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Abstract

Several models are proposed in the literature to simulate the evolution of the network
structure of protein interaction networks. This work aims to evaluate these models by
looking beyond the degree distribution. Therfore, the gene-duplication and mutation
models are compared with available protein interaction data of Saccharomyces cere-
visiae (Bakers yeast) by taking into account that the observed structure of protein in-
teraction networks is corrupted by many false positive and false negative links. This
observational incompleteness is abstracted and modeled by random link removal, addi-
tion and exchange as well as random subnetwork sampling and a specific, experimen-
tally motivated (spoke) link rearrangement. The impact of these error algorithms on the
structural properties of gene-duplication and mutation network models is studied. Whe-
reas the network properties appear to be robust against the first four types of random
perturbations, the spoke error algorithm changes the degree distribution, degree corre-
lation, clustering coefficient and motif structure of the gene-duplication and mutation
models largely and brings them closer to the yeast observations.

Zusammenfassung

Verschiedene Modelle zur Simulation der strukturellen Eigenschaften von Proteinin-
teraktionsnetzwerken wurden in der Literatur vorgeschlagen. Diese Arbeit hat zum
Ziel, diese Modelle zu bewerten, wobei über die bloße Wahrscheinlichkeitsverteilung
von Knoten mit bestimmter Anzahl von Nachbarn hinausgegangen wird. Dafür wer-
den die Genduplizerungs- und Mutationsmodelle mit verfügbaren Proteininteraktions-
daten der Saccharomyces cerevisiae (Bäckerhefe) verglichen, wobei beachtet wird, dass
die beobachtete Struktur von Proteininteraktionsnetzwerken durch eine Vielzahl von
fälschlich angenommenen oder nicht angenommenen Links verschlechtert ist. Diese
Unvollständigkeit der beobachteten Daten wird sowohl durch zufälliges Löschen, Hin-
zufügen und Austauschen von Links als auch durch eine zufällige Auswahl von Tel-
netzwerken und durch ein spezifisches, biologisch motiviertes (Spoke) Neuordnen von
Links abstrahiert und modelliert. Der Einfluss dieser Fehleralgorithmen auf die struktu-
rellen Eigenschaften von Genduplizierungs- und Mutationsmodellen wird untersucht.
Bezüglich der ersten vier Fehleralgorithmen erscheinen die Netzwerkeigenschaften ro-
bust gegen zufällige Störungen. Im Gegensatz dazu ändert der Spoke Fehleralgorithmus
die Wahrscheinlichkeitsverteilung von Knoten mit bestimmter Anzahl von Nachbarn,
die Korrelation der Nachbaranzahl an benachbarten Knoten, den Clustercoeffizienten
und die Motifstrukturen dieser Genduplizierungs- und Mutationsmodelle weitgehend
und bringt sie in bessere Übereinstimmung mit dem beobachteten Hefenetzwerk.
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1 Introduction

The network science became important in the 1930’s with the investigation of social
systems [1, 2, 3]. It bases on the simplification of complex systems towards a picture
of reality where only nodes and links exist to describe actors like people, computers or
proteins and their interactions. This is a very helpful way of information reduction and
opens a gate towards a different look at a world of complex systems.

Even if network research appears to be not as young anymore, many networks and
many applications of network research are still waiting to be investigated. Research has
started with friendship networks [1, 2], and today a large amount of networks is identi-
fied like the structure of the world wide web as well as metabolic-, citation-, railway-,
wireless communication- and of course protein interaction networks, to name a few ex-
amples from sociology, engineering and biology [2]. All these examples have paved
the road for a relatively young branch of physics, the Statistical Physics of complex
networks [2, 4, 5, 6].

For the study of the functions of complex networks, it is essential to study their
topological features [2, 4, 5, 7, 8]: Is the network hierarchical or egalitarian? Is there
redundancy? Are the friends of my friends also friends? These topologies are impor-
tant if questions are asked about the dynamical properties of a network: How fast is
information spread in the network? How robust is the network against perturbations?
That is, where statistical physics comes in.

The next challenge is to model specific networks, to ask the question whether com-
plex systems can be reproduced at least in their basic properties with the actual knowl-
edge. In addition, it points out, where the limits of our knowledge are. However, when
it comes to evaluate the quality of the description of real networks by these models,
it has to be taken into account that real networks also hide their structures. Not only
when investigating sexual relationships, network scientists deal with a huge uncertainty
of their data. Furthermore, actual examined networks are huge. This makes the first
problem even more severe. Hence, it is not possible anymore just to have a look at
a network and to decide on its features. But this makes network research even more
fascinating, and with their larger size and hence their better statistical basis, network
properties can be compared between completely different fields with larger confidence.

In this work, the focus will be on biological, namely protein interaction networks in
the Saccharomyces cerevisiae (Bakers yeast) cell. The cell consists, amongst others,
of thousands of different types of proteins. These proteins carry out most biological
functions by binding to each other. This binding or interaction occurs between proteins
in very different strengths and for very different periods of time. By considering all
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1 INTRODUCTION

proteins as nodes and their interactions as links, a large network arises, see Fig. 1.1.
Protein interaction networks include all of the mentioned challenges. They are huge,

consisting of about 5 000 nodes and 30 000 links between them, and they manage to
escape the biologists exploration rather effectively. Although estimates say that the
total number of links in these networks is about 30 000, only 15 000 are known today.
Additionally one half of the known links is wrong [9, 10, 11]. Another challenge is
that only little is known about the processes that take place within the cell through
the interaction of all these proteins. Even though few functions of special proteins are
known, protein interaction network models are used to get an insight on the function of
the cell from the network topology of its constituents. Furthermore, the identification
of substructures in the network topology bridges the knowledge of local functions and
the investigation of the entire structure.

In recent studies, several ways are proposed to model protein interaction networks [12,
13, 14, 15, 16, 17]. They simulate their evolution, starting from only a few proteins up
to the about 5 000 known today. In the models discussed here [12, 13, 15], only two
basic mechanisms are included: The duplication and mutation of genetic information
within an organism. Nevertheless, these models can describe basic topological features
very well.

But it must be asked, in how far any topological properties, found in real protein
interaction networks, can be trusted if they are compared with the proposed models.
When it came to evaluate protein interaction models, model networks were compared
to available interaction data. As depicted in Fig. 1.2 this disregards the influence of
false links in protein interaction data. This work aims to find a model counterpart of
interaction data by the application of error algorithms to gene-duplication and mutation
models.

Besides that, the changes in the network properties after the application of certain
error algorithms help to decide how robust found properties of real protein interaction
networks are against perturbations that result from a large uncertainty of biological
mapping methods. The influence of errors on network topologies has been studied in
several publications. The robustness of the network functionality has been discussed in
a general context by analyzing the overall connectivity of the network [19, 20, 21] after
the random or directed removal of links. In [22], the degree distribution and further
observables have been investigated also after link exchange and addition. Furthermore,
several very general sampling models have been proposed [23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33] that mainly base on random selection of links, random walk and span-
ning trees. For this work, random link removal, addition and exchange are applied.
Moreover, random walk and spanning tree algorithms are introduced that incorporate
some aspects of experimental biases. Finally, a dedicated algorithm is presented that
has its focus on very specific errors that are made during the mapping of protein inter-
actions.

The next chapter is dedicated to a brief introduction of the Statistical Physics of
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Pajek

Figure 1.1: Part of the protein interaction network of yeast. The picture contains 320 pro-
teins (nodes) and 390 interactions (links) that are part of the largest connected cluster
of all interactions mapped by the yeast-two-hybrid method that are listed in the MIPS
database which is included in the GRID database [18]. The spatial positions of the nodes
are arbitrary and only determined by the Pajek program which was used to illustrate the
network.
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Figure 1.2: Model and Reality: on the left, the true protein interaction network (bottom) and
its corrupted representation in actual datasets (top). Hence, the modeling must consist out
of two steps: The model that corresponds to the real protein interaction network and a
model with a superimposed error algorithm which corresponds with protein interaction
datasets.

Complex Networks, which provides the instruments used in this work. Chapter three
gives an overview over the biological background of proteins and their interactions
combined with a discussion of the applied methods, these interactions are found with.
This is followed by the introduction of gene-duplication and mutation models and their
discussion. Chapter four focuses on observational incompleteness of yeast data. The
biases and drawbacks of the three most important mapping methods will be discussed,
and it will be simulated in how far the properties of an underlying network are changed
by several error algorithms. It is then asked how well the biases found for mapping
methods are reflected in error algorithms. Chapter five closes this thesis with a summary
and a short outlook.
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2 Statistical physics of complex networks

A network, or in mathematical terms a graph G{N ,L}, is represented by its nodes
i ∈ N and a set of links (li j ∈ L) between nodes i and j. These networks can be
represented by their adjacency matrix with the elements

ai j =

{
1 if a link between node i and node j exists,
0 else.

(2.1)

In principle, all network properties follow from the adjacency matrix. In the case of an
undirected network, the matrix becomes symmetric with the elements ai j = a ji. Gener-
alizations towards directed links and weighted networks are straightforward but not nec-
essary for the focus of this thesis on protein interaction networks. Mutual interactions
are generally undirected. Also the largely differing strength of binding is disregarded
in the protein interaction network models studied here.

In this chapter an overview over network properties will be given, followed by some
general network types and models.

2.1 Network properties

In graph theory and in applied network research, several topological measures have
been developed like degree distribution, degree correlation, clustering coefficient and
motif structure, to name some of the most important.

2.1.1 Degree distribution

The degree ki counts the number of neighbors attached to the node i by links [2, 4, 5]:

ki = ∑
j∈N

ai j. (2.2)

To achieve an overall measure for the network, this degree is averaged over all nodes
leading to an average degree 〈k〉

〈k〉= ∑
k

kp(k). (2.3)

This average degree is then related to the total number of nodes N and links L in the
network as

11



2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

〈k〉=
2L
N
. (2.4)

The factor 2 results from the fact that every link has two node ends. A more detailed
way to characterize the entire network is to order the nodes with their degrees. After
normalization over the total number of nodes and in the limit of large numbers, this
degree distribution gives the probability p(k) for a node to have degree ki:

p(k) =
1
N ∑

i∈N
δkik. (2.5)

The degree distribution is used to generally classify network types. For example a
sloping degree distribution indicates a hierarchical network, while a Poisson distribu-
tion indicates the absence of such a hierarchy.

2.1.2 Network connectivity

Crucial for the function of complex networks is the overall connectivity of a network.
Also in protein interaction networks, the connectivity of every protein to any other over
a finite number of intermediary proteins appears to be essential for cell regulation [34].
It is supposed that only this enables the control of the production of proteins. As most
cellular functions of proteins are carried out by their interactions, proteins become dys-
functional when they lose their ability to interact. This would not prevent the formation
of multiple communities, which have no connection between each other. However, the
data of protein interaction networks shows that only very few proteins emerge that are
not part of the main community. In the current yeast protein interaction datasets con-
sisting of ≈ 4800 nodes, only 0.2% are found in communities of three nodes and 1.6%
of nodes are found in pairs. Following this argumentation, only the main communities
are discussed in this work.

The main community is called giant component Ggc if it consists of the large majority
of all nodes [2, 4]. In random networks, the appearance of such a giant component is de-
termined by a construction parameter. If this parameter passes a threshold, a transition
of the network towards the emergence of a giant component occurs. This construction
parameter can be e.g. the total number of links L for a constant number of nodes N.

The average path length 〈d〉 characterizes the giant component further. It is the
average over all shortest distances di j between any node i and j:

〈d〉=
∑i j di j

N(N−1)
. (2.6)

The path length di j is defined to be finite within the giant component and infinite in all
other cases. A related measure is the network diameter, as the maximum of all shortest
paths:

12



2.1 NETWORK PROPERTIES

dmax = max
i, j

(di j). (2.7)

An algorithm to find the shortest paths and some examples are given in [35].

2.1.3 Betweenness centrality and community structure

With the knowledge of the set of all shortest paths di j, a further measure counts the
number of shortest paths passing over every node or link. This measure is called node-
or link betweenness centrality.

The betweenness centrality is an important measure to gain a deeper insight beyond
the pure connectivity. If the betweenness centrality fluctuates strongly and if nodes or
links exist that participate in a large number of shortest paths, this is an evidence that
the network is not homogeneously connected but parts (communities) exist that have
only few connections between each other. In contrast, if the betweenness centrality
is rather homogeneous for all nodes or links, no communities can be distinguished.
To be a little bit more practical: To cut a regular lattice in several parts, many links
have to be removed, while for the branch of a tree only one cut is necessary. Newman
and Girvan [36] proposed an algorithm for the so called community structure based on
betweenness centrality:

Calculate betweenness centrality for all links
repeat

Find link with highest betweenness centrality
(If more than one are found, choose one at random)
Mark link as removed
Calculate In-betweenness for remaining links

until no link remains unmarked.

With this algorithm, links with the highest betweenness centrality are removed step
by step. By recalculating the betweenness centrality for the remaining network, it is
assured that changes due to former link removal are taken into account. This is crucial to
measure a correct community structure but results in a very time-consuming algorithm.

While links are removed, the network breaks apart step by step into an increasing
number of isolated communities, and such a community is assigned to every node.
Based on the original network, the quality factor Q is calculated as a normalized mea-
sure of how many links exist within a community and how many links connect the
identified communities. The fraction of inter- and intra-community links is a measure
for the strength by which communities are separated from each other. The quality factor
Q is defined as follows:

13



2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

a) b) c)

Figure 2.1: Three examples for different degree correlations: a) a hierarchical network
with disassortative behavior, where a highly connected node (red) is attached to lowly
connected nodes (blue), b) a random network with a constant degree correlation where
no preference is visible and c) a clustered network, where highly connected nodes are
more likely connected to other highly connected nodes and lowly connected to other
lowly connected nodes.

Q = ∑
k



ekk−

(
∑

l
ekl

)2


 , (2.8)

where indices indicate communities and ekl is the number of links between a community
k and l.

While the network is broken into more and more communities, the quality factor is
recalculated. The maximum of the quality factor indicates in how many communities
the network is separated for a maximized proportion of inter- and intra community
links. The value of Q at its maximum gives the separation strength of communities
within the network.

2.1.4 Degree correlation

The degree correlation is another crucial observable for the function of signal trans-
mission and functional control in protein interaction networks [2, 4, 37, 38]. It is a
network-hierarchy measure to determine whether sparsely connected nodes tend to be
connected to other sparsely connected nodes or if they prefer to connect to highly con-
nected nodes. In the latter case, highly connected nodes serve as hubs connecting lots
of sparsely connected nodes.

