# CAN HEAT PUMPS HELP TO INTEGRATE FLUCTUATING RENEWABLE GENERATION?

Enerday 2014, 11.04.2014 TU Dresden Gerda Schubert, Frank Sensfuss





#### Framework

- Different goals on the way to convert the German energy system
  - Long term:
    - Up to 80% renewable electricity until 2050
    - 450 ppm CO<sub>2</sub>
  - Short term:
    - 35% renewable electricity until 2020 (coalition agreement)
    - 14% renewable energy to cover heating and cooling needs until 2020 (EEWärmeG) (2011: 11%, 70% of it from biomass)
- More renewable energies on the electricity and heating market
  - Fluctuating RES change the electricity system  $\rightarrow$  cause flexibility needs
  - Heat pumps based on "green" electricity are, besides biomass, one option for a decarbonisation of the heating market
  - Heat pumps can provide flexibility to the electricity market
- Heat pumps are one possible option to provide flexibility for the electricity sector together with lowemission heat for the heating market.



# Methodology Analyzed Scenarios

- Cost optimized scenario of the electricity system for germany
  - Existing plants are taken into consideration with their lifetime
  - Endogenous optimization of fossil and renewable generation in a fundamental model
- Additional electricity demand caused by heat pumps to cover heating demand
- Main input parameters:

|                                                 | 2020 | 2030 | 2040 | 2050 | Source         |
|-------------------------------------------------|------|------|------|------|----------------|
| electricity demand (excluding heat pumps) [TWh] | 611  | 630  | 670  | 700  | Own assumption |
| heating demand covered by heat pumps [TWh]      | 26   | 58   | 90   | 120  | BWP 2011[1]    |
| Fuel price gas [€/MWh]                          | 38   | 40   | 40   | 39   | EC 2014[2]     |
| Fuel price hardcoal [€/MWh]                     | 14   | 15   | 17   | 19   | EC 2014[2]     |
| Fuel price lignite [€/MWh]                      | 3,7  | 3,7  | 3,7  | 3,7  | EC 2014[2]     |
| Fuel price nuclear [€/MWh]                      | 3,1  | 3,1  | 3,1  | 3,1  | EC 2014[2]     |
| Fuel price oil [€/MWh]                          | 54   | 57   | 63   | 68   | EC 2014[2]     |
| CO <sub>2</sub> price [€/t]                     | 10   | 35   | 65   | 100  | Own assumption |

Sensitivities on storage size (no storage, 2h, 12h) and heat source (ground water, air)

[1] Bundesverband Wärmepumpe 2013 Branchenreport Scenario1 [2] EC, 2014, Trends to 2050 Reference Scenario 2013



# Methodology Heat pump integration

Heat demand included as a heat demand supply constraint and storage constraint

heat demand[h] =  $hp_{out}[h] + s_{out}[h] - s_{in}[h]$   $s_{content}[h] = s_{content}[h-1] \cdot (1-\eta_s) - s_{out}[h] + s_{in}[h]$ electricity demand[h] =  $hp_{out}[h] \cdot \eta_{hp}[h]$ 

- Electricity consumption of the heat pump is included in the electricity demand supply equation of the fundamental electricity model
  - Electricity demand has to be delivered by the electricity system
  - Flexibility can be used by the electricity system
- Efficiency for ground water heat pump: 5,5 (ground water 10°C)
- Efficiency for ambient air heat pump: ~3,2 (ambient temperature -10°C to 15°C)
- Heat losses of the storage: 1% per hour



#### Results Reference Case without heat pumps





# Results - chances in installed capacity Heat Pump ground water





# Differences in storage demand and curtailment

- Heat losses of the heat storage (1% per hour) are less than losses for pump storages (20%)
- $\rightarrow$  for heat pumps with heat storages these storages are used to substitute pump storages
- $\rightarrow$  a 2h and 12h heat storage have similar pump storages savings

| pump losses [TWh] | 2020 | 2030  | 2040 | 20  | 50   | pump storage capacity [GW] 2020 | 2030 | 2040 | 2050 | )    |
|-------------------|------|-------|------|-----|------|---------------------------------|------|------|------|------|
| water_0           | -2,  | ,6 -1 | ,9 - | 2,9 | -3,3 | water_0                         | 6,0  | 6,0  | 9,8  | 13,5 |
| water_2h          | -2,  | ,4 -1 | ,6 - | 2,1 | -2,2 | water_2h                        | 6,0  | 6,0  | 7,7  | 9,5  |
| water_12h         | -2,  | ,4 -1 | ,6 - | 2,1 | -2,2 | water_12h                       | 6,0  | 6,0  | 7,4  | 9,1  |

• A 12h heat storage reduces curtailment, a 2h storage has only small effects

| curtailment [TWh] | 2020 | 2030  | 2040  | 2050     |
|-------------------|------|-------|-------|----------|
| water_0           | 0,0  | ) -0, | 9 -14 | ,8 -30,3 |
| water_2h          | 0,0  | ) -0, | 6 -14 | ,4 -30,6 |
| water_12h         | 0,0  | ) -0, | 3 -12 | ,6 -27,4 |



# Results – changes in generation Heat Pump ground water





# Differences in CO2 Emmisions

 Difference of overall system emissions compared to Reference scenario per covered heating demand

 $CO_2 = \frac{CO_{2ref} - CO_{2water}}{heating demand}$ 





# Conslusions

#### RES-Integration and flexibility

- Heat pumps can contribute to integrate fluctuating RES generation if they are combined with large heat storage sizes
- Heat pumps can provide flexibility for the electricity market even with typical heat storage sizes, assuring an operation based on "market signals"
- CO<sub>2</sub> emission savings on the heating market
  - CO<sub>2</sub> emission savings depend on the efficiency of the heat pump
  - CO<sub>2</sub> emission savings on the heating market are correlated with share of renewable electricity and the ability to integrate fluctuating RES generation on the electricity market



#### Remarks? Questions?



#### Ambient Air Heat Pumps





# Differences in CO2 Emissions for ambient air heat pumps

 Difference of overall system emissions compared to Reference scenario without heat pumps per covered heating demand

 $CO_2 = \frac{CO_{2ref} - CO_{2water}}{heating demand}$ 





# Fossil fuel Prices EC, 2014, Trends to 2050 Reference Scenario



