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Cell Broadband Engine
Processor offers vast resources

–
 

SPEs: SIMD-Cores for fast 
calculations, 256 KB local 
store (LS, software 
controlled), dedicated DMA 
engine (MFC)‏

–
 

PPE: very simple PowerPC 
Core for OS (Linux) and 
control tasks

Sophisticated architecture results in complex software development process

–
 

Different compilers and programs for PPE and SPEs

–
 

SPEs
 

use DMA commands to access main memory or LS of other SPEs, 
asynchronous execution by MFC

–
 

Mailbox communication between PPE and SPEs

Tool support for software development and performance analysis required
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Software Tracing and Vampir

Proven method for analysis of complex programs

Instrumented target application creates events with timestamps at runtime

Events are stored in traces, trace analysis e.g. by visualization

VampirTrace: open source trace monitor

–
 

Supports MPI, OpenMP, regions, hardware counters

–
 

Creates program traces in Open Trace Format (OTF)

Vampir: visualization and analysis of trace data

–
 

Various displays (e.g. timelines) and means for statistical analysis

–
 

Parallel version supports ultra large program traces
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Software Tracing on Cell/B.E. Systems

PPE

–
 

Conventional tools with PowerPC support run unmodified

–
 

Modifications necessary to support SPE threads

SPE

–
 

New concept needs to be designed, suitable for this architecture

–
 

New monitor necessary to generate events

–
 

Local store too small, only temporary storage of events

–
 

Synchronization of PPE and SPE timers necessary
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Trace Concept for the Cell B./E. Architecture
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Trace Visualization for Cell (1) ‏

Illustration of parallel processes in a classic timeline display
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Trace Visualization for Cell (2) ‏

Illustration of SPE threads as children
 

of the PPE process
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Trace Visualization for Cell (3) ‏

Illustration of mailbox messages

Classic two-sided communication (send/receive) ‏

Illustrated by lines similar to MPI messages
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Trace Visualization for Cell (4) ‏

Illustration of DMA transfers between SPEs
 

and main memory

Virtual process bar represents the main memory

Illustration of main memory state possible (read/write) ‏
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Trace Visualization for Cell (5) ‏
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Trace Visualization for Cell (6) ‏

t_0 = get_timestamp();

mfc_get();

[...]

t_1 = get_timestamp();

wait_for_dma_tag();

t_2 = get_timestamp();

DMA wait operation creates two events 
(at t1

 

and t2
 

‏(

Allows illustration of DMA wait time

Similar for mailbox messages

Time

 SPE Thread 2

 SPE Thread 1

Main Memory

PPE Process 1

Lo
ca

tio
n

DMA wait

t0 t1 t2



Daniel Hackenberg 12

Implementation

Beta version VampirTrace
 

(VT) with Cell support

–
 

Open Source trace monitor

–
 

Compiler wrappers (vtcc
 

and vtspucc) will do most of the work for you

–
 

Header files for PPE and SPE programs: Instrumentation of inline
 functions provided by the Cell SDK

–
 

Manual instrumentation of important SPE code regions for low overhead

–
 

Tracing of hybrid Cell/MPI parallel applications supported

Trace analyzer Vampir: Technology study with support for Cell traces 
available
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Trace Visualization with Vampir
 

(1) ‏

Visualization of a Cell trace using Vampir

Demo program using 4 SPEs
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Trace Visualization with Vampir
 

(2) ‏
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Trace Visualization with Vampir
 

(3) ‏
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Trace Visualization with Vampir
 

(4) ‏
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Trace Visualization with Vampir
 

(5) ‏

Complex DMA transfers of SPE 3
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Tracing Complex Cell Applications: FFT (1) ‏

FFT at synchronization point
 8 SPEs, 64 KByte

 
page size, 11.9 GFLOPS
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Tracing Complex Cell Applications: FFT (2) ‏

FFT at synchronization point
 8 SPEs, 64 KByte

 
page size, 11.9 GFLOPS
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Tracing Complex Cell Applications: FFT (3) ‏

FFT at synchronization point
 8 SPEs, 16 MByte

 
page size, 42.9 GFLOPS
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Tracing Hybrid Cell/MPI Applications: PBPI

PBPI (Parallel Bayesian Phylogenetic

 

Inference)

 on 3 QS21 blades (6 Cell processors) ‏
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Cell Tracing Overhead

Overhead sources

–
 

Creating events

–
 

Transferring trace data from the SPEs
 

to main memory

–
 

Trace buffer und trace library use space in local store (< 12 KByte)

Additional overhead (VampirTrace
 

initialization and processing of SPE 
event data) outside of SPE runtime  Analysis unaffected

Experimental overhead measurements (QS21, 8 SPEs)

1,7 %5,645,73Cholesky, STRSM

9,2 % (*)4,104,48Cholesky, DGEMM

2,8 %139,32143,17Cholesky, SPOTRF

0,7 %11,8511,93FFT

1,3 %200,73203,25SGEMM

OverheadTracing (GFLOPS)Original (GFLOPS)

(*) Increased overhead due to intense usage of DMA lists

 
Trace overhead without DMAs: 1,4 %
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Summary & Future Work

Concept for software tracing on Cell systems presented

VampirTrace
 

Beta with Cell support, typical overhead < 5 percent

Visualization of traces with Vampir

–
 

Creates invaluable insight into the runtime behavior of Cell applications

–
 

Intuitive performance analysis and optimization

Support for large, hybrid Cell/MPI applications

Future work may include:

–
 

Improved tracing, e.g. by providing additional analysis features
 

such as 
alignment checks

–
 

Improved visualization, e.g. by colorizing DMA messages (tag, size or 
bandwidth), displaying intensity of main memory accesses