Given a node with degree k, the average degree of its neighbors

〈kngb|k〉=
1

Nkk ∑
i∈N

δkik ∑
j∈N

ai jk j (2.9)

14



2.1 NETWORK PROPERTIES

Figure 2.2: According to Eq. (2.11), the clustering coefficient of the red node C = 0.4 equals
the number of connected neighbors over the possible number of connected neighbors
k(k−1)/2.

represents the simplest measure for a degree correlation, where Nk is the total number
of nodes with degree k. With the degree distribution p(k) and the probability p(k,k′) of
finding neighbors with degree k and k′ the degree correlation 〈kngb|k〉 can be written [38]

〈kngb|k〉= ∑
k′

k′p(k′,k)

pk
= ∑

k′
k′p(k′|k). (2.10)

On the right hand side, the term p(k′|k) determines the conditional probability of finding
a neighboring node with degree k′, given the degree k of the other node.

The degree correlation is called assortative if 〈kngb|k〉 increases with k, which means
that sparsely connected nodes prefer to connect with each other, as well as highly con-
nected nodes prefer to connect to other highly connected nodes. A disassortative de-
gree correlation means that 〈kngb|k〉 decreases with k. In an extremal picture, this can
be imagined as a star, see also Fig. 2.1.

2.1.5 Clustering coefficient and motif-structure

The clustering coefficient Ci [2, 4, 5] represents the ratio of the number of direct connec-
tions between any two neighbors of node i divided by the maximum possible number
ki(ki−1)/2 (see also Fig. 2.2):

Ci =
∑k ∑ j ai jaika jk

ki(ki−1)
. (2.11)

Averaged over all nodes in the network, the quantity 〈C〉 = ∑Ci/N is a normalized
measure for the numbers of triangles in the entire network. The degree dependent
clustering coefficient is defined as:

〈C(k)〉= 1
Nk

∑
i

Ciδkik. (2.12)
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2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

tri sqr sqr1 sqr2

pent pent1 pent2a pent3bpent2b pent3a pent4 pent5

Figure 2.3: Analyzed motifs: triangles, squares and pentagons ordered according to their
number and position of intra links.

Besides just counting triangles, it measures the tendency of the network to form
interconnected groups of certain degrees within the network and is another measure for
the hierarchy in the network. If, for example, the clustering coefficient is decreasing
with the degree k, the network possesses a hierarchy with hubs, whose neighbors are
not connected. However nodes with low degree are in turn strongly interconnected.

In addition, other motifs like squares and pentagons with different realizations of
intra-links are counted (see Fig. 2.3). These closed motifs are chosen for this thesis
from a variety of motif systematics (compare [39, 40, 41, 42, 43]), because loops are
assumed to be especially important for processes of self-control [34].

In technical networks like integrated circuits, the smallest version of a loop, a triangle
is used to fulfill functions like discriminating signals. This means a signal A is switched
on or off if a signal B reaches or falls below a certain threshold. Also in some biological
networks like gene expression and metabolical networks, motifs play such a regulatory
role. As in technical applications, the production of a protein A can be switched on or
off after reaching a certain concentration of the protein B. Hence, it is assumed that
these loops play an important role in protein interaction networks as well. They do not
seem to emerge by chance because they cannot be reproduced in random networks as
shown later.

Motifs are found in the network by starting from a node i and by examining if two
neighbors are connected for triangles, have a common neighbor for squares or have
in turn neighbors that are connected for pentagons. Afterwards, inner links are deter-
mined. The total number of motifs is then divided by the multiple counts for every
motif, e.g. four for a “sqr”-motif and twelve for a “sqr2”-motif.

According to [43], triangles, squares and pentagons are counted separately, i.e. a
structure like “sqr1” is counted as two triangles as well, but not as a “sqr”-motif.

16



2.2 ERDÖS-RENYI NETWORKS
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Figure 2.4: Degree distribution for Erdös-Renyi network with N = 1000 nodes and average
degree 〈k〉 = 20. An average over 10 000 network realizations has been performed.

2.2 Erdös-Renyi networks

When the study of real networks started, the common idea was that networks usually
consist of a number of nodes N and randomly distributed links li j between them. Since
network research started in sociology, this was first expected to be the case for friend-
ship networks, where people have a link between each other if they have a friendly
contact. Erdös and Renyi [44] proposed a model to construct these networks. If links
are distributed randomly, the probability of finding a link between node i and j is

p(ai j=1) =
2L

N(N−1)
. (2.13)

Random networks can now be constructed by deciding with probability p(ai j = 1) for
every possible link li j in the network if it is set or not.

Another almost equivalent method is to randomly choose two nodes for each of the
L links. If a link between these nodes already exists, or the two nodes happen to be the
same, this process is repeated. Hence, also for this method multiple links and self-links
are avoided. For small networks, where N 6� k, it turns out that both algorithms do not
lead to completely similar networks and that especially the degree correlation deviates
(data not shown).

The degree distribution for randomly distributed links is binomial

17



2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

p(k) =

(
N−1

k

)
pk(1− p)N−1−k. (2.14)

For N� 〈k〉 � 1, it approaches a Poissonian

p(k) =
(〈k〉)k

k!
e−〈k〉. (2.15)

The Poisson distribution in Fig. 2.4 perfectly matches a numerically simulated Erdös-
Renyi network with the same average degree 〈k〉 .

As links are randomly distributed to the network, there is no correlation between the
clustering coefficient Ci and the degree ki. If the average degree 〈k〉 remains constant,
the total number of triangles in the network is independent of the network size N. In
the simulations of this thesis, it turned out that the same holds for simple squares and
simple pentagons. In contrast, the number of squares and pentagons with one inner
link decreases with the network size. No conclusion can be drawn for squares with two
intra-links and for pentagons with more than one intra-link because they do not occur in
a sufficient number in random networks with average degree of 〈k〉= 6.47 and network
sizes from 1 000 to 5 000 nodes (see Fig. 2.5).

2.3 Small world networks

In a one dimensional lattice, where every node is connected to its neighbor and with
periodic boundary conditions (i.e. a ring of nodes), the average path length 〈d〉 is long
compared to an Erdös-Renyi network and scales proportional to N. Even in higher
dimensional lattices, the average path length 〈d〉 remains long and scales like N1/D,
where D stands for the dimension.

This is not the case for most real networks. Milgram [45] first examined over how
many intermediate people two person know each other within the United States. The
result was surprising. In such networks the average path length is very small with
〈d〉 ≈ 5.

Watts and Strogatz [46] proposed a model where in the mentioned ring of nodes also
next neighbors are connected to assure good connectivity. If now only a few links
are randomly rewired, the average path length decreases strongly. For further link ex-
change, the network becomes a random network and thus the average path length ap-
proaches the average path length of a random network, which is a small world network
also due to its randomly set links. In random networks, 〈d〉 scales like logN.
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2.3 SMALL WORLD NETWORKS
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Figure 2.5: Motif structure for random networks in comparison to the yeast protein interac-
tion network [18]: A randomized yeast network (configuration model), an Erdös-Renyi
network and geometric networks in three, two and one dimensions. The colored columns
represent the relative motif frequencies for the motifs depicted in Fig. 2.3 and the black
line shows the total number of motifs. All networks have the same number of nodes
N = 4687 and an average degree of 〈k〉 = 6.47. Networks have been averaged over 100
network realizations in case of the randomized yeast and over 50 network realizations in
case of the other simulations.
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2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

2.4 Scale-free networks

For a significant number among the real existing networks in biology, sociology and
engineering, the degree distributions cannot sufficiently be described by Erdös-Renyi
networks but rather follows a power law:

p(k)∼ k−γ ,γ> 0. (2.16)

With the power law distribution, no favored degree exists and the network is self similar
regarding the degree distribution. Every sub-network possesses the same degree distri-
bution. The classification of networks as scale-free according to their degree distribu-
tion was introduced by Barabasi et al. [47] and derives from the absence of a reference
scale in these networks.

Fig. 2.6 shows two examples of networks that are considered to be scale-free: the
yeast protein interaction network, which is the subject of this work [18], and the net-
work of linked web pages within the “nd.edu” domain of the University of Notre
Dame [48]. Interestingly, also other complex systems beyond networks show this scale-
free behavior. The third curve in Fig. 2.6 shows the calling habits of my former flatmate
Silke. It displays the probability of the duration of her phone calls.

It is observed that all of the degree distributions of the different examples do not
resemble a perfect power law. The power law only holds for an infinite network size.
Hence, a modification with an exponential cutoff is more suited:

p(k)∼ k−γ e
−k
kc , (2.17)

where kc is the cutoff parameter.
Nevertheless, scale-free like networks appear to be favored by nature not only be-

cause of their small network diameter but also because of their robustness against ran-
dom removal of links [19, 22].

To construct scale-free networks, Barabasi and Albert [47] proposed a growth model.
In every growth step, a new node with a fixed number m of open links is introduced.
The free ends of these links are connected afterwards to already existing nodes in the
network preferentially with its degree:

pi =
ki

∑ j k j
. (2.18)

This Barabasi-Albert-model is the most basic version of a “rich gets richer” algorithm.
The scale-free degree distribution with an overwhelming number of lowly connected
and very few highly connected nodes (hubs) emerge if newly introduced, lowly con-
nected nodes preferentially choose highly connected nodes to link up with. In this way,
highly connected nodes gain new links much more likely. Several other but similar
algorithms are proposed in the literature [6].
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2.5 RANDOM NETWORKS WITH GIVEN DEGREE DISTRIBUTION
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Figure 2.6: Some examples of scale-free probability distributions: degree distributions of
the protein interaction network [18], of the linkage of web-sites at the University of Notre
Dame [48] and the duration probability of calls of my former flatmate Silke. In this graph
and in all following depictions with scale-free network data, deviations are large for nodes
with high degree due to their small occurrence in the networks. Nevertheless, they have
to be depicted because of their large importance for the network topology.

The hierarchical structure of scale-free like networks can be analyzed very well with
the community structure introduced in Sect. 2.1.3. Fig. 2.7 shows the quality factor Q
over the number of communities the network is broken into. The analysis was done for
the yeast protein interaction and an Erdös-Renyi network. The latter one less hierar-
chical. The maximum of the quality factor is much less significant and the values of
Q are rather low. In contrast, for scale-free networks a higher maximum emerges. The
network can be broken in some well defined communities by removing only a few links
with high betweenness centrality. By comparing several scale-free like networks that
were subject to this work, no significant differences could be found. Hence, the study
of the community structure was abandoned for further studies.

2.5 Random networks with given degree distribution

Random networks with a given degree distribution are also called configuration models.
They are usually used to evaluate whether the topology of a given network derives only
from the degree distribution. According to the given characteristic degree distribution,
a degree is assigned to any individual node. Its open links are then randomly connected
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Figure 2.7: Community structure of an Erdös-Renyi network and a yeast protein interaction
network. To avoid extensive calculations, only links out of the high confidential dataset
of yeast [49] are regarded. This results in a network with N = 1158 nodes and an av-
erage degree 〈k〉 = 3.41. The random network is of the same size and average degree.
Furthermore, the respective curve is averaged over 20 network realizations.

to the other nodes’ open links.
The resulting degree correlation and clustering coefficient are constant, as for Erdös-

Renyi networks. Neither a correlation between clustering coefficient and degree nor
between the degrees of a node and its neighbor is introduced by constructing these
networks.

However, the total number of motifs is much higher as it is for Erdös-Renyi models
and of order of the motif number in the real yeast interaction network. Also the variety
of motifs is much higher for e.g. the randomized yeast network (see Fig. 2.5).

2.6 Geometric networks

In geometric networks, the spatial position potentially determines the existence of a
direct link between two nodes i and j [50, 51, 52, 53]. In the simplest case, a link
between two nodes is set if their mutual Euclidian distance is below a threshold. Przulj
et al. [41] claim that certain properties of protein interaction networks are reproduced
rather by geometric than by gene-duplication and mutation models.

In detail, geometric networks are constructed as follows: The position (x), (x,y) or
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Figure 2.8: Degree correlation for geometric networks in one (geo1d), two (geo2d) and
three (geo3d) dimensions. All networks have an average degree of 〈k〉 = 6.47 and a size
of N = 4687. Simulations are performed over 50 network realizations. In the one and two
dimensional case, only the giant component was considered, while for one dimension no
giant component arose and hence all nodes have been analyzed.
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2 STATISTICAL PHYSICS OF COMPLEX NETWORKS

(x,y,z) of any node is randomly assigned in a one-, two- or three-dimensional cube
[0,1]D respectively. For a given average degree 〈k〉 , the maximum Euclidian distance
between two nodes to be connected is calculated according to:

deuklid =
〈k〉
2N

, in one dimension [0,1] (2.19)

deuklid =

√
〈k〉
Nπ

, in two dimensions [0,1]2 (2.20)

deuklid =
3

√
3〈k〉
4Nπ

, in three dimensions [0,1]3. (2.21)

As for Erdös-Renyi networks, the degree distribution turns out to be Poissonian.
Also the clustering coefficient is not dependent on the degree k. However, the degree
correlation becomes assortative (see Fig. 2.8). This can be explained by fluctuations in
the density of the spatial node distribution. If the local density is higher, nodes have
a higher degree and are connected to nodes with a similar degree. In regions of lower
density, the low-degree nodes are again connected to other nodes of lower degree. In
regions of higher density the nodes tend to be fully connected. In this way, also motifs
with a high number of intra-links are more likely to emerge and a high variety of motifs
is obtained (see Fig. 2.5).

The average degree 〈k〉 is chosen to be comparable with that of protein interaction
networks. In case of one dimension, no giant component is obtained. Hence, one
dimensional networks are shown here for purposes of completeness only.

Facing the drawback that gene-duplication models are not able to describe the motif-
structure of real yeast interactions very well, geometric networks are proposed in the
literature to fit biological data much better [41]. This hypothesis may be supported by
the fact that proteins whose genetic code is situated close by on the DNA strand have
a higher probability to be functionally correlated and hence to interact directly [54].
Nevertheless, the results of [41] could not be verified (see Fig. 2.5), but it is remarkable
that indeed only geometric networks can reproduce more complex motifs like pentagons
with several intra-links in a comparable amount although they fail to fit other properties
of protein interaction networks.
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3 Protein interaction networks

Any life form mainly consists out of water, proteins and fatty acids, which is also ap-
plicable to the yeast cell. The deoxyribonucleic acid (DNA) can be seen as the data
storage for the production of proteins. The proteins are produced over several interme-
diary steps of the transcription of the DNA. Nevertheless, from an information theory
point of view, a very simple construction kit is used.

