The crucial role of infrastructure design in the German Energiewende: An analysis of possible branching points

Eva Schmid, Brigitte Knopf, Anna Pechan PIK Potsdam Working Group: Energy Strategies Europe and Germany

Enerday 2014, Dresden
Friday, 11.04.2014
National Policies and Developments
16:30-18:00, Faculty Assembly Hall

Motivation

- Germany's energy system is in a state of transition [Energiewende]
 → Towards what future???
- Model-based scenario analyses focus on establishing technical feasibility "in an optimal world", … disregarding
 - Actors, institutions and decision making (protective vs. proactive)
 - Infrastructure technologies with very long lead times (grid, IT/smart solutions)
- Leads to neglectance of many "transition-relevant" aspects, particularly with respect to the integration of variable renewables!

Premises

- Postulation 1: Infrastructure design determines "what is possible" / sets technical boundaries, e.g.
 - DSM requires smart grids
 - Pan-European balancing requires transmission grid capacities
- Postulation 2: Different infrastructure configurations are consistent with different visions of the future system logic
 - "Decentralized paradigm"
 - "Centralized paradigm"

Problem Statement & Method

- Which infrastructure-related branching points are possibly ahead in the German Energiewende and what are strategic implications?
- Time-frame of analysis: Three foci
 - Near-tearm (~2020), mid-term(~2030) and long-term(~2050)
- Method: Qualitative scenario analysis drawing on (quantitative/model-based) literature and applying three theoretical concepts:
 - Branching point analysis (Foxon et al, 2013)
 - Field anomaly relexation (FAR) (Rhyne, 1995; Coyle, 2001)
 - Feedback effects in the context of regime shifts (Strunz, 2014)

Branching point analysis

- Starting point: Transition pathway narratives that are subject to different "logics" with corresponding dominant actors
- E.g. in http://www.lowcarbonpathways.org.uk: Market Rules, Central Co-ordination, Thousand Flowers
- Branching point: "Key decision point in a pathway at which actors' choices, made in response to internal or external pressures, determine whether and in what ways the pathway is followed" (Foxon et al., p. 147)
- Branching point analysis intends to offer strategic insights on proactive vs protective decision making possibilities (cp. Hughes et al. 2010, Hughes 2013)

Applying FAR: A sector/factor array for the problem "The future of the German energy system"

Storage Deployment (in GER)	DSM Penetration (in GER)	Domestic R ES- share, mainly fluctuating	European Grid Integration	Dominant D ispatchable PP Philosophy (in GER)	Institutional Coordination Local (in GER)	Institutional Coordination pan- European
S	Р	R	ı	D	L	E
S1: Hardly any S2: Some strategic	P1: Small (only industry) P2: Moderate	R1: Low (0- 20%) R2: Moderate (20-40%)	I1: Slow I2: Picking Up	D1: Baseload-Band necessary for refinancing D2: Rather flexible, many FLH needed	L1: Not Important L2: Some emphasis	E1: Not Important E2: Some emphasis
increase				for refinancing		
S3: Strong increase of all kinds	P3: High (Mainstream)	R3: High (40-60%)	I3: Real Momentum	D3: residual system designed to complement f-RES	L3: Dominant strategy	E3: Dominant strategy
		R4: Very high (60-80%)				

A sector/factor matrix for the problem: "The future of the German energy system"

0 = manifestly inconsistent

1 = probably inconsistent

2 = probably consistent

3= certainly consistent

Select combinations based on

- gestalt criterion:
 "Could I imagine a world
 like that?"
- score, e.g.
 - $S_3P_3R_3I_1D_3L_3E_1$
 - $S_2P_2R_4I_3D_3L_1E_3$
 - $S_3P_3R_3I_3D_3L_2E_2$

Pathways – Applying the FAR method

 $S_2P_2R_4I_3D_3L_1E_3$ = Truly European $S_3P_3R_3I_1D_3L_3E_1$ = Local Smart Solutions

