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Discrete-Event Simulation 

Events have a time value (timestamp) at which they are be processed 

Common overall structure: 

– Event scheduler 

– Global time variable 

– Event-processing routines 

– Event-generation mechanisms 

LARS: Queuing Theorie 
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Discrete-Event Simulation (cont.) 

Event Scheduler: 

– Maintains a list of pending events in global time order 

– successive takes the event with the smallest time and executes the 
event processing routine for this event 

– Inserts newly generated events into the event list 

– Updates the global time 

Global time update mechanisms 

– Fixed-increment (unit time): scheduler increments global time by a small 
amount and than executes any events which should occur at this time 
value 

– Event-driven: the earliest event sets the global time to the time at which 
this event should be processed 

LARS: Queuing Theorie 
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Discrete-Event Simulation (cont.) 

Event generation 

Execution-Driven 

– Executes a given program/benchmark 

– Similar to an emulator 

– Needs very detailed simulator 

Distribution-Driven 

– Events are generated by the simulator itself with the help of random 
numbers 

LARS: Queuing Theorie 
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Parallel Discrete-Event Simulation 

Motivation 

– In large simulation models independent events could be processed 
concurrently 

– Use this to parallelize the simulator 

– Problem: How to determine if events can be processed concurrently? 

LARS: Queuing Theorie 
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Parallel Discrete-Event Simulation (cont.) 

Prerequisite 

– Partition the state variables into disjoint sets 

• These are called “Logical Processes” (LP) 

• LPs communicating with time stamped messages 

– Shared state variables can be either emulated with an additional logical 
process, or 

– replicated into all LPs with a synchronization algorithm 

Causality Errors 

– Events need to be processed in non-decreasing timestamp order 

– Resulting errors are called causality errors 

LARS: Queuing Theorie 
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Types of PDES 

Conservative Approaches 

– Strictly avoids causality errors 

– Need to determine when it is safe to process an event 

Optimistic Approaches 

– Detect and recover from causality errors 

– Speculative executes events 

LARS: Queuing Theorie 
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Introduction to Queuing Models 

If the facts don’t fit the theory, change the facts. 

Albert Einstein 
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Outline 

Motivation 

Queuing/Kendall notation 

Queuing in daily life 

Exponential distribution and its memoryless property 

Little’s law 

Stochastic processes, birth-death process  

M|M|1 queuing model 
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Motivation 

Sharing of system resources in computer systems:  

– CPU, Disk, Network, etc. 

Generally, only one job can use the resource at any time 

All other jobs using the same resource wait in queues 

Queuing or queuing theory helps in determining the time that jobs spend in 
various system queues. 

These times can be combined to predict the response time of jobs  
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Queuing Notation 

Imagine yourself at a supermarket checkout 

The checkout has a number of open cash points 

Usually, the cash points are busy and arriving customers have to wait 

In queuing theory terms you would be called “customer” or “job” 

In order to analyze such systems, the following system characteristics 
should be specified: 

1. Arrival Process 

2. Service Time Distribution 

3. Number of Servers 

4. System Capacity 

5. Population Size 

6. Service Discipline 

Queue Server 
Arrivals 

Waiting 

Departures 

In Service 
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Queuing Notation 

1. Arrival Process (Ankunftsprozess) 

– If customers arrive at t1,t2,…,tj, the random variables j = tj-tj-1 are called 
interarrival times (Zwischenankunftszeiten).  

– General assumption: The j form a sequence of independent and 
identically distributed (IID) random variables 

– Most common arrival process is the Poisson Process which has 
exponentially distributed inter-arrival times 

– Erlang- and hyper-exponential distributions are also used  

2. Service Time Distribution (Antwortzeitverteilung) 

– The time a customer spends at the service station e.g. the cash points 

– This time is called the service time (Antwortzeit) 

– Commonly assumed to be IID random variables 

– Exponential distribution is often used 
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Queuing Notation 

3. Number of Servers (Anzahl der Bedienstationen)  

– The number of service providing entities available to customers 

– If in the same queuing system, servers are assumed to be: 

• Identical 

• Available to all customers 

5. System Capacity 

– The maximum number of customers who can stay in the system 

– In most systems the capacity is finite 

– However, if the number is large, infinite capacity is often assumed for 
simplicity 

– The number includes both waiting and served customers  
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Queuing Notation 

5. Population Size 

– The total number of serviced customers 

– In most real systems the population is finite 

– If this size is large, once again, the size is assumed infinite for simplicity 
reasons 

6. Service Discipline or Scheduling 

– The order in which customers are served: 

• First come first served (FCFS) 

• Last come first served (LCFS) with or without preemption (PR) 

• Round Robin (RR) with fixed size quantum 

• Shortest processing time (SPT) 

