

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

Storage placing in Germany in mid-term context - Which site will be best?

Thomas Möbius, David Gunkel

Dresden, 11. April 2014

- **1** Motivation
- 2 Methodology
- 3 Model
- **4 Results and Conclusion**

Motivation

Structural changes on the electricity market

- Integration of fluctuating and uncertain capacities by RES
- Geographical separation between generation and consumption
 - Extension of wind power in Northern Germany
 - Nuclear phase-out
 - Maintenance of demand hotspots in the South and West

More flexibility in generation and demand is needed

Energy storages can do both

 To set incentives for locational planning a nodal pricing approach is applied and physical network restrictions are considered by using the DC-load flow model ELMOD

Methodology

Integration of a site selection into an investment decision

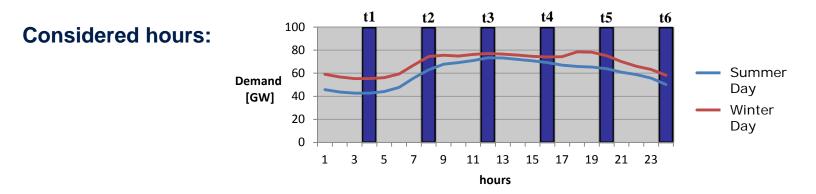
- Generation of an endogenous decision variable which is defined as a special ordered set of type 1, the so-called SOS1-Variable $d_{n,z}$

$$0 \le d_{n,z} \le 1 \qquad \qquad d_{n,z} \in \mathbb{R}$$

Storage mechanism

- Control of storage activities by SOS1-Variables

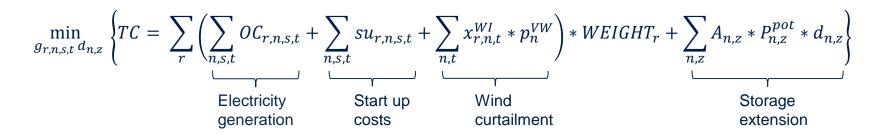
$\vec{s}_{r,n,z,t}$	charge of storage		
$\dot{s}_{r,n,z,t}$	discharge of storage		


- charging and discharging process is limited to respectively one hour within the several reference days → one average full load hour is generated
- Annual Investment costs are scaled to one full load hour

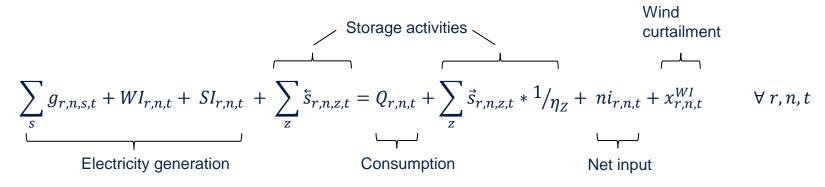
Methodology

Development of 6 reference days

 To represent a typical year they vary in solar and wind feed-in and in their demand load curves


Reduction of reference days

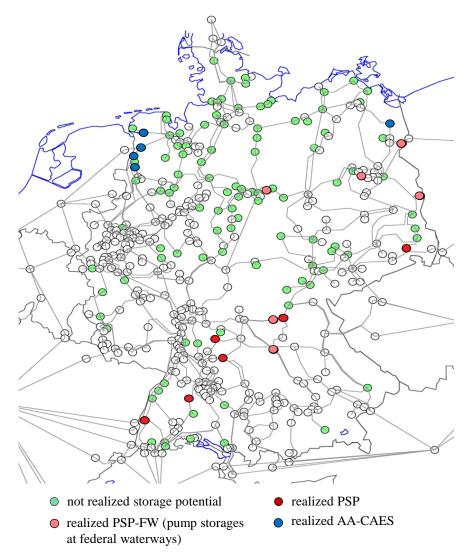
- Development of 6 reference days á 6 real hours
- Time periods are allocated consistently within a day
- Maintenance of characteristic load curves and their time-related gradients