Storage Deployment (in GER)	DSM Penetration (in GER)	Domestic R ES- share, mainly fluctuating	European Grid Integration	Dominant D ispatchable PP Philosophy (in GER)	Institutional Coordination Local (in GER)	Institutional Coordination pan- European
S	Р	R	1	D	L	E
S1: Hardly any	P1 : Small (only industry)	R1: Low (0- 20%)		D1: Baseload-Band necessary for refinancing	L 1: Not mportant	E 1: Not mportant
S2: Some strategic increase	P2: Moderate	R2: Moderate (20-40%)		D2: Rather flexible, many FLH needed for refinancing	L2: Some emphasis	E2: Some emphasis
<u> </u>	P3 : High (Mainstream)	Ů ,	I3: Real Momentum	D3: residual system designed to complement f-RES	L3: Dominant strategy	E 3: Dominant strategy
		R4: Very high (60-80%)				

Pathway tree and possible branching points

For each infrastructure-related branching point.... ask:

- What are the possible decisions?
- Which pathway would they lead to?
- Which actors have which interests?
- Which interest-coalitions are likely to be successful?
- Which branches are unlikely/likely?
- Which exogenous events could influence decisisons?

Characterization of branching points

Branching Point	Issue	Theme	Required Infrastructure
A: "Decisions, decisions"	Currently no clear committments to either pathway	Keep all options available?	"A bit of everything"
B: "European Gridlock"	European efforts have picked up but no <i>real</i> momentum	Can the full integration be achieved?	Pan-European (Institutional, IT, physical)
C: "Local smart can't make it all the way"	Full potential of DSM not accessible (legal/institutional barriers)	Is the retreat to local solutions really the desired way to go?	Local / Regional (Institutional, IT, physical) [transformative change]
D: "Decisions, decisions a decade later"	Still no clear committment to either pathway – but more knowledge	Is mingling through successfull or will it lead to serious delay in mitigation?	"A bit more of everything"

Conclusions

- Preliminary strategic implications of analysis
 - Infrastructure design matters and influences which pathways will be viable in the future – and differs!
 - If renewable deployment shall increase as projected then either European or local solutions are necessary – or both
 - Proactive decision making
- What does this mean for energy system modeling?
 - Model-based scenarios/pathways that "switch" at some point
 - Analyse results more dedicatedly with respect to infrastructure
 - Conceptual work: How to bridge the scales (local vs European)?

de zentral

GEFÖRDERT VOM

eva.schmid@pik-potsdam.de

References

- Coyle, R. G. (2001). MORPHOLOGICAL FORECASTING—FIELD ANOMALY RELAXATION (FAR). Retrieved from http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDMQFjAA&url=http%3A%2 F%2Fwww.cgee.org.br%2Fatividades%2FredirKori%2F3316&ei=0rFOU_S5OYLkswbV3YGQCA&usg=AFQjCN Ed6Zh1mPZWl5qsbkZENAmMtAB0Fg&bvm=bv.64764171,d.Yms&cad=rja
- Foxon, T. J., Arapostathis, S., Carlsson-Hyslop, A., & Thornton, J. (2013). Branching points for transition pathways: assessing responses of actors to challenges on pathways to a low carbon future. *Energy Policy*, 52, 146–158. Retrieved from http://www.sciencedirect.com/science/article/pii/S0301421512003308
- Hughes, N. (2013). Towards improving the relevance of scenarios for public policy questions: A proposed methodological framework for policy relevant low carbon scenarios. *Technological Forecasting and Social Change*, 80(4), 687–698. Retrieved from http://www.sciencedirect.com/science/article/pii/S0040162512001783
- Hughes, N., & Strachan, N. (2010). Methodological review of UK and international low carbon scenarios.
 Energy Policy, 38(10), 6056–6065. Retrieved from http://www.sciencedirect.com/science/article/pii/S0301421510004325
- Rhyne, R. (1995). Field anomaly relaxation. *Futures*, *27*(6), 657–674. doi:10.1016/0016-3287(95)00032-R
- Strunz, S. (2014). The German energy transition as a regime shift. *Ecological Economics*, 100, 150–158. doi:10.1016/j.ecolecon.2014.01.019