Four different base pairs exist. The DNA is built of millions of these base pairs in a
strand. Three of these base pairs in a line code one amino acid. From combinatorics, 64
amino acids would be imaginable, but only 21 are used in the cell. Proteins in turn are
macromolecules in form of a chain out of more than 100 of these proteinogenic amino
acids. This makes an unimaginable number of different proteins possible, but nature is
content with only a few thousands like about 5 000 in the yeast cell. Additionally some
combinations of the base pairs code control sequences, e.g. where to start and to end if
a protein is produced on basis of the DNA.

In Fig. 3.1, a galactose/glucose-binding protein is shown. The primary structure,
which stands for the linear strand of amino acids in the protein, is not visible here.
These amino acids twist this linear strand towards energy minima between each other.
The resulting helices, stripes and lines (see Fig.3.1) are called secondary structure. The
orientation of these secondary structures towards each other is called tertiary structure
which completes the picture of the protein.

Proteins help to fulfill almost all of the complex functions in biological organisms, as
reproduction or nutrition transport and processing as well as signal transduction to name
a few. These functions are provided by interactions of proteins. Parts of the proteins,
called binding sites, have the capability to bind to specific complementary binding sites
of other proteins. This provides the interaction of proteins.

Functions in the cell are often carried out by complexes of proteins. These complexes
are formed by many different proteins that are bound together.

In a simple picture, evolution takes place in unicellular organisms by errors that are
made during the division of a cell into two including its DNA (mitosis). During this
process, errors can occur by copying DNA sequences - the coding of one protein -
twice. At the same time, errors are induced in the copy by changing one or more base
pairs, altering the amino acid sequence and thus generating a new protein. In the very
most of cases, these new proteins are removed or the corresponding cells extinct. But
in some cases, the new life form may be able to survive and acquire an even better
fitness if the new proteins fulfill new functions. Evolution is assumed to have formed
the complex system of proteins and their interactions in this way, starting from a small
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3 PROTEIN INTERACTION NETWORKS

Figure 3.1: A galactose/glucose-binding protein with its secondary and tertiary struc-
ture [55].

initial number of proteins.

3.1 Yeast data

In this study, only proteins and their interactions are considered in an abstracted way.
Every type of a protein is a node i∈G in the network, and every possible interaction be-
tween two types of proteins is considered as a link between respective nodes li j ∈ L . A
network of protein interactions arises if all of the about 5 000 known yeast proteins and
their interactions are mapped in one scheme. Due to the nature of mutual interactions,
the protein interaction network consists of undirected links. Although protein interac-
tions have very different strengths, links of network models discussed in literature are
not weighted on this level of abstraction. Several databases of protein interactions for
yeast are available [18, 49, 56, 57]. The largest datasets contain about 5 000 proteins
with a maximum average degree of 〈k〉 ≈ 7. All of them are meta databases, includ-
ing, for example, the MIPS (Munich Information Center for Protein Sequences [58])
database, and contain mostly the same sets of protein interactions. In this thesis, the
first two datasets (Database of Interacting Proteins (DIP, [18]) and General Repository
of Interacting Datasets (GRID, [49])) are analyzed in detail. It turns out that differences
in the network properties are rather small. The only significant differences between
both datasets can be found in the motif-structure. The total number of motifs is much
larger in the GRID dataset than in DIP, which is probably related to the higher average
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3.1 YEAST DATA

protein A

activator domain
protein with protein B

DNA binding domain
protein with

code for
protein M

DNA

b)

promoter
DNA

a)

protein M
code for

Figure 3.2: Scheme of the yeast-two-hybrid method. Two hybrid proteins are artificially
constructed: A protein A (blue) is bound to another protein which possesses an activator
domain (yellow) and a protein B (green) is bound to a protein with a DNA binding do-
main (red). If A binds to B, the entire structure forms the promoter which activates the
production of a protein M. Hence, its occurrence in the dissolved cell (cell lysis) after the
introduction of the two hybrid proteins is an evidence for the interaction of A and B.

degree (DIP: 〈k〉 = 6.47, GRID: 〈k〉 = 7.22). Furthermore, the frequency of pentagons
with four intra-links is larger in the GRID dataset.

In further studies the DIP dataset was used for comparisons between models and real
yeast data because the reliability appears to be larger for every single mapped interac-
tion if the total number of links is smaller. The GRID dataset will only be used in the
later analysis of different mapping methods because it documents respective mapping
methods for every link.

Contained interactions derive from several mapping methods. The most important
are yeast-two-hybrid, synthetic lethality and affinity isolation methods (affinity precip-
itation and affinity chromatography). During the last years, the amount of mapped
proteins and their interactions increased largely [12, 13]: from 1 800 proteins and 2 200
interactions in the year 2001 to 5 000 proteins and more than 18 000 interactions today.
This over-proportional increase of known protein interactions is due to the development
of high throughput methods based on the three major methods, which will be explained
in the following sections. Only about 150 interactions base on other than these three
methods. All of the high throughput methods trace back to only a few groups of exper-
imenters [59, 60, 61, 62, 63].

3.1.1 Yeast-two-hybrid

The yeast-two-hybrid method [9] measures the specific interaction of two proteins A
and B as depicted in Fig. 3.2. These proteins are specifically selected by the experi-
menter. Protein A is bound to another protein, which contains an activator domain. B is
bound to a protein with a DNA binding domain. Proteins - like M - are reproduced by
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3 PROTEIN INTERACTION NETWORKS

transcribing the DNA. The transcription is controlled by the promoter (a protein com-
plex) at the beginning of a gene which contains a binding and an activator domain. If
now protein A interacts with protein B, the entire structure is able to form the promoter
with the binding domain binding to the DNA and the activator domain providing the
transcription of the code of protein M. Promoters are specialized complexes that enable
the production of one or a few proteins only. The two hybrid proteins, the activator
domain combined with A and the binding domain combined with B, is placed into the
cell lysis, the dissolved cell after disintegration of the cell membrane. The proximate
appearance of protein M in the cell lysis is a proof of the interaction between A and B,
because the complex can only be formed if protein A binds to B. Modern biochemistry
is able to rapidly produce a large amount and variety of these artificial constructions of
protein hybrids. This makes it possible to use this method in high throughput experi-
ments although it targets single interactions. Nevertheless it can not be assured by the
yeast-two-hybrid method that the interaction of the proteins A and B is not provided by
an intermediary protein C.

3.1.2 Affinity isolation

Using complex purification methods, namely affinity precipitation and affinity chro-
matography [61, 63], a protein of interest is tagged and placed into the cell lysis. The
tagged protein (bait) is then isolated with its associated proteins (preys). In the next
step the preys are separated and analyzed. For these analyses mainly two methods are
used, precipitation and chromatography.

In the commonly used spoke algorithm [10], direct links are defined between the bait
and all of its preys. The possibility that the bait is not directly interacting with all of its
preys but via intermediate proteins is not taken into account, neither are possible links
between preys regarded.

Another common reservation to in vitro mapping methods, yeast-two-hybrid and
affinity isolation, is that interactions are mapped unconditionally. It is not measured
if these interactions also play a functional role in the cell. For example, an interaction
between protein A and protein B can be mapped with this method, even if it never oc-
curs because Protein A may be only present in the nucleus and B only in the rest of the
cell. For the evaluation of the evolution models and to examine if the admittedly rough
models can explain simple properties of the protein interaction networks, this reserva-
tion seems to be irrelevant. The examined models are not concerned with the function
of protein interactions but only with the possibility of interactions due to effects of
inheritance of properties.

3.1.3 Synthetic lethality

If the mutation of two proteins causes cell death while the mutation of only one of these
two proteins is not lethal, it is supposed that they are functionally associated and thus
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3.2 GENE DUPLICATION AND MUTATION MODELS

interact [62]. To measure synthetic lethality, cells are cultivated with different mutations
of their DNA. The single mutations are characterized independently and do not lead to
cell death. In a next step, mutations of two different proteins are combined in one cell.
If this causes cell death there is an assumed functional connection, which is usually
established by an interaction of these proteins. Nevertheless, even if these two proteins
are part of the same protein complex, it is again not assured that any interaction is not
provided by an intermediary protein. In addition, interactions without any functional
relevance are not detected by this method.

3.2 Gene duplication and mutation models

To obtain a principle idea of how nature has evolved protein interaction networks, sev-
eral models have been developed [12, 13, 14, 15]. They take into account two important
principles of evolution: duplication of segments of the DNA and their parallel muta-
tion. In this way, new genes with similar properties as the original gene emerge during
the random duplication process.

Since basically proteins are transcripted from the DNA, the abstraction of gene-
duplication and mutation processes to protein interaction networks leads to a model
in which the proteins (nodes) are copied with their interactions (links), and mutations
lead to a rearrangement of respective links. Hence, with every evolution step a new
node is introduced in the network.

None of the models consider selection. In reality, most of the newly evolved proteins
do not improve cell function and are removed either by repair processes in the cell or
by the death of the whole organism. But the actual knowledge of biological processes
is not sufficient to include selection in these models.

In the following, some of the proposed models will be presented in greater detail. All
of the curves in this thesis that originate from simulations are averaged over 50 network
realizations unless otherwise stated.

3.2.1 Gene-duplication model with random link

In the gene-duplication model with random link proposed by Solé et al. [12] a node is
selected randomly in every evolution step and copied with its links. Resulting links of
the new node are deleted with probability δ. New links are inserted at the copied node
to another randomly chosen node with probability α = β/N (see Fig. 3.3(a)) where β is
chosen arbitrarily. The resulting network is referred to as Gm1.

Almost all proteins in yeast interaction data are part of the giant component. Prob-
ably, nature sorts out proteins that do not interact with any other protein and thus lose
their function (see Sect. 2.1.2). Hence, to keep the different models comparable with
each other and with the yeast data, only the resulting giant component is examined. In
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(a) The gene-duplication model with random link Gm1 [12]: a) a node is selected randomly
(red), b) the node is copied with its links (blue), c) new links of the new node are deleted with
probability δ (dashed line), d) links between the new node and randomly chosen nodes are
established with probability β (green).
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(b) The gene-duplication model with homodimer-link I Gm2 [13]: a) a node is selected randomly
(red), b) the node is copied with its links (blue), c) links of the original and the copied node
are deleted with probability δ (dashed lines), d) a link between original and copy is established
with probability p (homodimer-link, green).
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(c) The gene-duplication model with homodimer-link II Gm3 [15]: a) a node is selected ran-
domly (red), b) the node is copied with its links (blue), c) links of the new node are deleted
with probability δ (dashed line), d) a link between original and copied node is established with
probability p (homodimer-link, green).

Figure 3.3: Gene-duplication and mutation models.
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the gene-duplication model with random link, the giant component has a magnitude of
about 50% of the total network. Many nodes remain unconnected and thus have degree
zero after the deletion of all of their links. These nodes have no significant influence on
the network topology.

3.2.2 Gene-duplication model with homodimer-link I

Vazquez et al. [13] proposed a model in which links of the original or copied node are
deleted with probability δ. New links are established only between the original and
copied node with probability p (see Fig. 3.3(b)). This is biologically motivated by the
maintenance of a self-interaction (homodimer)-link. If a homodimer protein of type
A interacts with other proteins of the same type, it is very likely that after duplication
and mutation this interaction is maintained and protein A also interacts with A′. The
resulting network is referred to as Gm2.

With this model, a network with a very low connectivity and no giant component
emerges. This is depicted in Fig. 3.4 in comparison to the gene-duplication model with
random link Gm1. Parameters are chosen to match the network obtained from yeast in-
teraction data and discussed later in greater detail. In case of the gene-duplication net-
work with random link, a giant component emerges at N ≈ 4700 with probability one.
Additionally, smaller unconnected clusters are obtained with degrees k = 1 . . .10. Since
for the gene-duplication model with homodimer-link I no giant component emerges, pa-
rameters have to be chosen to obtain a largest component within the small unconnected
clusters (accordingly to the clusters on the left for Gm1) to be large enough to match on
average the giant component of yeast data. Thus, two drawbacks have to be faced. First,
the size of the largest component fluctuates strongly. The standard deviations for the
size of the largest component are ∆N lc

m2 = 2000 compared to ∆Ngc
m1 = 200 in the model

with random link. Second, simulations based on this model are very extensive because
the largest component consists of ≈ 20% of the generated nodes only. With decreasing
δ a giant component would emerge also for this model, but for all of the here proposed
models it is necessary that δ> 1/2, as explained later.

3.2.3 Gene-duplication model with homodimer-link II

As in the model with homodimer-link I, in the gene-duplication model with homodimer-
link II proposed by Ispolatov et al. [14, 15], new links arise only when a homodimer
protein is copied and the self-interaction link is conserved between original and copy.
This link arises with probability p. As in the gene-duplication model with random
link, these are only deleted at the copied node with probability δ (see Fig. 3.3(c)). The
resulting network is referred to as Gm3.

In contrast to the other models, the evolution step is discarded if the new node re-
mains unconnected because all links to the new node are deleted and no new links are
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Figure 3.4: Cluster-size distributions for the networks resulting from gene-duplication mod-
els with random link Gm1 (blue) and with homodimer-link I Gm2 (magenta). The average
size of the resulting giant/largest component is ≈ 4700 nodes. In the network Gm2, no
giant component emerges but the number of evolution steps was chosen to be very large
to obtain a large number of small components and hence a largest component of average
size of the giant component in Gdata . This largest component fluctuates strongly in size.

established. In this way, the network always remains fully connected. Based on the as-
sumption of all network models that proteins always remain fully connected, it appears
to be more convincing that unconnected proteins are removed during evolution like in
this model. Furthermore the problem of the non-appearance of a giant component as in
the model with homodimer-link I is avoided.

3.3 Comparison of models with real yeast data

With the over-proportional increase of mapped protein interactions through recently
developed high throughput methods, the average degree increased from about 2.5 in
the years 2001/2002 when Vazquez et al. and Solé et al. [13, 12] proposed their mod-
els to 6.5 today. Although optimal parameters are proposed in literature for all gene-
duplication and mutation models, in this thesis parameters δ, p and β had to be adapted
to fit the number of nodes Ndata, the average degree 〈kdata〉 and the degree distribution
pdata

k of new real yeast data.
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3.3 COMPARISON OF MODELS WITH REAL YEAST DATA

parameters results

Network model evolution steps δ p β ∆Ngc/lc ∆〈k〉 〈C〉 〈d〉
Gm1 [12] 6 100 0.52 - 0.3 200 0.8 0.003 5.9

Gm2 [13] 14 000 0.53 0.2 - 2000 0.7 0.16 5.6

Gm3 [15] 4 687 0.58 0.1 - 0 0.4 0.14 5.6

Table 3.1: Parameters for gene-duplication and mutation network models with a giant com-
ponent of ≈ 4700 nodes and with an average degree of 〈k〉 ≈ 6.5. Furthermore the re-
spective standard deviations, the clustering coefficient 〈C〉 (〈Cdata〉 = 0.13 [18]) and the
average path length 〈d〉 (〈d〉data = 6.1) are shown.