• RANDOM 

• System with fixed delay, e.g. satellite link 

• Prioritized scheduling (PRIO) 
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Kendall Notation 

These six parameters need to be specified in order to define a single 
queuing station 

To compactly describe the queuing station in an unambigous way, the so 
called Kendall Notation is often used: 

Arrivals | Services | Servers | Capacity | Population | Scheduling 

– Arrivals  customer arrival process 

– Services  customer service requirements 

– Servers  number of service providing entities 

– Capacity  maximum number of customers in queuing station 

– Population  size of the customer population 

– Scheduling  employed scheduling strategy 

Population and Scheduling are often omitted i.e. assumed to be infinitely and 
FCFS 
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Kendall Notation 

The specific values of the parameters, especially Arrivals and Services, are 
diverse. Some commonly used once are: 

– M (Markovian or Memory-less): whenever the interarrival or service 
times are (negative) exponentially distributed 

– G (General): whenever the times involved may be arbitrarily distributed 

– D (Deterministic): whenever the times involved are constant 

– Er (r-stage Erlang): whenever the times involved are distributed 
according to an r-stage Erlang distribution 

– Hr: whenever the times involved are distributed according to an r-stage 
hyper-exponential distribution 
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Kendall Notation - Example 

M|G|2|8||LCFS denotes a queuing station with:  

– Negative exponentially distributed interarrival times 

– Generally distributed service times 

– 2 service providing entities 

– Maximal 8 customers present 

– No limitation on the total customer population 

– LCFS scheduling strategy 

Simple queuing stations as above can be used for many queuing phenomena 
in computer and communication systems 

However, just a single queue with single service entity is considered, only 
allowing performance evaluations of parts of a complex system 

Examples: Analysis of network access mechanisms, simple transmission 
links, or various disk and CPU scheduling mechanisms  
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Queuing in Daily Life 

Coin-operated coffee machines 

– Service time, i.e., the time for preparing the coffee, is deterministic 

– Waiting time occurs due to the stochastic in the arrival process 

– Kendall notation: G|D|1 

Visiting a doctor with appointment 

– Arrival times of patients is deterministic (if their appointments are accurate) 

– However, one often experiences long waiting times due to the stochastic service 
times (time the doctor talks to or examines patients) 

– Kendall notation: D|G|1 

 Visiting a doctor without appointment 

– Things become get even worse during “walk-in” consulting hours 

– Both arrival and service process obeys only general characteristics and the 
perceived waiting time increases 

– Kendall notation: G|G|1 



21 
LARS: Queuing Theorie 

Exponential (Markov) Distribution 

The (negative) exponential distribution is used extensively in queuing models 

It is the only continuous distribution with the so-called memoryless 

property which strongly simplifies the analysis:  

– Remembering the time since the last event does not help in predicting 
the time till the next event! 

Commonly used to model random durations, e.g.: 

– Duration of a phone call, Time between two phone calls 

– Duration of services, reparations, maintenance 

– Lifetime of radiactive atoms 

– Lifetime of parts, machines, technical equipment (without decline!) 
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Exponential Distribution 

Probability density function (Dichtefunktion), short: pdf 

Supported on interval [0, ) 

 > 0 is a parameter of the 
distribution 

Often called rate parameter 

Probability of continuous  
random variable X: 

f (x; ) =
e x

0

,

,

x 0,

x < 0.

 
 
 

P(a X b) = f (x)dx
a

b
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Exponential Distribution 

Cumulative distribution function (Verteilungsfunktion), short CDF 

Mean: 

Variance: 

F(x, ) =
1 e x

0

,

,

x 0,

x < 0.

 
 
 

E[X] =
1

Var[X] =
1

2
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Memoryless Property  

Stated earlier: Remembering the time since the last event does not help in 
predicting the time till the next event! 

Probability distribution of an exponentially distributed event T to occur within 
time t: 

We see an arrival event and start the clock at t = 0. The mean time to the 
next arrival event is 1/ . 

Suppose we do not see an arrival event until t = x. The distribution of the 
time remaining until the next arrival is: 

F(T) = P(T < t) =1 e t ,t 0

P(T < x + t |T > x) =
P(x < T < x + t)

P(T > x)

=
P(T < x + t) P(T < x)

P(T > x)

=
(1 e (x+ t )) (1 e x )

e t

= 1 e t
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Memoryless Property 

A random variable T is said to be memoryless if: 

Example: 

– Give a real-life example whose lifetime can be modeled by a variable T 
such that P(T > s + t | T > s) goes down as s goes up 

– Bus with exponentially distributed arrival times and =2 per hour 

• Average waiting time? 

• Expected waiting time when already waiting for 15 minutes? 

