

Auction Design for a Strategic Reserve Market

Joint research with

Gert Brunekreeft (Jacobs University Bremen)

Margarethe Rammerstorfer (Wirtschaftsuniversität Wien)

Enerday - 8th Conference on Energy Economics and Technology
Dresden, April 19, 2013

Roland Meyer
Jacobs University Bremen

Auction Design for a Strategic Reserve Market

- A changing environment
 - Towards low-carbon energy supply
- A Strategic Reserve market
 - The Swedish model
- Auction design issues
 - An auction design model
- Conclusions: welfare effects

A changing environment

Towards low-carbon energy supply

- Transformation towards large-scale integration of renewable energy sources (RES)
- Intermittent supply of RES with low marginal cost
 - Conventional generators needed as reserves in case of low wind and solar generation
 - "Missing money problem": Does the market provide sufficient investment incentives?
- Traditional market design: energy-only market
 - Generators receive revenues for <u>produced energy [€/MWh]</u> and not for holding <u>capacity reserves [€/MW]</u>
 - ▶ Is energy-based remuneration adequate for a world of 50+ percent RES?

A Strategic Reserve market

The Swedish model as an example

- TSO acquires max. 2000 MW of reserves (units with a utilization below 40 hours/year)
 - Gas, Oil (2011: 1309 MW)
 - Demand response. (2011: 583 MW)

Reserve dispatch price = Maximum day-ahead price (min. 800 €/MWh) + variable cost

Electricity markets and auction design in Germany

Existing markets

Proposed reserve market

Type of market	Spot market	Balancing market	Reserve market
Bids	Energy bids	Capacity bid and Energy bid	Capacity bid and Energy bid
Pricing	Uniform pricing	Pay-as-bid pricing	Pay-as-bid pricing
Bidding rule	Simultaneous	Simultaneous	Simultaneous
Scoring rule	<u>-</u>	Sequential (e.g. in Germany)	Simultaneous or Sequential

An auction design model (work in progress)

- TSO as auctioneer aims to minimize reserve costs by selecting the cheapest units
- Generators bid a certain amount of capacity for a given time period
 - Capacity is withdrawn from the day-ahead market
 - The bids of each unit i consists of
 - A capacity bid b_i^K [€/MW]
 - An energy bid b_i^C [\in /MWh]
 - Assuming a first-price, pay-as-bid auction, each bidder receives its own bids if selected for the reserve market.
 - Total profits:

$$\pi_i = b_i^K + \rho_i(b_i^C) \cdot b_i^C$$

with $0 \le \rho_i \le 1$ dispatch duration of unit i (dispatch function)

► How are winning bids selected?

Scoring mechanisms

Scoring mechanism	Simultaneous scoring rule	Sequential scoring rule
Bidding	Simultaneous	Simultaneous
Scoring rule (Selection)	$S_i = b_i^K + \Omega_i b_i^C$	$S = b_i^K$
Energy demand (Dispatch)	$ ho(b_i^{\mathcal{C}})$	$ ho(b_i^{\mathcal{C}})$

Maximization problem of bidders:

Max
$$E(\pi_i) = P_i(S_i(.)) \cdot [b_i^K - k_i + \rho(b_i^C) \cdot (b_i^C - c_i)]$$

Relative weights of bids in scoring rule

$$\frac{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^C}}{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^K}} = \rho(b_i^C) + (b_i^C - c_i) \frac{\partial \rho(b_i^C)}{\partial b_i^C}.$$

MRS of energy and capacity bids

1. Simultaneous scoring rule

$$S = b_i^K + \Omega_i \cdot b_i^C$$

$$\frac{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^C}}{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^K}} = \rho(b_i^C) + (b_i^C - c_i) \frac{\partial \rho(b_i^C)}{\partial b_i^C}.$$

Proposition 1: Assuming that a simultaneous scoring rule of the form $S_i = b_i^K + \Omega_i b_i^C$ is implemented, where $\Omega_i = \rho_i \, \forall i$ (optimal scoring rule), bidders will bid their true marginal cost $(b_i^C = c_i)$ on the energy market.

Main result: Truthful marginal bids

Assumption: actual dispatch (ρ_i) for each bidder I is known *a priori* to the auctioneer as well as to bidders.

2. Sequential scoring rule

$$S = b_i^K$$

$$\frac{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^C}}{\frac{\partial S_i(b_i^C, b_i^K)}{\partial b_i^K}} = \rho(b_i^C) + (b_i^C - c_i) \frac{\partial \rho(b_i^C)}{\partial b_i^C}.$$

Proposition 2: In case of a sequential scoring rule, where units are chosen on basis of their capacity bids only, bidders will choose a mark-up on their energy costs according to

$$(b_i^c - c_i) = \frac{-\rho(b_i^c)}{\frac{\partial \rho(b_i^c)}{\partial b_i^c}} > 0$$

Main result: Positive mark-up on energy bids

(due to limited number of bidders at the "second stage" (dispatch))

- ► Energy bid as "strategic variable" (to make profits)
- ➤ Capacity bid as ,,residual variable" (opens the door to the reserve market)

Conclusions: welfare effects

- Sequential scoring rule (like in balancing markets)
 - Leads to strategic energy bidding (positive energy mark-up)
- Simultaneous scoring rule
 - "Correct" scoring weights
 - Leads to truthful marginal bids
 - Efficient selection and dispatch
 - In case of prediction errors:
 - Risk of strategic behavior
 - Inefficient selection and dispatch
 - In case of doubt: higher capacity weight seems less harmful
 - Distortion in direction of peak capacities with lower fixed costs
- Risk effects
 - Higher share of capacity payment reduces dispatch risk for reserves
 - Risks depend on timeframe of the reserve auctions

Thank you for your attention!

Roland Meyer Jacobs University Bremen ro.meyer@jacobs-university.de