3.3.1 Degree distribution

The model parameters have been chosen manually to gain a giant component of the
size of the real yeast dataset Ndata, with the same average degree 〈kdata〉 and best coher-
ence with the degree distribution pdata

k of the yeast data. The comparison of the degree
distributions between model and data was always done by eye. In scale-free networks,
highly connected nodes (hubs) play a decisive functional role. Hence, the application
of a χ2-evaluation or the Kullback-Leibler entropy [64] would require a weight term to
incorporate the higher importance of hubs compared to their occurrence in the network.
Since this weight term would be speculative and the data basis is not very strong, this
was discarded.

The set of parameters is given in Tab. 3.1 and the corresponding degree distributions
are shown in Fig. 3.5. Every model describes the degree distribution of real yeast data
sufficiently well although slight differences do exist.

It is not surprising that all models that base on gene-duplication lead to scale-free
networks like the Barabasi-Albert-Model. These models follow the so called “rich gets
richer”-principle. While this is easily comprehensible for the Barabasi-Albert-model
[47], where new inserted links are preferentially attached to highly connected nodes, it
can be explained for gene-duplication models as follows: If degree correlations are not
regarded, the probability of a node to be connected to another node is proportional to
its degree k. Thus, the probability of having a neighbor that is duplicated depends again
on the node’s degree k. After the copying process, the degree increases to k′ = k + 1 if
the respective link was not deleted. The probability of a node to gain a link at a time
step in the Barabasi-Albert model is Πi = mki/(2mN), whereas in case of the gene-
duplication models it is Πi = ki/(N−1) · (1−δ) if the node is not copied itself and no
degree correlation exists. Hence, in the case of large N and δ≈ 1/2 both terms become
identical.
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Figure 3.5: Degree distributions of the gene-duplication model with random link Gm1, with
homodimer-link I Gm2 and with homodimer-link II Gm3. Chosen parameters are shown
in Tab. 3.1. The resulting giant/largest components are of size N ≈ 4700 and the average
degree is 〈k〉 ≈ 6.5.

The influence of the deletion parameter δ on the degree distribution of the gene-
duplication model with homodimer-link II network is shown in Fig. 3.6 (top). A larger
δ diminishes the average degree and more sparsely connected nodes emerge at the cost
of highly connected nodes. The choice of δ mainly determines the degree distribution
and the average degree.

It is analytically shown in [13] by using a mean field approach that δ has to be larger
than 1/2 to assure that 〈k〉 saturates for N → ∞. Another analysis [15] showed that for
δ < 1/2, the network is not self-averaging anymore. Small fluctuations in the network
at the beginning of the simulation would lead to completely different outcomes and no
general assumptions could be made by averaging over a large number of evolution steps
and for several network realizations [14].

For both gene-duplication models with homodimer-link, the parameter p has only a
slight influence on the degree distribution (see Fig. 3.6 bottom). Nevertheless, it gives
it a Poissonian momentum because it is no pure “rich gets richer” mechanism: A link
is established between a node and its copy independent of its degree. The value of p
can be estimated from biological data with the number of homodimers in the dataset:
in the DIP dataset, 6 % of proteins are homodimers. The condition δ > 1/2 applies
also for the self-interaction links. Hence, in every evolution step the copied node has
a probability of 6 % to be a homodimer. This homodimer link is maintained with a
probability of 1−δ, which leads to a value of p< 0.03. For a better significance of the
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Figure 3.6: Influence of the parameters δ (top) and p (bottom) on the degree distribution of
the gene-duplication model with homodimer-link II Gm3.
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Figure 3.7: Degree correlations of the gene-duplication model with random link Gm1, with
homodimer-link I Gm2 and with homodimer-link II Gm3. Chosen parameters are shown
in Tab. 3.1. Resulting giant components are of size N ≈ 4700 and the average degree
is 〈k〉 ≈ 6.5. Also the randomized network of real yeast data (configuration model) is
shown to depict the slight disassortative character originating from the absence of self-
and multiple links.

different models, a larger value p = 0.1 was used here. For the gene-duplication model
with homodimer-link I with p = 0.2, an even larger value for the parameter p had to be
chosen to reach a better connectivity.

The number of evolution steps has a slight influence on the average degree but the
degree distribution remains unaltered in the order of evolution steps that is of interest
here. In simulations, the average degree rose from 〈km3〉 = 5.7 for 1 000 nodes to
〈km3〉= 6.8 for 7 000 nodes using the model with homodimer-link II and p = 0.1.

The authors of the proposed network models [12, 13, 14, 15] used different start
networks: just two, up to five fully connected nodes or a circle of five nodes, but this
had no influence on the final network.

3.3.2 Degree correlation

Due to the very similar algorithms, the gene-duplication model with homodimer-link
I and II show the same behavior in the degree correlation (Fig. 3.7) but the latter one
fits the yeast data much better. The gene-duplication model with random link shows
an assortative behavior for degrees k < 20. This is in contrast to yeast data but can be
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explained as follows: The nodes that are selected to be copied as well the free end of
the newly introduced links are chosen randomly. Both are more likely to be nodes with
low degree due to their larger occurrence in the network. Hence, nodes with low degree
are more likely to be connected to other lowly connected nodes.

Every network realization that does not fulfill the condition k� N pk shows a disas-
sortative behavior, which is analytically shown in [65]. But it can be explained easily
through the impossibility of multiple links and self-links in the network. Imagine, for
example, a network with a given degree distribution of only one highly connected node
and a large number of very lowly connected nodes. If no self-links are allowed, the de-
gree correlation is per se disassortative because even if links are randomly distributed
the hub can only possess a connection to lowly connected nodes. Even if two highly
connected nodes are given, multiple links are necessary between them to gain an aver-
age neighbor degree 〈kngb|k〉= 〈k〉 as for a random network with N→ ∞.

Hence, as observed in Fig. 3.7 for degrees k> 20 the disassortative degree correlation
is for all models only due to this effect as it emerges in the same manner for a random-
ized model with the given degree distribution of the yeast data. This is in contrast to the
yeast dataset, where a stronger decline of the next neighbor degree is observed.

3.3.3 Clustering coefficient

As shown in Fig. 3.8, it turns out that again the two gene-duplication models with
homodimer-link do not differ significantly. In contrast in the gene-duplication model
with random link almost no triangles emerge. This leads to a very low clustering coef-
ficient over all degrees. Tab. 3.1 provides an overview over the clustering coefficients
averaged over all degrees for all network models, compared to 〈Cdata〉= 0.13 in case of
real yeast data.

3.3.4 Motif-structure

Figs. 3.9 show the motif-structures for the discussed models under different rates of
newly introduced links. One property of all duplication and mutation models [12, 13,
14, 15] is the large number of squares in these networks compared to a rather small
number in real yeast data. These squares emerge always when a node is copied and
keeps more than one link. If a node with degree k = 10 is copied and half of its links are
maintained, five squares emerge. In the gene-duplication model with random link, no
triangles are formed, whereas in the two gene-duplication models with homodimer-link,
triangles are obtained if the homodimer-link was set between copy and original node
(compare to the clustering coefficients in Tab. 3.1). The same mechanism is responsible
for the low variety of motifs in the gene-duplication model with random link. The set
random link most likely does not form a new motif. The high variety in the yeast dataset
cannot be reproduced by any model. Especially highly connected cliques do not emerge
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Figure 3.8: Clustering coefficient of the gene-duplication model with random link Gm1, with
homodimer-link I Gm2 and with homodimer-link II Gm3. Chosen parameters are shown
in Tab. 3.1. Resulting giant components are of size N ≈ 4700 and the average degree is
〈k〉 ≈ 6.5.

in the same amount as in the yeast dataset. The number of different motifs depends on
the parameters p or β respectively. With increasing β, the motif-structure improves
slightly to reproduce the real yeast data network. With increasing p, frequencies of
motifs improve for the two gene-duplication models with homodimer-link. But by in-
creasing these parameters, the degree distribution shifts towards a Poissonian (compare
Sect. 3.3.1) and fails to reproduce the degree distribution of real yeast data. Moreover,
at least for the two gene-duplication models with homodimer-link, biological consid-
erations suggest low values for p. The total number of motifs in the network could be
well reproduced in the gene-duplication network with homodimer-link II, whereas their
number is much smaller in both other models.

Compared to random networks, the motif-structure scales with the network size very
differently using gene-duplication algorithms. While in random networks, the total
number of motifs remains constant, it increases linearly with the network size in the
orders of interest here. This is shown in Fig. 3.10 for the gene-duplication model with
homodimer-link II. For the other gene-duplication models, the scaling is similar to this
graph. Nevertheless, the relative frequency of motifs does hardly change with increas-
ing network size.
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Figure 3.9: Influence of the rate of newly introduced links during mutation on the motif-
structure of the three models. Respective parameters are β for the introduction of random
links in the model network Gm1 (top) and p for the introduction of homodimer-links in
the model network Gm2 (middle) and in the model network Gm3 (bottom).
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Figure 3.10: Influence of the network size Nm3 on the motif-structure of the gene-
duplication model with homodimer-link II Gm3.

DNA strand

Protein A domain
binding

Protein B

Figure 3.11: Scheme of two proteins A (blue) and B (red) encoded on the DNA strand
(black). Both share the same DNA section including the coding of a binding domain
(green).

3.4 Model extentions

Because of the general insufficiency of all network models to reproduce the motif-
structure, two model extensions that take more biological effects into account shall be
examined here. Both models ground on the gene-duplication model with homodimer-
link II because it best reproduces biological data. The first model introduces a fraction
of link-duplication to the gene-duplication process and the second one combines the
emergence of homodimer-links and random links during gene-duplication.
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parameters results

Network evolution steps δ p β ω ∆〈k〉 〈C〉 〈d〉
link-duplication 4687 0.75 0.1 - 0.1 0.6 0.11 5.4

hybrid model 4687 0.6 0.1 0.2 - 0.4 0.11 5.3

Table 3.2: Parameters for model extentions of Sect. 3.4 to create a network with a giant
component of ≈ 4700 nodes with an average degree 〈k〉 ≈ 6.5, their respective standard
deviations, the clustering coefficient (〈C〉data = 0.13) and the average path length 〈d〉
(〈d〉data = 6.1) are shown.

a) b) c) d)

δ

δ

δ

p

p

Figure 3.12: The link-duplication model: a) a link is selected randomly (red), b) the link
and both nodes at its end are copied with their links (blue), c) new links are removed
with probability δ (dashed line), d) links between original nodes and their copies are
established with probability p (homodimer-links, green).

3.4.1 Link-duplication

In the models discussed in Sects. 3.2.1, 3.2.2 and 3.2.3, genes encoding one protein
were copied and their interactions mutated by errors. But sections of the DNA that are
duplicated and mutated do not necessarily encode only one protein. Fig. 3.11 illustrates
the coding of two proteins that may share the same code for a binding domain. The
algorithm that idealizes this mechanism is shown in Fig. 3.12. In the simulations, the
applied algorithm is a mixture of a smaller fraction ω of link-duplication and the frac-
tion 1−ω of the gene-duplication model with homodimer-link II. Also in this model
nodes are deleted after duplication if they remain unconnected to the network.

For the link-duplication model, estimates of the emergence of two proteins that share
a same section of the DNA could not be found in literature. The chosen value of
ω = 0.1 seems to be reasonable to study the influences of this enhancement of the
gene-duplication model with homodimer-link II. It was used to analyze the degree dis-
tribution, the degree correlation and the clustering coefficient and the motif structure
(see Figs. 3.13). Parameters were chosen to fit real yeast interaction data and are shown
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Figure 3.13: Degree distribution, clustering coefficient, degree correlation and motifs of
the link-duplication Gm4 and the hybrid network Gm5. Chosen parameters are shown in
Tab. 3.2.

in Tab. 3.2. Resulting giant components are of size N = 4687 and the average degree is
〈k〉 ≈ 6.5.

3.4.2 Hybrid model

The hybrid model is based on the gene-duplication model with homodimer-link II. Ad-
ditionally, a link from the copied node to a randomly chosen other node is introduced
(Compare Sect. 3.2.1). The parameters for this model δ, p and β are shown in Tab. 3.2.
Resulting giant components are of size N = 4687 and the average degree is 〈k〉 ≈ 6.5.

3.4.3 Results

It turns out again that the degree distribution is always well reproduced although the
influence of the additionally inserted random link in the hybrid model is visible (see
Fig. 3.13 top left). The degree correlation (top right) for the hybrid model can be seen as
a superposition of the degree correlations of the gene-duplication model with random-
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and with homodimer link II. The degree correlation of the link-duplication model is
strongly assortative for degrees k . 15. This is probably again explained with the
strong occurrence of lowly connected nodes in the network. If a link and its nodes
are duplicated, clusters emerge whose nodes are more likely to be lowly connected.

The clustering coefficient (Fig. 3.13 bottom left) has the same behavior for all gene-
duplication models with homodimer-links. In the hybrid model, the additional random
links have obviously a very small influence on the clustering coefficient and the motif-
structure. However, not only in the hybrid model, but also in the link-duplication model
it turns out that the fundamental gene-duplication model with homodimer-link II plays
the major role in the formation of motifs and all extensions have no further influence.
Only the total number of motifs is changed significantly for these model extensions.
This is due to the fact that motifs mainly emerge through the simple duplication of a
node. Hence, the total number of motifs is very dependent on the strength δ of the
following deletion of links and δ had to be adjusted to ensure an average degree 〈k〉
= 6.47.

The link-duplication and the hybrid model are introduced as an extension of the gene-
duplication model with homodimer-link II by taking more biological effects into ac-
count that play a role during gene-duplication and mutation. Above all, that should
improve the reproduction of the motif-structure in artifical protein interaction network
models. As depicted in Fig. 3.13 (bottom right), the effect on network subgraphs is very
small and the degree correlation cannot be described by these models.
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4 Observational incompleteness

Although the simple gene-duplication and mutation mechanism disregards any selec-
tion process and does not take further regulatory mechanisms into account, it gives us a
principle understanding of how evolution might have gone to work. However, it should
be acted with caution when it comes to a biological interpretation of the fitted model
parameter values. Attention has to be paid to the fact that the actual data of protein
interactions includes a large number of false links. In Refs. [9, 10, 11], different meth-
ods are applied to give an estimate of the amount of links that are set in the real yeast
datasets but do not exist (false positives), and those that exist but are not contained in
the dataset (false negatives).

