
Daniel Hackenberg (daniel.hackenberg@zih.tu-dresden.de) ‏

Center for

 

Information Services and High Performance Computing

 

(ZIH) ‏

Event Tracing and Visualization
 for Cell Broadband Engine Systems



Daniel Hackenberg 2

Cell Broadband Engine
Processor offers vast resources

–
 

SPEs: SIMD-Cores for fast 
calculations, 256 KB local 
store (LS, software 
controlled), dedicated DMA 
engine (MFC)‏

–
 

PPE: very simple PowerPC 
Core for OS (Linux) and 
control tasks

Sophisticated architecture results in complex software development process

–
 

Different compilers and programs for PPE and SPEs

–
 

SPEs
 

use DMA commands to access main memory or LS of other SPEs, 
asynchronous execution by MFC

–
 

Mailbox communication between PPE and SPEs

Tool support for software development and performance analysis required

PowerPC Processor Element (PPE)

SPE

PowerPC 
Core

SPU

Element Interconnect Bus (EIB)

Memory Interface 
Controller (MIC)

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

SPU

LS

L1L2 Bus Interface Controller 
(BIC)

Dual XDR FlexIO



Daniel Hackenberg 3

Software Tracing and Vampir

Proven method for analysis of complex programs

Instrumented target application creates events with timestamps at runtime

Events are stored in traces, trace analysis e.g. by visualization

VampirTrace: open source trace monitor

–
 

Supports MPI, OpenMP, regions, hardware counters

–
 

Creates program traces in Open Trace Format (OTF)

Vampir: visualization and analysis of trace data

–
 

Various displays (e.g. timelines) and means for statistical analysis

–
 

Parallel version supports ultra large program traces



Daniel Hackenberg 4

Software Tracing on Cell/B.E. Systems

PPE

–
 

Conventional tools with PowerPC support run unmodified

–
 

Modifications necessary to support SPE threads

SPE

–
 

New concept needs to be designed, suitable for this architecture

–
 

New monitor necessary to generate events

–
 

Local store too small, only temporary storage of events

–
 

Synchronization of PPE and SPE timers necessary



Daniel Hackenberg 5

Trace Concept for the Cell B./E. Architecture



Daniel Hackenberg 6

Trace Visualization for Cell (1) ‏

Illustration of parallel processes in a classic timeline display

Time

   Process 4 Region 2Region 1

   Process 3 Region 2Region 1

   Process 2 Region 2Region 1

   Process 1

Lo
ca

tio
n

Region 1 Region 2



Daniel Hackenberg 7

Trace Visualization for Cell (2) ‏

Illustration of SPE threads as children
 

of the PPE process

Time

 SPE Thread 3 Region 2Region 1

 SPE Thread 2 Region 2Region 1

 SPE Thread 1 Region 2Region 1

PPE Process 1

Lo
ca

tio
n



Daniel Hackenberg 8

Trace Visualization for Cell (3) ‏

Illustration of mailbox messages

Classic two-sided communication (send/receive) ‏

Illustrated by lines similar to MPI messages

Time

 SPE Thread 3 Region 1

 SPE Thread 2 Region 1

 SPE Thread 1 Region 1

PPE Process 1

Lo
ca

tio
n



Daniel Hackenberg 9

Trace Visualization for Cell (4) ‏

Illustration of DMA transfers between SPEs
 

and main memory

Virtual process bar represents the main memory

Illustration of main memory state possible (read/write) ‏

read

Time

 SPE Thread 2 Region 1

 SPE Thread 1        Region 1

Main Memory

PPE Process 1

read writeLo
ca

tio
n



Daniel Hackenberg 10

Trace Visualization for Cell (5) ‏

Time

 SPE Thread 2

 SPE Thread 1

Main Memory

PPE Process 1

Lo
ca

tio
n

DMA transfers between SPEs

Classic send/receive representation unsuitable

Additional line allows distinction of active and passive partner

DMA get DMA put



Daniel Hackenberg 11

Trace Visualization for Cell (6) ‏

t_0 = get_timestamp();

mfc_get();

