TRĀNSNET BW

9th Conference on Energy Economics and Technology

FUTURE DEVELOPMENT OF THE EUROPEAN MARKET FOR SYSTEM RESERVE

DR.-ING. ULF KASPER / EXPERT CONTROL RESERVE Dresden, April 11th, 2014

TABLE OF CONTENTS

01 Introduction 02 Existing Markets for System Reserve 03 Existing International Cooperation 04 Future Developments 05 Conclusions

01 Introduction

Introduction

BACKGROUND AND MOTIVATION

- / Provision of system services in order to ensure secure system operation
 - / Frequency stability
 - / Voltage stability
 - / Rebuilding of supply
 - / System operation
- / Three reserve qualities for frequency stability of Transmission System Operators (TSOs)
 - / Primary control reserve (PCR)
 - / Secondary control reserve (SCR)
 - / Tertiary reserve (TR)

Participation in markets for reserve contributes considerably to the contribution margin of generation units.

Introduction CONTROL RESERVE

/ Control reserve ensures the continuous balancing of generation and demand in a synchronously interconnected system

Introduction SCHEDULED ENERGY

/ Development of the mean prices of the German day-ahead spot market (scheduled energy)

Increasing interest in markets for system reserve due to declining potential revenues from day-ahead market

TRNSNET BW

02 Existing Markets for System Reserve

Existing Markets for System Reserve

RESERVE QUALITIES

/ Specification of different reserve qualities according to effectiveness

Existing Markets for System Reserve

RESERVE QUALITIES (2014/04/10)

	PCR	SCR	TR
Mean demand	±568 MW	+1,998 MW -1,919 MW	+2,464 MW -2,801 MW
Activation time	30 seconds	5 minutes	7,5 - 22,5 minutes
Tender period	Weekly	Weekly (HT/NT)	Daily (4-h-product)
Min. bid volume	±1 MW	+5 MW/-5 MW*	
Bid increment	±1 MW	+1 MW/-1 MW	
Allocation	Merit order of reserve capacity prices		
Call	Not selective	Merit order of reserve energy prices	
Remuneration	Capacity prices	Capacity and energy prices	

* For tertiary reserve undividable bids with a volume up to 25 MW are allowed.

Existing Markets for System Reserve AUCTION METHOD (I)

- / Multi part pay-as-bid auction
 - / Bid acceptance according to merit order of all bids of type A (i. e. capacity price)
 - Reserve demand according to merit order of all bids of type B (i. e. energy price)
- / In case of acceptance, each participant receives his individual fee
- / Suitable approach for markets with limited liquidity and/or dominant market participants

Strategic bids may be a possible consequence of a market design based on pay-as-bid auctions

Existing Markets for System Reserve AUCTION METHOD (II)

/ Merit order of capacity and energy bids for SCR (low tariff) in February 2014

To some extend strategic bids (e. g. low capacity price, high energy price) due to pay-as-bid auction

Existing Markets for System Reserve AUCTION METHOD (II)

/ Merit order of capacity and energy bids for SCR (low tariff) in February 2014

To some extend strategic bids (e. g. low capacity price, high energy price) due to pay-as-bid auction

Page 10

Existing Markets for System Reserve COST ALLOCATION (I)

 / Distribution of costs for provision of reserve power and reserve energy by TSOs
 TSOs

Provision of reserve power: network fees of all participants

Provision of reserve energy: balancing energy of the accounting grid responsible

Existing Markets for System Reserve COST ALLOCATION (II)

/ Development of the TSOs' costs (i. e. revenues of market participants) for reserve capacity and energy in Germany

Overall financial volume limited (especially for TR) Higher prices/costs for SCR than TR

Existing Markets for System Reserve PRICE DEVELOPMENT AT RESERVE MARKETS

/ Illustration of the weighted mean daily capacity prices per market

Increase in price volatility

Price peaks during turn of the year due to tender of additional volumes

TRNSNET BW

03 Existing International Cooperation

Existing International Cooperation

INTERNATIONAL GRID CONTROL COOPERATION

German Control Cooperation (GCC)

- / Cooperation of German TSOs
 - / Prevention of counteracting reserve activation (netting)
 - / Common dimensioning of reserve
 - / Common procurement of SCR
 - / Cost-optimized reserve activation