A vast amount of new protein interaction data has been obtained in recent years
with the development of various high throughput methods. But this development came
with its price. The reliability of this newly gained data is much lower than of older
datasets obtained before high throughput methods were developed [9, 10, 11, 66, 67].
Current estimates state that about 50% of links in actual datasets are false positive links.
These estimates base on a comparison of older so called high confidence data with high
throughput datasets [9, 11]. Furthermore, the total number of links is estimated to be
twice as large as todays 15 000 interactions, indicating a large number of false negative
(missing) links in the actual datasets [9, 10].

4.1 Mapping methods

In Deane et al. [11], differences between high confidence interaction and high through-
put interaction datasets could be explained by arguing that up to 70% of links in the
yeast-two-hybrid dataset are false positive links. There it is assumed that interacting
proteins show co-expression. Expression of a protein means that it is enabled to be pro-
duced over several transcription steps from the DNA (compare Sect. 3.1.1). The proba-
bility of two proteins to be functionally correlated is much larger if they are expressed
at the same time and under the same conditions. Furthermore, functionally correlated
proteins are very likely to interact directly. The frequency of co-expression is compared
between a set of randomly chosen proteins and a set of proteins that are found to inter-
act with high confidence, i.e. that exist in older datasets. The co-expression frequency
of high throughput data leads to values in between and can be reproduced by a combi-
nation of assumed true positive and false positive interactions. False positive links are
randomly chosen from the set of not existing interactions.

Another way to evaluate links in the dataset is to analyze if paralogs of interacting
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proteins interact as well [11]. Paralogs are proteins that arose through gene-duplication
of the same DNA section. These proteins are similar to each other and are therefore
likely to have the same interaction partners because they derived from the same ances-
tor. It is noted that this method has the drawback that it applies only to the 50% of
all proteins that actually have known paralogs. Furthermore, if two proteins interact,
it is not assured that their paralogs do so as well. Nevertheless, estimates of the total
number of false positive links can be given in this way. In high confidence data, this
method verifies 50% of the links. In high throughput data the fraction of verified links
is much lower. This leads to the conclusion, that 50% of the links in high throughput
data are false positive. Of course, this holds only if errors in the dataset are induced at
random. In Mering et al. [9], false positive links are also predicted to amount to 50% of
known links by analyzing functional groups and the proteins belonging to them.

But not only false positive links influence the mapped data. In Mering et al. [9], the
total number of links is estimated to be larger than 30 000, which is twice as many as
the actual number of mapped interactions.

For an estimate of false negative links, Mering et al. [9] investigated the fraction
of links that are found by more than one method compared to the respective fraction in
high confidential datasets. Since this fraction is much lower in high throughput datasets,
the number of 30 000 interaction could be approximated as a lower limit. A critical
remark is in order here: In datasets used in [9], purified complexes were mapped as
fully connected using the matrix method. This leads to a higher number of false negative
links for this method and thereby to a larger overlap between different methods. Hence,
the real overlap could be much smaller, implying a lower estimate less than 30 000 links
if one follows the argumentation in [9]. Nevertheless, since high throughput methods
find only a fraction of the high confidence interactions, there is still a significant number
of false negative links.

The data achieved for protein interaction networks differs markedly between different
mapping methods, see Sect. 3.1. All high throughput experiments base on one of these
three. Thus, in newest network data almost all links are obtained by one or more of
these methods. The overlap remains very small with about 3% of links found by more
than one method. Approximately 6% of links are mentioned by more than one group
of experimentalists.

This section aims to discuss how far biases within these methods have different in-
fluences on the properties of the network structure. This will become important in the
following sections, where different error algorithms are discussed, which partly ground
on assumptions on the errors made with single methods. Methods are analyzed in this
section using the GRID dataset [49].

The dataset is separated into sub-networks containing only interactions found by one
of the three methods. The degree distributions of these three sub-networks are shown
in Fig. 4.2 (top). Apparently, they differ. If there were no biases of different methods,
all sub-networks should have had the same properties.

46



4.1 MAPPING METHODS

For a further analysis of the sub-networks, it must be asked in how far it is justi-
fied to separate these sub-networks from each other. If the sub-networks can be largely
separated from each other with only a few interconnections, different properties can
be connected to one method. To draw conclusions from the degree distribution, e.g.
whether one method is more likely to find highly or lowly connected nodes, it is impor-
tant to note that the majority of links of the analyzed node is found by one respective
method only. Furthermore, if the degree correlation, the clustering coefficient and the
motif-structure are analyzed, also all neighbors of the questioned node should have
mostly links found by the same method.

This separation is tested with a purity measure P, where Li
m is the number of links at

node i found by method m:

Pi =
3

∑
m=1

(
Li

m

∑Li
m

)2

. (4.1)

Hence, if all links of a node i are found by one method, the purity becomes Pi = 1,
and if methods are equally distributed over all links, Pi = 1/3.

Fig. 4.1 shows the probability distribution of purity values for the GRID dataset. This
measure gives values from 1/3 to 1, but values of 0.66 already reflect fairly well purity
with e.g. 80% of links belonging to one method and 10% to the others, respectively. For
nodes with degree k = 1, a purity of P = 1 is obvious. Since many nodes in the network
have degree k = 1 the significance of the purity distribution is tested with a randomized
purity distribution. Therefore the degree of every node is kept fixed but to every link of
the node, one of the three methods m is assigned with equal probabilities. This reflects
the probability of one third to find a link with a certain method m in the yeast dataset
and the number of links belonging to one method ∑i Li

m is conserved. The comparison
between yeast data and the randomized purity distribution shows, that the maximum
at P = 1 can not only be explained as due to nodes with degree one. Moreover, much
more nodes with low purity emerge in the randomized model. This justifies the separate
analysis of the sub-networks.

The separation of all three sub-networks and the biases of every method become
apparent if the overlap of the three methods is analyzed. In most cases, links could not
be verified through finding them by more then one experimental group: In only 5 % of
the cases, nodes were reported twice and 1 % triple to interact. Taking only citations
of interactions into account where additionally different methods were used, 2.5 % of
links are found twice and 0.2 % triple.

This can be explained only partly by the differences between different mapping meth-
ods because in high confidential datasets this overlap is much larger: If the more cor-
rupted high throughput interactions are deleted from the dataset, the fractions of multi-
ply found links rise to 13.6 % of interactions that are reported twice and to 1.9 % that
are reported triple.
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Figure 4.1: Distribution of purity values according to Eq. (4.1) for all nodes in the real yeast
dataset (red) [49]. For comparison, the purity distribution is given after one of the three
methods is randomly assigned to every link with the conserved the degree distribution
of the network and total number of links belonging to one method (green). Values are
integrated over a purity of ∆P = 0.05.

In the following sections the biases of single methods will be discussed in greater
detail with the degree distributions, the degree correlation, the clustering coefficient
and the motif-structure.

4.1.1 Degree distribution

Although degree distributions for all sub-networks remain scale-free with exponential
cut-off, differences in the slopes exist (see Fig. 4.2 top). The yeast-two-hybrid method
focuses on single protein interactions. In contrast to the other methods, a network
emerges that is rather large but sparsely connected with N = 3632 nodes and an average
degree of 〈k〉= 3.3 compared to N = 2266, 1343 and 〈k〉= 6.0, 7.0 for affinity isolation
and synthetic lethality, respectively. The same is observed in the degree distribution.
For yeast-two-hybrid significantly more sparsely and less highly connected nodes are
found. The two other methods focus on complexes. Thus, sparsely connected parts
of the network remain undiscovered and a network emerges that is small but highly
connected. For affinity isolation, this focus is obvious. For synthetic lethality sub-
network the focus on complexes is assumed because proteins cannot be connected in
a simple chain if the mutation of one of both proteins is not lethal. They are rather a
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part of a complex that keeps its function and maybe becomes less effective after the
mutation of the first and breaks down with the mutation of a second protein.

4.1.2 Degree correlation

The degree correlation differs markedly for different methods (see Fig. 4.2 middle).
Surprisingly, it ranges from being constant for affinity isolation to a very disassortative
behavior in case of synthetic lethality and yeast-two-hybrid. For affinity isolation and
yeast-two-hybrid methods curves are not as expected.

In affinity isolation methods, links are set between a bait and all its preys according
to the spoke rule (see Sect. 3.1.2) and many “stars” could be expected to emerge. This
would lead to a disassortative degree correlation. But the respective degree correlation
is rather constant. An explanation could be that in experiments several proteins within
one protein complex are chosen as baits. This would lead to widely interconnected
complexes and no disassortative degree correlation.

In contrast, the yeast-two-hybrid method focuses on single links and hence appears to
be less biased in determining the degree correlation. But the degree correlation results
to be much more disassortative than for every other subnetwork, including the high
confidence network. The comparably smaller values over the entire degree correlation
for yeast-two-hybrid data are due to the smaller average degree of the sub-network. This
is comprehensible considering as example random networks, where 〈kngb|k〉= 〈k〉. But
also if there is a degree correlation that is not constant, the average neighbor degree
〈kngb|k〉 depends on the average degree 〈k〉 of the entire network.

4.1.3 Clustering coefficient and motif-structure

Heavy fluctuations in the curve of the degree dependent clustering coefficient make it
difficult to identify certain behaviors of the different curves (see Fig. 4.2 bottom). How-
ever, it is remarkable that for high confidential datasets the average clustering coefficient
〈C〉 is significantly larger. Thus, the real clustering coefficient for the entire network
should be of the same order and larger than measured for current data. The cluster-
ing coefficient of synthetic lethality and affinity isolation methods are larger then in
the yeast-two-hybrid subnetwork. This is in agreement with the assumption, that both
focus on complexes.

The total number of motifs differs strongly for different methods, but can be well re-
produced by randomizing the sub-networks with a fixed degree distribution (see Fig. 4.3).
This casts a cloud especially over the synthetic lethality method because in this case also
the relative motif frequencies could be reproduced very well. It poses the question if
these measurements are that much corrupted with false links or if motifs in real yeast
interaction networks indeed agree that far with randomized networks. Nevertheless, in
the case of the yeast-two-hybrid and the affinity isolation methods the motif-structure
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sub-network N 〈k〉 〈C〉
DIP [18] 4687 6.47 0.13

GRID [49] 4814 7.2 0.12

yeast-two-hybrid 3632 3.3 0.05

synthetic lethality 1343 7.0 0.23

affinity isolation 2266 6.0 0.23

Table 4.1: Observables of two data sets [18, 49] and the sub-networks [49] to which only
links of respective methods contributed are listed.

deviates noticeably from its randomized counterpart.
It is shown that properties indeed differ for different methods. Two explanations

are obvious: Different methods either are better adapted to find protein interactions
with certain properties or these methods are indeed so much biased that they reveal
false network properties. In the following, it will be investigated which deviations may
occur if several error algorithms are applied and if these algorithms reflect biases found
for several mapping methods.

4.2 Random link removal, exchange and addition

The most general approach to simulate errors made during the mapping process is to
generate noise on the underlying network G which is in the following assumed to be
the exact representation of the original protein interaction network. Therefore, links
are selected randomly and deleted to simulate false negative links, new links are added
randomly for false positive links and with a combination of both processes, link ex-
change was simulated. The resulting network is then referred to as G rm (removal), G ad

(addition) and G ec (exchange). The strength of the noise ν = ∆L/L is the fraction of
selected links ∆L to the total number of links L.

The impact of random link removal on the degree distribution of the gene-duplication-
and-mutation network Gm3 of Ref. [15] is shown in Fig. 4.4 (top). Parameters for the
underlying network are again N = 4687, δ = 0.58 and p = 0.1. With increasing re-
moval strength ν, the resulting degree distribution deviates more and more from its
initial counterpart.

The degree distributions in Fig. 4.4 (top) with parameters δ = 0.58 and ν> 0 resem-
ble those of Fig. 3.6 (top) with δ > 0.58 and ν = 0. In fact, the shown degree distribu-
tions with ν = 0.2, 0.4, 0.6 and 0.8 perfectly match those resulting from δ = 0.62, 0.66,
0.73 and 0.85, respectively. By looking at the degree distribution only, a network with
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Figure 4.2: Degree distribution, clustering coefficient and degree correlation of the yeast
sub-networks [49] that regard only links that are mapped by affinity isolation methods
(AI), yeast-two-hybrid (Y2H) or by the synthetic lethality (SL) method. Furthermore, the
respective curves for the high confidential dataset (i.e. without high throughput methods)
is depicted.
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Figure 4.3: Motif structure of the yeast sub-networks [49] that regard only links that are
mapped by affinity isolation methods (AI), yeast-two-hybrid (Y2H) or by the synthetic
lethality (SL) method. For comparison, also the motif-structures of the respective ran-
domized networks (rand) where the degree distribution is conserved are depicted.

specific δ, but subject to random link removal, appears like a network corresponding to
a larger δ.

Note however that this comparison is not mature. With ν > 0 the size N rm
m3 of the

giant network component, from which all degree distributions in Fig. 4.4 (top) have
been sampled, is reduced. For δ = 0.58 and ν = 0.2, 0.4, 0.6 and 0.8 this results in
Nrm

m3 ≈ 4400, 4000, 3350 and 2100 nodes, respectively. By model construction, the
initial size Nm3 = 4687 is independent of the parameter δ. Consequently, the number
of nodes contained in the giant component does not agree between the link-removed
model network and the initial model network although their degree distributions match
perfectly.

For a proper comparison, the model network reduced by random link removal should
end up with the same average degree 〈k〉 and the same size Nm3 for the giant com-
ponent as the initial network model. For reference, it was chosen 〈kdata〉 = 6.47 and
Ndata = 4687 as observed in the yeast data [18]. This requires the model network to
have initially more nodes and links before random link removal sets in. Initial numbers
of nodes and links are not independent of each other and require a careful tuning, to
ensure that after random link removal a precision landing is made at the targeted 〈kdata〉
and Ndata. For example, for removal strengths ν = 0.2, 0.31 and 0.395 the rescaled
parameters are (N, δ) = (4950, 0.55), (5100, 0.53) and (5250, 0.51). The remaining
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Figure 4.4: Degree distribution after link removal obtained for the giant component. Net-
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and (N = 5250, δ = 0.51) for ν = 0.2, 0.31, 0.395 respectively.
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Figure 4.5: Influence of different parameters on the degree correlation during rescaling:
The parameter δ is changed (G rescaled

m3 ) (top) and different removal strengths are applied
ν (G rm,6res

m3 ) (middle). The combination of both (bottom) results in the final rescaled net-
work under the influence of link removal (G rm,res

m3 ). Initial parameters for the rescaled
networks are (N = 4950, δ = 0.55), (N = 5100, δ = 0.53) and (N = 5250, δ = 0.51) for
ν = 0.2, 0.31 and 0.395 respectively.
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Figure 4.7: Influence of different parameters on the motif-structure during rescaling: The
parameter δ is changed (G rescaled

m3 ) (top) and different removal strengths are applied ν
(G rm,6res

m3 ) (middle). The combination of both (bottom) results in the final rescaled net-
work under the influence of link removal (G rm,res

m3 ). Initial parameters for the rescaled
networks are (N = 4950, δ = 0.55), (N = 5100, δ = 0.53) and (N = 5250, δ = 0.51) for
ν = 0.2, 0.31 and 0.395 respectively.
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parameter p = 0.1 has been kept fixed. Note that even larger removal strengths are not
feasible for the chosen network model. It would require δ < 0.5. In this regime, the
model is not self-averaging any longer [13, 14]. In the following, non-rescaled networks
will be referred to as G 6res and rescaled networks as G res.