[...]

t_1 = get_timestamp();

wait_for_dma_tag();

t_2 = get_timestamp();

DMA wait operation creates two events 
(at t1

 

and t2
 

‏(

Allows illustration of DMA wait time

Similar for mailbox messages

Time

 SPE Thread 2

 SPE Thread 1

Main Memory

PPE Process 1

Lo
ca

tio
n

DMA wait

t0 t1 t2



Daniel Hackenberg 12

Implementation

Beta version VampirTrace
 

(VT) with Cell support

–
 

Open Source trace monitor

–
 

Compiler wrappers (vtcc
 

and vtspucc) will do most of the work for you

–
 

Header files for PPE and SPE programs: Instrumentation of inline
 functions provided by the Cell SDK

–
 

Manual instrumentation of important SPE code regions for low overhead

–
 

Tracing of hybrid Cell/MPI parallel applications supported

Trace analyzer Vampir: Technology study with support for Cell traces 
available



Daniel Hackenberg 13

Trace Visualization with Vampir
 

(1) ‏

Visualization of a Cell trace using Vampir

Demo program using 4 SPEs



Daniel Hackenberg 14

Trace Visualization with Vampir
 

(2) ‏



Daniel Hackenberg 15

Trace Visualization with Vampir
 

(3) ‏



Daniel Hackenberg 16

Trace Visualization with Vampir
 

(4) ‏



Daniel Hackenberg 17

Trace Visualization with Vampir
 

(5) ‏

Complex DMA transfers of SPE 3



Daniel Hackenberg 18

Tracing Complex Cell Applications: FFT (1) ‏

FFT at synchronization point
 8 SPEs, 64 KByte

 
page size, 11.9 GFLOPS



Daniel Hackenberg 19

Tracing Complex Cell Applications: FFT (2) ‏

FFT at synchronization point
 8 SPEs, 64 KByte

 
page size, 11.9 GFLOPS



Daniel Hackenberg 20

Tracing Complex Cell Applications: FFT (3) ‏

FFT at synchronization point
 8 SPEs, 16 MByte

 
page size, 42.9 GFLOPS



Daniel Hackenberg 27

Tracing Hybrid Cell/MPI Applications: PBPI

PBPI (Parallel Bayesian Phylogenetic

 

Inference)

 on 3 QS21 blades (6 Cell processors) ‏



Daniel Hackenberg 28

Cell Tracing Overhead

Overhead sources

–
 

Creating events

–
 

Transferring trace data from the SPEs
 

to main memory

–
 

Trace buffer und trace library use space in local store (< 12 KByte)

Additional overhead (VampirTrace
 

initialization and processing of SPE 
event data) outside of SPE runtime  Analysis unaffected

Experimental overhead measurements (QS21, 8 SPEs)

1,7 %5,645,73Cholesky, STRSM

9,2 % (*)4,104,48Cholesky, DGEMM

2,8 %139,32143,17Cholesky, SPOTRF

0,7 %11,8511,93FFT

1,3 %200,73203,25SGEMM

OverheadTracing (GFLOPS)Original (GFLOPS)

(*) Increased overhead due to intense usage of DMA lists

 
Trace overhead without DMAs: 1,4 %



Daniel Hackenberg 29

Summary & Future Work

Concept for software tracing on Cell systems presented

VampirTrace
 

Beta with Cell support, typical overhead < 5 percent

Visualization of traces with Vampir

–
 

Creates invaluable insight into the runtime behavior of Cell applications

–
 

Intuitive performance analysis and optimization

Support for large, hybrid Cell/MPI applications

Future work may include:

–
 

Improved tracing, e.g. by providing additional analysis features
 

such as 
alignment checks

–
 

Improved visualization, e.g. by colorizing DMA messages (tag, size or 
bandwidth), displaying intensity of main memory accesses