P(T < x + t |T > x) = P(T < t) x, t 0
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Little’s Law 

Named after John Little (MIT) who proved the law in 1961   

One of the most general laws in performance analysis  

Can be applied almost unconditionally to all queuing models and at many 
levels of abstraction 

Interesting point of notice: Long used before actually proved 

Little’s Law basically relates the average number of jobs N in queuing 
station to the average number of arrivals per time unit  and the average 

time R spent in the queuing station 

N = R
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Little’s Law - Understanding 

Consider a queuing station as a black box 

On average  jobs arrive per time unit 

Upon its arrival, a job is either served or has to wait 

Denote E[R] (residence time or response time) as the average time spend in 
the queuing system 

Denote average number of jobs in the queuing system as E[N] 

Observe a single marked job which enters the system at t=ti leaves at t=to. 

On average to- ti will be equal to E[R] 

While this particular job passes the system, other jobs have arrived 

Since on average E[R] time units elapsed, their average number is   E[R] 

This number must be equal to the previously defined E[N] as every job could 
be the marked job. Thus: 

E[N] = E[R]
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Little’s Law - Remarks 

We assumed that the queue throughput T equals the arrival rate  

Always the case if system is not overloaded and infinite buffers 

Otherwise customers will get lost and E[N] = T E[R] 

The relationship expressed by Little’s law is valid independently of the form 
of the involved distributions 

This law is valid independently of the scheduling discipline and the number of 
servers 

E[N] is easy to obtain and measures like E[R] can be derived from it 

Applies also to networks of queuing stations 
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Stochastic Processes 

Analytical modeling uses several random variables but also stochastic 
processes which are sequences of random variables 

Collection of random variables { X(t) | t  T }, indexed by the parameter t 
(usually time) which can take values of set T 

Values that X(t) assumes are called states. All possible states are called state 

space I. 

The state space and the time parameter can be discrete or continuous 

Discrete-state stochastic processes are also called chain, often with I = 
{ 0,1,2,…}  

Famous representatives: Markov Process, Birth-Death Process, and Poisson 
Process (form a hierarchy) 
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Birth-Death Process 

Future states of the process are independent of the past and depend only on 
the present 

Special case of the continuous time Markov chain 

State transitions are restricted to neighboring states 

States are represented by integers. State n can only change to state n+1 or 
state n-1 

Example: The number of jobs in a queue with a single server and individual 
arrivals (no bulk arrivals) 

An arrival to the queue (birth) causes the state to change by +1. A departure 
(death) causes the state to change by -1 

Below: State transition diagram with n states, arrival rates n and service 
rates μn. Arrival times and service times are exponentially distributed   

0 2 j -1 j  j +1 1 
0 

μ1 

1 2 

μ2 μ3 

j -2 j -1 j j+1 
… … 

μj -1 μj μj+1 μj+2 
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Birth-Death Process 

The steady-state probability pn of a birth-death process being in state n is 
given by the following theorem: 

p0 is the probability of being in the zero state 

Can be proven (see book) 

Now that we have an expression for state probabilities we are able to analyze 
queues in the form of M/M/m/B/K 

Based on the state probabilities we can compute many other performance 
measures  

  

pn = p0
0 1L n 1

μ1μ2Lμn

= p0
j

μ j+1j= 0

n 1

, n =1,2,K,
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M|M|1 Queuing Model 

Most commonly used type of queue 

Can be used to model single-processor system or individual devices in a 
computer system 

Interarrival and service times are exponentially distributed, one server 

No buffer or population size limits, FCFS service discipline 

Analysis: We need the mean arrival rate  and the mean service rate μ 

State transition similar to birth-death process with n=  and μn= μ 

The probability of n jobs in the system becomes: 

0 2 j -1 j  j +1 1 
 

μ 

  

μ μ 

    
… … 

μ μ μ μ 

  

pn =
μ

 

 
 

 

 
 

n

p0, n =1,2,K,
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M|M|1 Queuing Model 

The quantity /μ =  is called traffic intensity 

Thus pn= np0  

All probabilities should add to 1. Knowing this we can derive an equation for 
the probability of zero jobs (p0) in the systems: 

Substituting p0 in pn leads to: 

Based on this expression, many other properties can be derived 

Utilization of the server:  U = 1 – p0 =  

The mean number of jobs in the system:  

pn =
μ

 

 
 

 

 
 

n

p0, n =1,2,K,

  

p0 =
1

1+ +
2
+L+

=1

pn = (1 ) n , n = 0,1,2,K,

E[n] = npn = n(1 ) n
=

1n=1n=1
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M|M|1 Queuing Model 

The probability of n or more jobs in the system is: 

Using Little’s law we can compute the mean response time: 

P( n jobs in the system) = p j = (1 ) j
=

n

j= nj= n

E[n] = E[r]

E[r] =
E[n]

=
1

 

 
 

 

 
 
1

=
1/μ

1
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