Fig. 4.4 (bottom) illustrates the degree distributions obtained after random link re-
moval has been applied to the parameter-rescaled model realizations. All distributions
corresponding to different removal strengths collapse to one single curve. This curve
collapse is somewhat surprising because by construction only the size of the result-
ing giant network component and the resulting average degree have been set the same.
Each curve results from the interplay of two effects: initially, i.e. before random link
removal sets in, a smaller δ leads to a flatter degree distribution (see again Fig. 3.6 top),
which is turned into a steeper distribution once random link removal is applied (see
again Fig. 4.4 top).

If the resulting degree distributions of the gene-duplication models had all been Pois-
sonians, the curve collapse would have been straightforward to understand: The rate
equation for random link removal [22]

dpk

dν
=

k + 1
L(1−ν)

pk+1−
k

L(1−ν)
pk (4.2)

is solved by pk = (λk/k!)e−λ with λ = 〈k〉= 2L(1−ν)/N. A Poissonian degree distri-
bution remains Poissonian in spite of the rescaled parameter λ. It has been tested with
simulations that this result, where all N nodes of the network enter, also carries over to
an analysis based on the giant network component only.

Also for pure scale-free distributions pk ∼ k−γ, the curve collapse can be recon-
structed with a rescaling of model parameters. In the case of a growth process with
preferential attachment π∼ k+λ, the model parameters are the number m of open links,
with which a new node enters the network, and the attractiveness λ [4]. They determine
the scale-free exponent γ = 3+λ/m. In Ref. [22] it has been shown that during random
link removal, where the initial average degree 〈k〉 = 2m is reduced, the scale-free ex-
ponent is conserved. This implies that after random link removal with strength ν, the
resulting network appears as one that has been grown with rescaled model parameters
mrescaled = (1−ν)m and λrescaled = (mrescaled/m)λ = (1−ν)λ. Since for not too large
removal strengths the size of the giant network component remains very close to the
total number of nodes N, this result also carries over to an analysis based on the giant
network component only.

Although the small excursions to Poissonian and scale-free networks have shed some
light on the nature of the curve collapse, its appearance in connection with gene-
duplication networks remains without a deeper explanation. Nevertheless, from a prag-
matic point of view it can be said: If a gene-duplication-and-mutation network is con-
sidered as the “true” network and false negatives are introduced in the form of ran-
dom link removal, the resulting degree distribution appears as one obtained from the
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same gene-duplication-and-mutation process, but with different parameters. Therfore,
it would be inappropriate to give a biological interpretation of the magnitude to the
extracted parameters.

The curve collapse motivates to look at observables beyond the degree distribution.
Figs. 4.5, 4.6 and 4.7 provide an overview over the degree correlation, the clustering
coefficient and the motif-structure, respectively. They compare G rescaled

m3 for various pa-
rameters δ (top), G rm,6res

m3 for different removal strengths ν (middle) and the final rescaled
network G rm,res

m3 (bottom) for different removal strengths ν.
A similar finding as for the degree distribution is obtained for the degree correlation
〈kngb|k〉. The form of the curve does change neither for different δ nor if the strength
of link removal ν is changed. Nevertheless, the curve increases for all degrees k with
lower deletion parameters δ and decreases with higher removal strengths ν. In this way,
both effects compensate mostly. After rescaling, the degree correlation deviates only
slightly under random link removal. Hence, the differences in the curves in Figs. 4.5
(top and middle) are mostly due to the different average degree of resulting networks
and fit real yeast data very well.

The clustering coefficient behaves in similar directions (see Figs. 4.6). The number
of triangles in the network is dependent on the average degree 〈k〉. After rescaling, the
shift of the clustering coefficient is partly compensated if the parameters δ and ν are
changed simultaneously. Nonetheless, also here a small deviation remains. Besides
these findings, the clustering coefficient fails to reproduce real yeast data. This is not
changed after random link removal.

A similar result as for the clustering coefficient is obtained for the total number of
motifs. It is strongly dependent on the average degree but the decline of the motif num-
ber is not fully compensated if the network is rescaled (Figs. 4.7). A shift towards more
complex motifs is observed with decreasing δ and towards simpler motifs with increas-
ing ν. Changes in the motif frequency are partly compensated through rescaling and
link removal. After rescaling, the three dominant contributions come from the motifs
“sqr”, “pent” and “pent1” (see Sect. 2.1.5). The relative frequency of “sqr” basically
remains independent of ν . With increasing removal strength, the relative frequency of
“pent” increases slightly, whereas that of “pent1” decreases to some small extend.

Random link addition was realized by distributing Lad = νL links to all possible
links. The resulting network G ad can be considered as the superposition of the under-
lying noise-free network and an added Erdös-Renyi network GER. Also the observed
properties degree distribution, clustering coefficient and degree correlation appear as a
superposition of the scale-free and a random graph, compare Figs. 4.8.

The same holds for random link exchange. Here a link is removed according to
the link removal algorithm, and a new link is inserted according to the link addition
algorithm. This is repeated Lec = νL times, and a superposition of the graph under
random removal G rm and random addition emerges G ad. Results are also shown in
Figs. 4.8. For random link addition a rescaling was abandoned because it would not
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Figure 4.8: Influence of random link addition (first column, G ad,6res
m3 ) and random link ex-

change (second column, G ec
m3) on the degree distribution, degree correlation, clustering

coefficient and motif-structure (from top to bottom row) of the underlying network Gm3.
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lead to new conclusions. The difference between results for link addition and link
removal derive mostly from the different average degree for a fixed noise strength ν.

The degree distributions are shown in Figs. 4.8 (top). With increasing strength of
link addition (left) or exchange (right), the curve shifts from being scale-free with ex-
ponential cut-off towards a Poissonian. In between the degree distribution is a mere
superposition of the extremes. In case of link exchange, the curve approaches the Pois-
son distribution much faster while in the case of link addition, highly connected nodes
remain highly connected. The resulting degree distribution for link addition can be
described as

pad
m3(k) =

1
1 + ν

pm3(k) +
ν

1 + ν
pER(k) (4.3)

In turn for link exchange the degree distribution changes like

pec
m3(k) = νprm

m3(k) + (1−ν)pER(k) (4.4)

if the possibility of exchanging an already exchanged link is disregarded, which is pos-
sible for small ν.

Also the limiting case ν→ ∞ of the degree correlation after link addition (Fig. 4.8
second row left) or exchange (right) corresponds to an Erdös-Renyi network, where
degree correlation is constant and equal to the average degree 〈kngb|k〉=〈k〉 . Note that
〈k〉 increases with ν during link addition while it remains constant during link exchange.

The emerging minima can be explained as follows: During link addition or ex-
change, affected nodes are chosen randomly. Link addition and exchange influence
much stronger nodes with low degree. Hence, their neighbor-degree is much faster
shifted towards the limit for random networks, the average degree of the entire net-
work. Especially for link addition, since no links are removed, highly connected nodes
are significantly modified only for ν� 0. For link addition, nodes with degree one
do not gain a new link in contrast to nodes they are connected with. Thus, the degree
correlation increases for nodes with degree one.

The same explanation holds for the clustering coefficient. The limiting case is again
a constant and very low clustering coefficient like for Erdös-Renyi networks, where e.g.
〈CER〉= 0.001 for 〈kER〉= 6.47 and NER = 4687. If a new neighbor is gained, it is very
likely not connected to any other. A minimum emerges for ν< ∞ and low degrees k.

With the addition of links and thus with the increase of the average degree 〈kad
m3〉, the

total number of motifs increases. Looking at the motif structure again, a superposition
of the Gm3 and a GER network is visible since mainly the total number of “pent”-motifs
increases, which is the motif that mainly emerges in Erdös-Renyi networks (compare
Fig. 2.5). In contrast, under link exchange the total number of motifs decreases strongly.
Its decrease due to link removal cannot be compensated by the small number of motifs
that emerge in random networks. Again “pent”-motifs are increased in their frequency
and the entire motif-structure approaches the limit of an Erdös Renyi network.
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To summarize, the effects of random link removal on the underlying network model
Gm3 are small. No improvement in describing real yeast interaction networks could
be achieved. Only the motif-structure changes but it is shifted away from real yeast
interactions. Also through the insertion of random links during random link addition
and exchange, all observables are shifted towards Erdös-Renyi networks and hence
away from real yeast data.

4.3 Random walk and avalanche subnetwork sampling

Using random link removal (Sect. 4.2), false negative links are simulated by erasing
single links from the network model Gm3. Another way to simulate false negative links
is to subsample links and nodes from the underlying network Gm3. The same occurs
when real yeast interactions are mapped by finding single interactions in experiments
and inserting them into the protein interaction map.

Measurements may be biased through already known proteins and their interactions.
In this section, such errors are simulated by two different sampling algorithms: random
walk and avalanche exploration. The first method identifies nodes and links on the
underlying network by walking on it in random manner from one node to the other. All
traversed links are taken over into the corrupted counterpart. In contrast, the avalanche
exploration algorithm discovers a certain fraction of neighbors of a node and respective
links. This is repeated continuously for every found node in the network.

The random walk starts from only one node or from multiple nodes (number of start-
nodes NS). As a second parameter, for every single walk the number of hops (walking
length lp) is fixed. The random walk algorithm walks from one node to the next. Going
back to any previously found node is allowed as well as walking over the same link
several times. Every link and every node that has been walked over contributes to the
sampled network.

The exact realization is represented by the following algorithm:

for the number of random start-nodes NS do
for the walking length lp do

choose one of the neighbors n j ∈Ni of ni at random with uniform probabilities
map respective link li j
hop to this neighbor n j

end for
end for.

The exploration of the underlying network is studied for different parameters NS and lp.
In Figs. 4.9, the dependence of the total number of nodes N rw

m3 of the sampled network on

61



4 OBSERVATIONAL INCOMPLETENESS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 100  1000  10000  100000  1e+06

N
m

3rw

W

NS = 1
NS = 5

NS = 100
NS = 1000

NS = 10000

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 100  1000  10000  100000  1e+06

<k
m

3rw
>

W

NS = 1
NS = 5

NS = 100
NS = 1000

NS = 10000

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 1000  1500  2000  2500  3000  3500  4000  4500  5000

<k
m

3rw
>

Nm3
rw

NS = 1
NS = 5

NS = 100
NS = 1000

NS = 10000

Figure 4.9: Exploration of the underlying network Gm3 with the random walk algorithm.
The number of nodes N rw

m3 that are explored after W = NS · lp exploration steps (top). The
average degree 〈krw

m3〉 as a function of W (middle) and N rw
m3 (bottom). The colors of the

points represent the chosen number of start-nodes NS.
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the exploration length W = NS · lp (top) and of the average degree 〈krw〉 on W (middle)
is shown. It turns out that the number of nodes in the final network is fairly independent
from the chosen number of start nodes NS, as long as the product W = NS · lp remains
constant. As expected, with increasing W the number of explored nodes increases until
the network becomes fully explored.

The average degree of the sampled network G rw
m3 increases with increasing explo-

ration length until it reaches a maximum for W ≈ 300000. Note that this is already
much larger than the number of links in the underlying network with L ≈ 15000. This
average degree 〈krw

max〉= 6.7 is larger than the average degree of the underlying network
〈km3〉 = 6.47. For even larger exploration lengths the average degree declines to the
value of the underlying network. During the exploration, sparsely connected parts of
the network are more likely to remain undiscovered, which increases the average de-
gree 〈krw〉 of the network. This is also visible in the degree distribution of Fig. 4.10 (top
left).

For a larger number of start-nodes (see NS = 10000 in Fig. 4.9 bottom), the network
becomes faster explored in respect to the number of nodes, but the average degree of
the resulting network is smaller. This is easily comprehensible because the more the
rather short random walk procedures are distributed over the network, the better is the
exploration of nodes, but not all links in a cluster are explored that way.

When avalanche exploration has been applied Gm3→ G ep
m3, the idea that protein in-

teractions are found only through previously found proteins is followed again. It is
assumed that for every exploration step a fraction of the total number of interacting
neighbors is discovered. The respecting algorithm works as follows: A node is selected
at random, and the fraction σ of its neighbors is tagged and put into a First In First Out
(FIFO) queue. Links towards the tagged nodes are copied into the sampled network.
This procedure is repeated for the first node in the FIFO queue, which is removed from
it afterwards and cannot be explored again. The algorithm ends if all nodes in the queue
are processed. In the case NS > 1 a new node is chosen at random and the entire algo-
rithm is repeated again in the same manner for the number of start-nodes NS. This is
represented by the following code:
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4 OBSERVATIONAL INCOMPLETENESS

for the number of start-nodes NS do
choose a node ni at random and put it in the FIFO queue
repeat

choose first node in FIFO queue
choose neighbors N σ

i of the node ni randomly with probability σ
for these neighbors do

map respective links li j : n j ∈N σ
i to these neighbors

if these neighbors N σ
i have not been explored already before then

put them at the end of the FIFO queue
end if

end for
until FIFO queue empty

end for.

If the actual analyzed node has a link to an already explored neighbor, the link is
mapped, but this neighbor is not inserted into the FIFO queue twice. The FIFO queue
processes the nodes in order of their insertion starting with the first one. Other ways
of dealing with the queue are imaginable, e.g. a last in first out queue. Previous stud-
ies [32] suggest that also for this algorithm the order of analyzed nodes does not signif-
icantly affect the outcome.

Fig. 4.11 shows the influence of different parameters NS and σ on the exploration of
the network. The groups of points with NS = 1, 3, 5 and 10 belong to values of σ =
0.2, 0.4, 0.6 and 0.8 from the bottom left to the top right, respectively. With increasing
σ, the number of nodes N and the average degree 〈k〉 in the sampled network increases.
The ratio between N and 〈k〉 is constant and there is no significant dependence on the
number of start-nodes. Since points in the graph for NS = 1, 3, 5 and 10 and constant
σ match very well, the exploration is not dependent on the number of start-nodes, but
only on σ. Deviations emerge for NS = 100 start-nodes.