International Grid Control Cooperation (IGCC)

- / Cooperation of German TSOs, DKW, NL, CH, CZ and BE
- / Reduction of reserve activation by cross-border netting
- → Ongoing negotiations concerning participation of further countries (FR, AT, Nordic)

Page 15

Existing International Cooperation

TERTIARY RESERVE DEMAND

/ Illustration of the quarter hourly reserve signal in the German Control Cooperation

High short-term reserve demand in spite of limited mean reserve demand

Existing International Cooperation

COMMON PROCUREMENT OF RESERVE

DE-NL

- / Common procurement of PCR
- / NL participates with 35 MW in German auction (www.regelleistung.net)

DE-CH

- / Common procurement of PCR
- / 1st CH-internal auction: tender of national share of reserve
- / 2nd auction: participation in German auction (25 MW) via (www.regelleistung.net)

International discussion on extending common procurement

Future Developments

Future Developments

BACKGROUND AND MOTIVATION

ENTSO-E ("harmonization")

Projects due to market harmonization or changes in power economics Requirement/Constraint: Continuously high level of system quality

Future Developments USAGE OF RENEWABLES FOR RESERVE BACKGROUND AND MOTIVATION

- / Annual duration curve of wind power generation tradable as TR in a dayahead and intraday auction (simulation year 2012)
 - / 30 GW pooled wind power (total installed capacity in DE)
 - / 1 GW pooled wind power (exemplary wind pool)

 \rightarrow

 \rightarrow Pool size increases "full load hours" but hardly relative quantity

TRNSNET BW

Source: IWES

Future Developments

USAGE OF RENEV Tradable TR (confidence level: 99.994 %)

- Annual duration curve of wind / ahead and intraday auction (si
 - 30 GW pooled wind powe
 - 1 GW pooled wind power /

- Increase of tradable capacities due to intraday auctions \rightarrow
- Pool size increases "full load hours" but hardly relative quantity

Future Developments USAGE OF RENEWABLES FOR RESERVE BALANCING PRODUCT/VOLUNTARY BIDS

TRNSNETBW

- / Division of capacity and energy provision (e.g. market for TR)
 - / Day-ahead tender of capacity
 - / Intraday tender of energy (gate closure: on short-term before physical fulfillment)
- / Consideration of (quarter-hourly) voluntary bids for energy
 - / No capacity price
 - Adjustment (downwards) of energy prices from already tendered capacity bids
- → Expectation: Increasing costs for reserve capacity and decreasing costs for reserve energy

Participation of renewables in reserve markets based on voluntary bids Cost allocation for balancing energy should be adapted.

Future Developments DAILY PROVISION OF SCR

Expectations

- / Increase in the amount of available offers (market liquidity)
 - / Facilitation of market entry for participants with few units
 - / Easier assignment of units with volatile feed-in (short-term forecast quality)
- / More flexible dimensioning of required reserve capacities

Open issues

- / Extension of international cooperation (daily vs. monthly/annual provision)
- / Gate closure (when before TR)
- / Product structure

Advantages and drawbacks due to daily provision Specification by national regulator (and market participants) required

Future Developments

PAY-AS-BID VS. MARGINAL PRICING

Motivation

- / Introduction of marginal pricing for energy required on the long term due to European regulation
- / Increasing liquidity on markets for TR and SCR

Open issues

- / Possible abuse of market power
- / Changes in all accounting systems
- / Impact on balancing price

Changing from pay-as-bid to marginal pricing may be a reasonable result after the developments to come

Conclusions

Conclusions SUMMARY AND OUTLOOK

- / Increasing interest in markets for system reserve due to declining potential revenues from day-ahead market
- / Pricing at reserve markets by pay-as-bid auction, afterwards imbalance settlement via balancing price
- / International cooperation via IGCC (netting) and common procurement of PCR
- / Discussions on facilitation of market entry for renewables by introduction of balancing market and/or daily provision of SCR

Conclusions QUESTIONS?

Backup REQUIREMENTS FOR DIMENSIONING RESERVE

Input data to be adapted

- / Distribution of schedule ramps from historical data
- / Parameters for fluctuation
- / Generation portfolio
- / Characteristics of forecast errors