Model

Objective function: Minimization of total system costs

- No time interdependency between, but within reference days

Energy balance: clearing the market

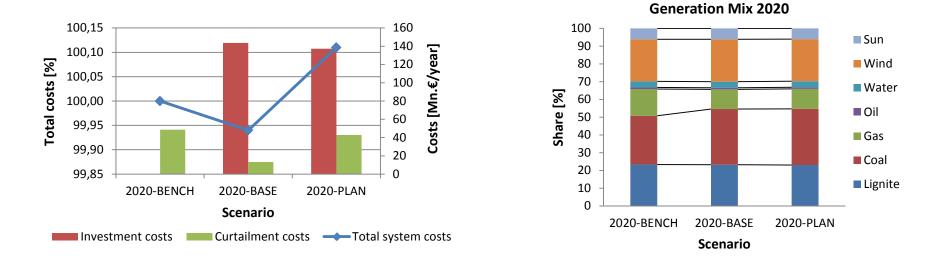

Results and Conclusion

Storage extension 2020-BASE

- compulsory execution rate of 3 GW
- Realization of 1.2 GW AA-CAES in Northern Germany
- Reduction of wind curtailment is reduced about 73% after storage extension

2020-PLAN

 Reduced storage potential to plants which are currently planned or in construction



Thomas Möbius, Enerday 2014, Dresden

Results and Conclusion

Comparison of scenarios in 2020

- Limited storage potential in 2020-PLAN leads to less efficient allocation and higher overall costs
- In both extension scenarios peak load capacity gets substituted by coal fueled power plants

wind curtailment highly impacts the storage placing

Results and Conclusion

- A locational planning for storage investments has a significant economic effect with regard to minimize total system costs
 - Might compensate for more expensive storage technologies, e.g. AA-CAES
- In particular, the expansion of wind power capacities in Northern Germany highly impacts the site selection for additional storages
- Further research might address
 - Interactions between optimal located storage extension and
 - Grid expansion and Demand Side Management
 - removal of the feed-in priority of RES and the resulting curtailment payments to RES operators

Thank you very much! Questions?

Thomas Möbius Chair of Energy Economics BTU Cottbus-Senftenberg

thomas.moebius@tu-cottbus.de

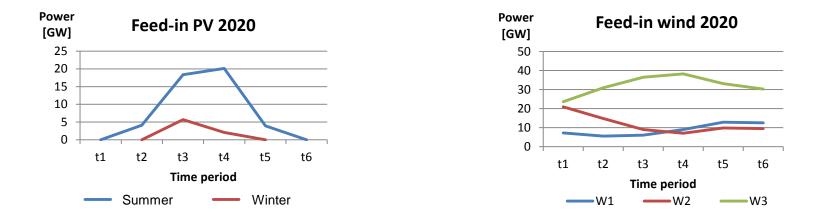
Backup

Subject is the optimal located extension of energy storages

- Three different technology types
- Potential is allocated within Germany

Technology	PSP	PSP-FW ¹	AA-CAES
Efficiency	0.8	0.8	0.7
Investment costs [€/kW]	750	570	800
Storage potential [GW]	40.3	0.4	47.4

¹ Pump storage plants at federal waterways


Backup

Some further restrictions

- Min-Max generation $\underline{G}_{n,s} * on_{r,n,s,t} \leq g_{r,n,s,t} \leq \overline{G}_{n,s} * on_{r,n,s,t} * Availability_{r,s}$
- Storage mechanism (1) $StorageLevel_{r,n,z,t+1} = StorageLevel_{r,n,z,t} + \hat{s}_{r,n,z,t} \vec{s}_{r,n,z,t}$
 - (2) $StorageLevel_{r,n,z,t=1} = 0$
 - (3) $\tilde{s}_{r,n,z,t} + \vec{s}_{r,n,z,t} \leq P_{n,z}^{\text{pot}} * d_{n,z} + P_{n,z}^{\text{old}}$
 - (4) $\vec{s}_{r,n,z,t} \leq StorageLevel_{r,n,z,t}$

Backup

Wind und solar load curves in a reduced reference day

 Two solar load curves (summer and winter) and three wind load curves allocated to two demand load curves (summer and winter)