Both algorithms are applied here to gene-duplication networks with homodimer-link
II. Parameters have been chosen again to match best real yeast interaction data: Nm3 =
4687, δ = 0.58 and p = 0.1. The resulting degree distribution, the degree correlation,
the clustering coefficient and the motif-structure of the obtained networks are shown in
Figs. 4.10.

Networks are rescaled in the average degree and the number of nodes to ensure a
network of the same average degree and size as in real yeast data. Start parameters
in case of random walk are NS = 1 and (N = 6050, δ = 0.55), (N = 6400, δ = 0.53)
and (N = 6600, δ = 0.51) for lp = 29000, 25500 and 23500, respectively and in the
case of avalanche exploration NS = 1 and (N = 5900, δ = 0.55), (N = 6350, δ = 0.53)
and (N = 6625, δ = 0.51) for σ = 0.46, 0.36 and 0.298, respectively. Since the under-
lying networks are limited to a maximum average degree 〈km3, max〉 ≈ 10, the explo-
ration level in respect to the discovered nodes and links is always rather high. There-
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Figure 4.10: Degree distribution, degree correlation, clustering coefficient and motif-
structure (from top to bottom row) of the rescaled gene-duplication network with
homodimer-link II G rescaled

m3 subject to random walk (G rm,res
m3 , left) and avalanche explo-

ration (G ep,res
m3 , right).
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Figure 4.11: Exploration of the underlying network Gm3 with the avalanche exploration al-
gorithm. The dependence of the average degree 〈kep

m3〉 on the size of the explored network
Nep

m3 is depicted. The colors of the points represent the chosen number of start-nodes NS.
Groups of points at NS ≈ 2200, 3400, 4000 and 4400 (without the cyan points) derive
from explorations with σ = 0.2, 0.4, 0.6 and 0.8 respectively. The constant ratio between
〈kep

m3〉 and Nep
m3 is depicted with a linear fit 〈kep

m3〉= aNep
m3 +b with a = 0.0012 and b = 1.4.
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Figure 4.12: Affinity isolation methods may lead to wrong link assignments. (a) Bait protein
A and prey proteins B, C, D bind for a complex. Assigned links reflect the bait-prey
relationship. However, A does not directly bind to C (false positive, red). It is B, which
binds to C (false negative, blue). (b) For the complex ABC links are only assigned
between bait A and preys B, C. Link B-C is missing, resulting in a false negative (blue).

fore, rescaled simulations where for example lp is low and only a small fraction of
the network is explored could not be carried out. But the analysis for random walk
and avalanche exploration without rescaling shows that there is no qualitative differ-
ence in the resulting network if the underlying network is either slightly or almost fully
explored (data not shown).

Besides the small deviations for nodes with low degree, in the degree distribution,
the same curve collapse is observed as after link removal if the underlying networks are
rescaled (see Sect. 4.2). Also the results for the degree correlation, clustering coefficient
and motif-structure, are identical to findings for random link removal, which is a sur-
prising result. Obviously, due to randomness, the exact realization of the sub-network
sampling algorithm is not important.

4.4 Spoke link rearrangement

So far, the modeling of observational incompleteness has taken into account random
errors only. In this section, a specific link rearrangement will be discussed, which is di-
rectly motivated from the shortcomings in the generation and interpretation of protein-
interaction data.

In Sect. 3.1, three methods to identify protein interactions have been explained. The
link rearrangement, discussed here, is motivated by uncertainties that occur if affinity
isolation methods are used. The central problem is outlined in Fig. 4.12. For a protein
A, which is used as bait in the cell lysis, a certain number of prey proteins (BCD)
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4 OBSERVATIONAL INCOMPLETENESS

are identified that form a complex with A. Even if all proteins in the complex are
identified, there is no information provided which of the proteins interact directly. In
the commonly used “spoke” rule [10], direct links are assigned between the bait and
all its preys. This method does not take into account the possibility that the bait is not
directly interacting with all the preys but via intermediate proteins. This results in false
positive and negative links (Fig. 4.12a). Moreover, possible interactions between the
prey proteins themselves are also neglected, resulting in even more false negative links
(Fig. 4.12b).

Similar effects occur with the yeast-two-hybrid [9] and the synthetic lethality method [62].
Although the yeast-two-hybrid method characterizes the interaction between two target
proteins, no assurance can be given that this interaction is not provided by an interme-
diate protein. With regard to the synthetic lethality method, an interaction is assumed
between two functional correlated proteins, but even if they are part of the same com-
plex, it is not clear if a direct interaction exists.

To study the influence of this effect on the network topology, a local random link
rearrangement is proposed, which is referred to as spoke link rearrangement. After
selection of an initial node i ∈ N (bait), one of its direct neighbors j ∈ Ni (prey) is
chosen at random. The latter continues to choose randomly one of its first neighbors
k ∈ N j \ i, excluding, of course, the initial node. Afterwards two cases have to be
distinguished: If the last node k is a second neighbor of the bait node i, a false-positive
link lik between these two nodes is introduced, and the old link between the two prey
nodes l jk is removed to gain false-negative status (see again Fig. 4.12a). In the other
case, the second prey node k turns out to be a first neighbor of the bait node i (i.e.
k ∈ Ni), upon which only the link between the two prey nodes l jk is removed and
becomes false-negative (see again Fig. 4.12b).

To apply this algorithm, a rule needs to be defined to choose possible bait proteins.
In yeast data [18], it turns out that≈ 25% of the proteins have been used as baits. Their
degree distribution pbait

k is slightly different from the overall degree distribution pk.
Fig. 4.13 shows the degree distribution of the baits in real yeast data (red) [49]. The
green curve is identical to the degree distribution of the entire dataset.

It is now assumed that baits are preferentially chosen from the entire set of proteins
according to

pbait
k ∼ kα pyeast

k . (4.5)

This indicates that a bait node i with degree ki might be picked with the preferential
bias

Πbait
i,α =

kα
i

∑N
j=1 kα

j
. (4.6)

In blue, magenta and cyan in Fig. 4.13, degree distributions are fitted according to
Eq. (4.5) with α = 0.3,1 and 3. The green curve corresponds to an α = 0. This suggests
values 0. α. 1.
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Figure 4.13: Comparison of the real bait degree distribution [49] to the bait distributions
that result from the degree distribution of the entire yeast dataset according to Eq. (4.5)
and a different choice of α.

When it comes to an estimate of the exponent α, it has to be considered that the
degree distribution pyeast

k of the real protein interaction network enters in Eq. (4.5), but
only the degree distribution of yeast data pdata

k is available. Since yeast interaction
data is corrupted by many false positive and false negative links, also the degree dis-
tribution extracted from yeast data is corrupted. Hence, the estimate of α by means of
the corrupted degree distribution in turn influences the degree distribution and thus the
choice of α itself recursively. To cover all possible changes of the degree distribution,
probabilistic bait selection with α = 0, 1 and 3 is discussed in the following.

Application of the spoke algorithm on the network model Gm3

The combination of the biased bait selection (Eq. (4.6)) and the spoke link rearrange-
ment process are applied to the network structure obtained with the gene-duplication-
and-mutation model Gm3 of Ref. [15]. Resulting networks are referred to as G sp

m3.
Again, model parameters are chosen to match the yeast data, i.e. Nm3 = 4687, δ = 0.58
and p = 0.1. The rearrangement strength ν = ∆L/L counts the relative number of bait
selections implying link rearrangement or removal.

Note that the giant component of the network does not change with ν and remains at
its initial value Nm3 = Nsp

m3. Both subprocesses of the spoke link rearrangement always
keep the three involved nodes (bait-prey-prey) connected to the overall network.
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Since link removal is always included in the spoke link rearrangement (see Fig. 4.12b),
the average degree decreases with increasing ν from its initial value 〈km3〉= 6.47. For
the already very large rearrangement strength ν = 0.8, we arrive at 〈ksp

m3〉 = 6.40, 5.97
and 3.12, for α = 0, 1 and 3, respectively. This α-dependence is easily explained: Due
to gene-duplication, many square-motifs are built into the initial network structure (see
Sect. 3.3.4). Upon application of the spoke link rearrangement, the square-motifs dis-
appear and a lot of triangles emerge instead. Consult also Figs. 4.17 and 4.18 which
show the clustering coefficient as an increasing function for low values of ν and the rel-
ative frequency of square-motif as a decreasing function of the rearrangement strength.
Note, that the further increase of the clustering coefficient in case α = 3 is for other rea-
sons as explained later. If a previously picked bait node is selected again, which does
rarely happen for a small α, but more often for a large α, the bait and the two preys find
themselves more likely in a triangle. Only the link between the two preys is removed,
but no new link is introduced. This explains the ν- and α-dependence of the average
degree.

The strong decrease of the average degree for α = 3 makes rescaling necessary to
keep the network comparable. Due to the limit of the deletion parameter δ> 1/2 during
network evolution, the level of link rearrangement is limited to ν = 0.51 because the
underlying initial network is limited to a maximum average degree of 〈km3〉≈ 10. Initial
parameters are δ = 0.55, 0.53 and 0.51 for ν = 0.27, 0.35 and 0.51 respectively.

Degree distribution

The resulting degree distribution is discussed first for the three different outcomes for
α< 1, α≈ 1 and α > 1, followed by an analytical solution for the stationary limit that
could be found for α = 0 and α = 1. The following paragraphs which base again on
simulations give a deeper view into the network topology.

Figs. 4.14 show the dependence of the degree distribution on the rearrangement strength
ν for α = 0, 1, 3. If α< 1 (see α = 0), nodes with a small degree are favored to be cho-
sen as baits and gain links. The degree of highly connected nodes is constantly dimin-
ished when they are chosen as first neighbors of the baits and their links are reconnected
to the lowly connected baits. Lowly connected nodes disappear, because they gain links.
In the limit of ν→ ∞ an equilibrium emerges, where on average an equal number of
links is removed from and attached to all nodes. Very highly and lowly connected nodes
have widely disappeared. The degree distribution becomes a Poissonian and a random
network appears. This is shown in Fig. 4.14 (top) for ν = 0.1, 0.3, 0.5, 0.7 and 5. Only
the first four values of ν are of biological relevance. ν = 5 is depicted to illustrate the
limiting case.

For α > 1 (see α = 3, Fig. 4.14 bottom), the few highly connected nodes gain more
and more links by attaching second neighbors directly to them. Note that with ν = ∆L/L
even for a low ν = 0.27 the same high-degree bait is selected again and again. After
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Figure 4.14: Degree distribution for the gene-duplication model with homodimer-link II
network (G sp

m3) after spoke link rearrangement with α = 0, 1, 3. Networks are rescaled in
the case α = 3 and for ν = 5, α = 1.

71



4 OBSERVATIONAL INCOMPLETENESS

1

0.1

0.01

0.001

0.0001

0.000010.00001

 1  10  100  1000

p(
k)

k

α = 3

ν=0 
ν=0.2 
ν=0.4 
ν=0.6 
ν=0.8 

ν=1 
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a certain number of time steps of the spoke algorithm, a few highly connected nodes
remain with a direct link between them and surrounded by lots of nodes with degree
one. Note that this is not very significant in the depiction of Fig. 4.14 (bottom) because ν
was limited to νmax = 0.5 to make rescaling possible. Hence, the outcome of the spoke
algorithm without rescaling is depicted additionally in Fig. 4.15. The process comes
to an end when only one node that forms a “star” with all other nodes with degree
k = 1 remains. In the case of the assumed process of mapping yeast interactions, the
strength of link rearrangement represents the strength of the attachment of the proteins.
If ν→ ∞, one bait is picked out with all other proteins attached to it. According to the
spoke rule, all interactions are directly assigned to the bait and a prey. Hence, a “star”
is formed with a hub in the middle. This explains the increase of nodes with degree
k = 1 in the degree distribution. For larger perturbations ν, also the number of highly
connected nodes declines since for ν→∞ only one highly connected node remains. The
highest connected nodes are not shown in Fig. 4.14 bottom) but in Fig. 4.15 it is visible
that for ν = 0 the maximum degree is kmax,m3 ≈ 200, while for ν = 0.8 it becomes
ksp

m3,max ≈ 3500. These hubs are connected to almost all nodes in G sp
m3.

For α≈ 1, the resulting degree distribution changes very slowly (see Fig. 4.14 mid-
dle). Hence, for values of ν. 1 that are of biological relevance, it can be considered as
unchanged by the spoke algorithm.

Analytical solution

For an analytical solution of the degree distribution in the limit ν→ ∞, it is assumed
that there are no degree correlations and no links are removed according to the case b)
of Fig. 4.12. Thus, the spoke rearrangement algorithm is described by the rate equation:

pk(t + 1)− pk(t) =(1−δk1)
1
N

(k−1)α

〈kα〉 pk−1(t)− (1−δk0)
1
N

kα

〈kα〉 pk(t) (4.7)

+ (1−δk0)
1
N

k + 1
〈k〉 pk+1(t)− (1−δk1)

1
N

k
〈k〉 pk(t).

It gives the average change of the number of nodes ∆pk(t) with degree k at every time
step t. The first two terms on the right describe the average gain and loss in the pk-bin
when a bait is selected and its degree is increased by one as k−1→ k or k→ k+1. The
bait is selected with probability according to Eq.(4.5). The last two terms represent the
neighbor of the bait that loses a link and thus increases or decreases pk for every time
step. The probability of choosing a neighbor is proportional to the number of its links.
Within all these terms, the first term like (1− δk1) assures that the baits have a degree
k≥ 1 and the preys that lose a link have k ≥ 2. The term 1/N enters due to the fact that
in every rearrangement step only one node is selected as bait and prey.

The stationary solution
pk(t) = pk(t + 1) = p∞

k (4.8)
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is found with the insertion of degrees k = 1, 2, . . . into the rate equation. This leads for
α = 0 to

p∞
k =
〈k〉n−1

k!
p∞

1 . (4.9)

Note, that
p∞

k=0 = pk=0(t = 0) = 0. (4.10)

With the condition
∞

∑
k=1

pk(t) = 1, (4.11)

p∞
1 can be resolved as

p∞
1 =

(
∞

∑
k=1

〈k〉k−1

k!

)−1

(4.12)

=

(
1
〈k〉

(
∞

∑
k=0

〈k〉k
k!
−1

))−1

=
〈k〉

e〈k〉−1
.

Thus for α = 0, the rate equation is solved by

p∞
k =





0 (k = 0)

〈k〉k
k!

1
e〈k〉−1

(k ≥ 1).

