KU LEUVEN

Facilitating variable generation of renewables by conventional power plant cycling Costs and benefits

Kenneth Van den Bergh and Erik Delarue University of Leuven (KU Leuven)

ENERDAY, Dresden

Introduction

The framework

Need for flexibility

- ✓ Power plant cycling
- ✓ Renewables curtailment
- ✓ Storage
- ✓ Transmission
- ✓ Demand response

What is the operational cost in a power system with variable renewables?

Methodology

System description - Germany 2013

KU LEUVEN

Methodology

Model description - unit commitment model

- Pure operational (quarter-hourly time step)
- Deterministic approach
- Minimization of operational system cost
 - o s.t market clearing
 - o s.t. technical constraints (power plants, electricity grid)
- Formulated as mixed-integer linear program

Results

The operational system cost

Production costs

KU LEUVEN

Results

The operational system cost

Production costs

Cycling costs (all costs ex-post)

High dynamic portfolio

KU LEUVEN

10

Results

The operational system cost

Production costs

Cycling costs (all costs in optimization)

KU LEUVEN

From a system perspective, renewables decrease operational generation costs.

Analyzing the costs and benefits of renewables, it is important to be clear on

- system perspective versus utility perspective;
- o operational perspective versus investments perspective.

Appendix

Based on data for Germany 2013

KU LEUVEN

Need for flexibility

Intermittent renewables

Source: DIW Berlin (2013)