)

T ) T T
(a1 + ay) [vac) (a; — ay) [vac)
symmetric anti-symmetric

“in-phase” “out-of-phase”
~ dissipative Josephson junction
pumping into symmetric state

=“phase locking” for external (spatial) degrees of freedom:
like a BEC




Driven Dissipative lattice BEC

» Consider Lindblad operator: /yreSt neighbours / slz %/ 31‘\

Ji = (a; +aj)(a; — a;) ~

. 1 N
(1) BEC state is a dark state: |IBEC) = ﬁ( E a}) lvac)
12

JZ|BEC> — O \VIZ [(ai—aj),Za;f]:Z(Sw—&jg:O
12

14

(2) BEC state is the only dark state:

o (az:-r +a;f-) has no eigenvalues (on fixed number (N-1) Hilbert space)

. (di—aj) has unique zero eigenvalue
. iqe
(a; —aj) Vi — (1 — €9 )aq Vq

= BEC is a dissipative zero mode of the jump operators




Driven Dissipative lattice BEC

(1) BEC state is a dark state M

(2) BEC state is the only dark state g

(3) Uniqueness: IBEC> is the only stationary state (sufficient condition)
pictorially: more precisely:

H state, then there must exist a subspace of the full

Hilbert space which is left invariant under the set{cg, }

rn If there exists a stationary state which is not a dark
&
|

2

(4) Compatibility of unitary and dissipative dynamics

|D) be an eigenstate of H, H|D) = E |D)

p(t) == |D) (D]




