The probability of long phases without wind power and their impact on an energy system with high share of renewable energies

Patrick Plötz, Julia Michaelis

Fraunhofer Institut für System- und Innovationsforschung ISI

Enerday TU Dresden, 11. April 2014

Challenge of future energy system: Long periods of low renewable generation

Motivation

Comparability of energy system models	 Results of energy system simulation strongly depend on input data e.g. time series for feed-in of renewable energy sources Characteristic of feed-in time series often not analysed in detail Analysis and evaluation of the representativeness of time series could improve the comparability of different model results.
Need for flexibility options	 Characteristic of residual load varies for different years with regard to duration, frequency and time-correlation of low and high residual load The need for flexibility options like storage technologies, DSM or flexible power plants depends on the characteristic of the residual load time series A more detailed understanding of residual load data is favourable.

A better understanding of renewable feed-in and residual load times series data is useful for energy system analysis.

Data: Hourly wind & PV feed-in plus residual load in Germany 2006 – 2012 time series

- feed-in time series of renewable energy sources, available on netztransparenz.de:
 - Wind onshore 2006 2012, normalised to installed capacity
 - Photovoltaics 2012, rescaled for 2006 2011 by installed capacity
- load data 2006 2012 (from entso-e.net); residual load = load Wind PV

Data sources: total wind power feed-in from www.eeg-kwk.net; installed wind power: Bundesverband Windenergie; Load data: ENTSO-E: PV feed-in: www.eeg-kwk.net: Installed PV power: BDEW

Data: Hourly wind & PV feed-in plus residual load in Germany 2006 – 2012 time series

- feed-in time series of renewable energy sources, available on netztransparenz.de:
 - Wind onshore 2006 2012, normalised to installed capacity
 - Photovoltaics 2012, rescaled for 2006 2011 by installed capacity
- Ioad data 2006 2012 (from entso-e.net); residual load = load Wind PV

Distribution of normalised wind power feed-in

Data sources: total wind power feed-in from <u>www.eeg-kwk.net</u>; installed wind power: Bundesverband Windenergie; Load data: ENTSO-E; PV feed-in: <u>www.eeg-kwk.net</u>; Installed PV power: BDEW

We analyse very long phases of low power or load with extreme value statistics.

- Extreme value theory provides statistical tools to quantify the behaviour of a process at extremely large values
- Extremes can be defined as

 (1) maxima within blocks of data or
 (2) all values over a threshold
- Choose values above 90%-quantile since phases can be longer than blocks

The limiting distribution function (CDF) for values *x* above a threshold *u* is known

$$\Pr\{x = X - u | X > u\} \xrightarrow{u \to \infty} H_u(x) = 1 - \left(1 + \frac{\xi x}{\tilde{\sigma}}\right)^{-1/\xi}_{\tilde{\sigma} = \sigma + \xi(u - \mu)}$$

- Known as *Generalised Pareto Distribution* and similar to central limit theorem: PDF of the mean of many iid random variables always approaches a Gaussian
- Regression of parameters usually via maximum likelihood estimates
- Numerical parameter values not interesting, but the frequency of maximum values in the future: so-called return level (the level that is expected to be exceeded once in N years).

How long are phases of low wind power feed-in? – Easily about 4 – 5 days.

• Return period of long phases with wind power feed-in less than 8% of installed capacity:

- Longest phases observed with one week below 8%
- Extreme value theory regression for the 10% longest phases (i.e. longer than 1.4 days, N = 166)
- Quantile plot (inset) shows acceptable quality of fit
- Almost two weeks with low wind power in 100 a consistent with the data
- 95% confidence bands via percentile bootstrapping

> Phases of low wind power can be longer than a week and occur every two years.

How long are phases of low wind power feed-in? – Easily about 4 – 5 days.

Return period of long phases with wind power feed-in less than 8% of installed capacity:

- Longest phases observed with one week below 8%
- Extreme value theory regression for the 10% longest phases (i.e. longer than 1.4 days, N = 166)
- Quantile plot (inset) shows acceptable quality of fit
- Almost two weeks with low wind power in 100 a consistent with the data
- 95% confidence bands via percentile bootstrapping
- Duration of phases increases with threshold value: 2%: 4h & 8%: 10h

\blacktriangleright Phases of low wind power can be longer than a week and occur every two years.

How long are phases of low residual load?

- Return period of long phases with low residual load
- Two definitions for 'low' (3% and 32% quantile)

Quantile	\min	0.10	0.25	0.50	0.75	0.90	\max
L_{res} [GW]	14.6	40.8	46.5	55.1	64.0	70.0	82.9

Phases of very low residual load can be longer than one day.

Comments: Left figure: threshold for 'extreme' is 90% quantile; Right figure: threshold for 'extreme' is 97% quantile.

How typical are the years with respect to phases of low wind power feed-in?

We measure similarity of individual years in comparison to all years

$$\chi^2 = \sum_{\text{bounds } i} \frac{(\text{observed}_i - \text{expected}_i)^2}{\text{expected}_i}$$

observed_{*i*} = mean log duration below threshold *i* in year nexpected_{*i*} = mean log duration below threshold i all years

• Low χ^2 means high similarity, high χ^2 means little similarity

 $\chi^2 = \sum_i (o_i - e_i)^2 / e_i$ $o_i = \frac{1}{n} \sum_{l=1}^{n} \ln(t_{li}) \quad e_i = \frac{1}{N} \sum_{l=1}^{N} \ln(t_{li})$

- Choose phases with 1%, 1.5%, ..., 5.5%, 6%
- Chose log of durations since distributions are right-skewed
- Measure only considers duration of phases, total wind energy and residual load could be different
- Difference up to factor of 10

Years differ in duration of low wind power phases (be careful in modelling).

Summary and discussion

Phases of low wind power	 Can easily be several days or one week long Average duration linear in threshold: below p% for p+2 hours Years differ in representativeness of low power phase durations
Discussion	 Data limited to seven years in Germany (PV only one year) Growing share of wind offshore feed-in will affect residual load patterns Residual load of historical data → more spread in the future
Future work	 Duration of phases of low residual load for future energy system Integrate more aspects to find 'best renewable time series' for energy system modelling Only very first step in more detailed understanding of economics of energy storages and influence of duration

Contact:

More details in the paper!

Dr. Patrick Plötz

Fraunhofer-Institut für System- und Innovationsforschung ISI

patrick.ploetz@isi.fraunhofer.de