(4.13)

This Poissonian solution confirms the simulation results for ν→ ∞, see Fig. 4.14 (top).
For the case α = 1, the rate equation Eq. (4.7) is solved by

p∞
k = p∞

1 k−1. (4.14)

This solution cannot be normalized. But the rate equation describes infinite networks.
To approach finite network sizes, a cutoff term must be introduced. Thus, the solution
becomes

p∞
k = p∞

1 k−1 e−
k

kc , (4.15)

where kc is the cutoff parameter. In Fig. 4.14 (middle), the solution for the rate equation
with p1 = 0.35 and kc = 18 illustrates very well the limiting case for ν→∞.

For α> 1, no simple solution of the rate equation could be found. Simulation results
suggest that the degree distribution in the stationary limit must be p1 = N− 1/N and
pN−1 = 1/N with all other values zero to represent the star structure. The average
degree then becomes:
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〈kν→∞〉=
N−1

N
·1 +

1
N
· (N−1) =

2(N−1)

N
≈ 2. (4.16)

This suggests that for a solution in the α > 1 regime, link removal must be included in
the rate equation.

Simulation results for degree correlation, clustering coefficient and
motif-structure

In case of α = 0 and 1 the degree correlation 〈kngb|k〉 and the clustering coefficient
〈C(k)〉 become independent of the node degree k for very large ν, which is charac-
teristic to fully randomized networks. See Figs. 4.16 and 4.17. For α = 0, the over-
all clustering coefficient declines like 〈Csp

m3〉= 0.14, 0.11, 0.08, 0.06 and 0.002 for ν =
0.1, 0.3, 0.5, 0.7 and 5, respectively. Also for α = 1 it declines as 〈Csp

m3〉= 0.20, 0.19, 0.16, 0.12
and 0.008 for ν = 0.1, 0.3, 0.5, 0.7 and 5, respectively. This decline is again a clear
signature of the convergence towards randomized networks. Also the motif-structures
converge to the randomized limit. This is documented in Figs. 4.18 (top and middle)
with the motif-structures of equivalent randomized network models, which match very
well.

Qualitative differences between the cases α = 0 and α = 1 are obtained for smaller
ν. Compared to α = 1, the k-dependent clustering coefficient declines for α = 0 much
faster for low degrees k . 10. The same holds for the degree correlation. Both can be
explained as follows: If nodes with low degree are chosen as baits in a larger amount,
they underlie rearrangement much stronger than nodes with higher degree. Further-
more, link rearrangement affects lowly connected nodes much more then higher con-
nected nodes, compare also random link exchange in Sect. 4.2. Thus, their observables
shift much faster towards the limiting case of an Erdös-Renyi network.

Nevertheless, for low rearrangement strengths ν < 0.3 the clustering coefficient in-
creases in both cases α = 0 and α = 1. As discussed in Sect. 3.3.4, many squares emerge
in gene-duplication models. If a node with degree ki and clustering coefficient Ci = 0
is duplicated, on average k′i(k′i− 1)/2 squares emerge where k′i = (1− δ)ki. The spoke
rearrangement algorithm compensates this effect when the copied node is attached di-
rectly to the original or vice versa and an intermediary link is removed. This leads to
the emergence of k′i−1 triangles and explains the increase in the clustering coefficient.
Note that the number of emerging triangles is much smaller than the number of squares
that disappear.

Results are very different for α = 3. As mentioned before, nodes are repeatedly re-
attached to highly connected nodes. This converges to a “star” with a hub in the mid-
dle. Consequently, the degree correlation becomes strongly disassortative and the aver-
age neighbor degree of lowly connected nodes becomes extremely large. For ν = 0.8
a maximum degree ksp

max ≈ 3500 comes with a very low average neighbor degree of
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Figure 4.16: Degree correlation for the gene-duplication model with homodimer-link II
network (G sp

m3) after spoke link rearrangement with α = 0, 1 and 3 (G sp
m3). Networks are

rescaled in the case α = 3 and for ν = 5, α = 1.
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m3) after spoke link rearrangement with α = 0, 1 and 3 (G sp
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Figure 4.18: Motif structure for the gene-duplication model with homodimer-link II net-
work (Gm3) after spoke link rearrangement with α = 0, 1 and 3 (G sp

m3). Networks are
rescaled in the case α = 3 and for α = 1, ν = 5.
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〈ksp
ngb|k

sp
max〉 ≈ 1.2, compared to kmax ≈ 200 and 〈kngb|kmax〉 ≈ 15 for ν = 0. The clus-

tering coefficient increases for all degrees k nearly proportional to the rearrangement
strength ν. For a lower ν, the same explanation holds as in the α≈ 1 case: Squares are
rearranged to triangles. Consult Fig. 4.18 (bottom), in which the decline of the num-
ber of squares is detected. For a higher ν, e.g. ν = 0.8, the highest connected node
(hub) with kmax ≈ 3500 is already connected with almost any other node in the net-
work. Given this hub h, any connected pair of nodes i 6= h and j 6= h is very likely to be
connected to h and thus form a triangle. In the same way, more complex motifs appear
and regarding the entire motif-structure, the total number as well as the complexity of
motifs increases strongly.

In contrast to the other noise and sampling algorithms the spoke rearrangement
indeed changes the properties of the network significantly. For the here used gene-
duplication and mutation model the regime of choosing nodes as baits, determined by
α . 1, α ≈ 1 or α & 1, is crucial. The exact value within these ranges are of minor
importance for the network properties.

Comparison with biases of mapping methods

To study biases of several mapping methods, in Sect.4.1 different sub-networks consist-
ing of links found by only one method were analyzed. These findings can now serve to
prove if results of the spoke algorithm are reflected in the affinity isolation sub-network.
But it must be pointed out that the problem of the introduction of false links within a
protein complex exists also in the synthetic lethality method and that in general inter-
mediary proteins may not be recognized in the yeast-two-hybrid method neither (see
Sect. 3.1).

The analysis of the degree distribution of the baits suggest an α < 1 (see Fig. 4.13).
Thus, a shift towards a Poissonian degree distribution between the distribution of all
nodes or the high confidential dataset and the distribution of the affinity isolation sub-
network could be expected, which is not the case (see again Fig. 4.2 top). Rather the
degree distribution of the affinity isolation sub-network is more scale-free when com-
pared to the degree distribution of the entire dataset, which would actually suggest
α& 1.

Looking at the degree correlation of the affinity isolation sub-network (Fig. 4.2 mid-
dle) suggests α . 1 because here the degree correlation is constant in contrast to the
entire network. This difference between the entire network and the sub-network is very
well reflected if the model and the outcome after spoke rearrangement are compared.

The preference of α< 1 may be substantiated by the observed maximum in the clus-
tering coefficient at degree k≈ 5 (Fig. 4.17 top). A similar maximum can be observed in
yeast data (see Fig. 4.2 bottom). In turn for degrees k≥ 7, the clustering coefficient can
be much better reproduced in the α≈ 1 and even better in the α > 1 regime (Fig. 4.17
middle). The sub-networks can hardly be consulted to draw any conclusion because
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Figure 4.19: Degree distribution, degree correlation, clustering coefficient and motif-
structure after spoke link rearrangement on an Erdös-Renyi network GER for different
choices of the baits with α = 0, 1, 3 and constant ν = 5 in the first two cases and ν = 1
in the latter one. The different choice of ν is due to the fact that the network converges
faster to the limiting “star” structure in the case α = 3.

.

the clustering coefficient fluctuates strongly. However, the average over all degrees 〈C〉
is much larger for affinity isolation and synthetic lethality methods than for yeast-two-
hybrid (see Tab. 4.1). That may substantiate the findings of this section, where 〈C〉
increases in all cases for smaller ν. On the other hand, the clustering coefficient might
be per se larger because both methods focus on complexes.

Again the motif structure of the entire network can be best reproduced in the α≈ 1
case for ν = 0.3 (Fig. 4.17 middle) but no result for α< 1, α = 1 or α> 1 matches well
with the sub-networks for different methods (see Fig. 4.3).

Influence of spoke link rearrangement on other network models

Additionally, the spoke rearrangement has been applied to Erdös-Renyi networks (see
Figs. 4.19) as well as to gene-duplication and mutation models that have been intro-
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Figure 4.20: Degree distribution, degree correlation, clustering coefficient and motif-
structure after spoke link rearrangement on the duplication and mutation network with
random link Gm1 (left) and on the duplication and mutation network with homodimer-
link I Gm2 (right) for different choices of the baits with α = 0.5, 1 and 1.5 and constant
ν = 0.4.
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duced in Sect. 3.2 (Figs. 4.20) to obtain a general view on the properties of the algo-
rithm.

In the case of an Erdös-Renyi network GER, the analytical results for α = 0 and α = 1
are confirmed. Also in the case of α = 3, the network shifts towards a “star”-structure.
Compare Fig. 4.19 (top left) where lots of nodes with degree k = 1 and some hubs
emerge.

Other results for the degree distribution, degree correlation, clustering coefficient and
motif structure are as one would expect if the network converges either to a randomized
network (α. 1) or to a “star” structure (α > 1). The average neighbor degree and the
clustering coefficient are independent of the node degree but somewhat larger in the
α = 1 case. Most significant is the outcome in the α = 3 case: Mostly nodes with
degree k = 1 and a hub remain. The hubs have degrees of ksp

max,rand ≈ 4500, compared
to kmax,rand ≈ 20 for ν = 0. As for the gene-duplication and mutation network with
homodimer-link II G sp

m3, the degree correlation is strongly disassortative. Rescaling was
abandoned here although the average degree declines to 〈ksp

ER〉= 3.38.
Looking at the influence of the spoke rearrangement on other gene-duplication net-

works Gm1 and Gm2, above stated results for Gm3 are confirmed and networks converge
to the same topology.

Conclusion

In general, the spoke algorithm changes the structure of any network towards either a
randomized network with Poissonian degree distribution, a scale-free distribution with
γ = 1 and exponential cutoff or a “star”-like structure depending on the choice of the
baits. In the limit ν→ ∞ this outcome is independent of the underlying network.

Thus, the choice of the specific gene-duplication and mutation model is of minor
importance if the influence of this inaccuracy that is due to mapping experiments is
evaluated. But the question which regime of choosing the baits is the most probable
one remains difficult to be answered. Most observables point to an α . 1 regime, in
which all observables are shifted towards pure randomized networks. Regarding all
observables, the spoke rearrangement with α = 1 and ν = 0.3 brings the curves closest
to real interaction data.
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5 Conclusion and outlook

Analyses of the available evolution models for protein interaction networks showed that
difficulties with respect to the reproduction of further topological observables exist, al-
though these models are able to reproduce the degree distribution very well. Especially
the motif structure with their rich variety of motifs is not described very well by any
model. Even the inclusion of some biological details - such as more freedom in the
mutation of interactions after gene-duplication or the possibility of copying not only
one but two correlated proteins in one evolution step - could not improve the outcome
significantly.

Hence, it appears necessary to include also selection and biochemical repair mech-
anisms in the actual models to obtain larger improvements in the modeling of protein
interaction networks. The exclusion of unconnected proteins during the evolution of the
gene-duplication model with homodimer-link II might be a first step into this direction.
Another aspect of the same question is: Is it legitimate to consider the average network
topology or did nature select a very special network realization? In this as well as in
all earlier studies only averaged network realizations were regarded. But a model that
includes selection based on a fitness model would probably much more suited. As long
as this is not possible, further studies should focus on the entire variety of networks that
emerge with the actual models.

Main target of this work was to propose and analyze several error algorithms to en-
able an appropriate comparison between models and real yeast data since the data is
corrupted by a very large number of false links. It could be shown that topological
network properties are very robust against randomly introduced false negative links. In
simulations it turned out that thereby it is not important if these links are removed from
the underlying (true) network or if a corrupted network is randomly sampled from the
true one.

False positive links were also simulated in a random manner. The comparison be-
tween real yeast interaction data and the resulting networks showed that randomly dis-
tributed false positive links are unlikely to be contained in the real protein interaction
dataset in such a large number as predicted [9, 11].

Furthermore a very specific (spoke) rearrangement algorithm was applied that is
based on one type of the three major mapping methods. With the specific exchange
of links in the neighborhood of selected nodes, this algorithm includes the simulation
of false positive as well as false negative links.

For all other simulations, the degree distribution is not largely questioned: It appears
to be robust against perturbations through random false negative errors and the influence
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of random link addition might be small. But depending on the choice of the baits, with
the spoke link rearrangement the degree distributions can be changed into any direction.
Unfortunately, different observables point to different regimes of choosing the baits.

Most convincing is the regime, in which baits are chosen fairly equally with all de-
grees (α = 1). This would not change the degree distribution significantly. All other
observables would change towards the limit of a randomized network and for a lower
perturbation ν come closer to protein interaction data.

For a better description of topological errors it might be promising to consider even
more errors that are characteristic for certain mapping methods. But not only in biology,
also in any other, especially social networks, empirical data is largely corrupted by
false links. Hence, in topological investigations the influence of false links should be
regarded, either by general or by specific error assumptions.
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APPENDIX - SYMBOLS

Appendix - Symbols

symbol meaning
G network
N set of nodes
N number of nodes
ni node i
Ni set of neighbors of node ni

L set of links
L number of links
li j link between i and j
k degree
〈k〉 average degree
p(k) degree distribution
di j shortest path length between nodes i and j
dmax network diameter
Q quality factor during the evaluation of the community structure
〈kngb|k〉 degree correlation
〈C〉 average clustering coefficient
〈C(k)〉 k dependent average clustering coefficient
GER Erdös-Renyi network
p(ai j = 1) probability of a link between nodes i and j
D dimension
γ scale-free exponent
kc cutoff parameter
Gm1 gene-duplication and mutation network with random link [12]
Gm2 gene-duplication and mutation network with homodimer-

link I [13]
Gm3 gene-duplication and mutation network with homodimer-

link II [14, 15]
δ parameter for the deletion of links during evolution in Gm1, Gm2

and Gm3 as well as in the link-duplication and the hybrid model
β parameter for the insertion of random links during evolution in

Gm1 and the hybrid model
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symbol meaning
p parameter for the insertion of maintained homodimer-links during

evolution in Gm2 and Gm3 as well as in the link-duplication and
the hybrid model

ω fraction of link-duplication in the link-duplication model
Pi purity of node i
Li

m number of links at node i detected by method m
G rm network after random link removal
G ad network after random link addition
G ec network after random link exchange
G rw network after random walk
G rw network after avalanche exploration
G sp network after spoke rearrangement
G res rescaled network
G 6res not rescaled network
ν fraction ν = ∆L/L of removed, added or exchanged links during

random link removal, addition and exchange as well as during
spoke link rearrangement

NS number of start-nodes during random walk and avalanche explo-
ration

lp walk length during random walk
W exploration length W = NSlp during random walk
σ probability to discover neighbors during avalanche exploration
N σ

i set of discovered neighbors of node ni during avalanche explo-
ration

α exponent of preferential bait picking during spoke link exchange
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