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Abstract— The autocorrelation function of electrical field
strengths for different boundary conditions (tuner positions)
at a given spacial position is proposed in the IEC standard
61000-4-21 as a measure for the determination of the number
of uncorrelated boundary conditions in mode-stirred chambers.
Additionally, an upper limit for the autocorrelation coefficient is
given for a fixed number N of measured tuner positions only.
In this paper, we analyze an approach given in the literature
that includes the treatment of different N , but still gives results
that are inconsistent with the daily measurement practice in
mode-stirred chambers. A slight modification of this approach
is proposed that leads to consistent results. This paper gives
critical values for the autocorrelation coefficients for any number
of measured tuner positions based on a statistical analysis
of the well known probability distribution of autocorrelation
coefficients. The degree of determination and the significance
level remain as free parameters that have to be established by
the community. The authors propose values for these parameters
that are consistent with the example given in the standard.

I. INTRODUCTION

The use of mode-stirred chambers (MSC) as an alternative
test environment for EMC investigations is discussed for some
time [1].

The mode-stirred chamber consists of a screened room,
which possesses a mechanical tuner for the change of the
electromagnetic boundary conditions. Figure 1 shows the
mode-stirred chamber in Magdeburg.

The test environment is a cavity resonator. The lowest usable
frequency of the chamber (LUF) lies well above the first
resonance frequency, within a range of increased mode density.
In addition, the LUF depends on the efficiency of the tuner
with regard to its ability to shift the resonance frequencies. For
an excitation with a fixed frequency an inhomogeneous spatial
field distribution for each individual tuner position (boundary
condition) is achieved. This distribution corresponds to the
superposition of different solutions of Maxwell’s equations
for the MSC. As a result of the change of the boundary
conditions the spacial field distributions are changed, too. In
the case of an average of field distributions to a sufficiently
large number of suitable boundary conditions, a substantial
decrease of the spatial inhomogeneity of the field strength
can be achieved. The number of boundary conditions is an
optimization parameter regarding measuring time versus ho-
mogeneity. In particular, the different boundary conditions are

Fig. 1. MSC in Magdeburg

suitable for decreasing the spatial inhomogeneity if they lead
to statistically independent field distributions. Consequently,
these boundary conditions are called “statistically indepen-
dent” boundary conditions. Apart from the assumption of a
very high mode density, statistical independence of boundary
conditions is one of the most important assumptions in the
statistical theory of mode-stirred chambers [2]–[4].

The normative part of the IEC 61000-4-21 [5] assumes
statistically independent boundary conditions. Furthermore,
the standard gives defaults for the number of independent
tuner positions in different frequency ranges, which have
to be realized. The informative part of the standard deals
with the determination of the independent tuner positions.
Here, the autocorrelation coefficient is used as a measure
for statistical independency. Statistical independency of field
distributions yields a small autocorrelation coefficient, but



the reversal applies strictly only to the case of normally
distributed data [6], [7]. In [5] only one value for an upper
limit of the autocorrelation coefficient is given. This limit
ρ0 = e−1 = 0.37 refers to a measurement of the field strength
for N = 450 different tuner positions. Lundén and Bäckström
investigate the dependence of this limit on the number of used
tuner positions (sample size) [8]. They came to the conclusion
that the limit ρ0 decreases as sample sizes increases and
reaches zero for N → ∞. This would imply that the number
of independent boundary conditions decrease for larger N .
Although the work is cited in the standard, the results are not
taken into account. In the following, we will analyze the work
of Lundén and Bäckström and will resolve the conflict in their
conclusions.

II. BASICS

A. The Autocorrelation Coefficient

The correlation coefficient r is a measure for the statistical
dependency of variables. To use this quantity for the analysis
of the change of spacial field distributions, measurements of
field strengths versus tuner position at fixed positions in the
chamber are used. The boundary conditions achieved by means
of different tuner positions represent, however, only a sample
of size N , out of the infinite number of possible boundary
conditions. For an accurate measurement all existing boundary
conditions had to be considered, which cannot be realized in
praxis. From the measured data set with N values, N − 1
further data sets are obtained by cyclic exchange of the data:

{E1, E2, . . . , EN−1, EN} →
{EN , E1, E2, . . . , EN−1} → · · · →
{E2, . . . , EN−1, EN , E1}

(1)

This is similar to a variation of the zero position of the
measurement with the increment ∆β∗. Thus, a disalignment
of β∗ = i ∗ ∆β∗ is obtained for the i-th new result vector.
The computation of the correlation coefficient, rij , is done
according to equation (2).
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Here, it is assumed that only a rearrangement of one data
set is used. The variances σ2 and average values 〈E〉 of
the data sets are equal. Thus, the autocorrelation coefficient
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Fig. 2. Probability density function Ψ(r) of the autocorrelation coefficient

r1j is determined. The range of values of the autocorrelation
coefficient is between -1 and 1. 1 and -1 corresponds to
completely correlated, and 0 to completely uncorrelated data.

For the assessment of a limit for the autocorrelation coeffi-
cient r, the value of r2 (degree of determination) is important.
It indicates the probability for the forecast of further values by
interpolation. This is 0.372 = 13.7% for the value indicated
in the standard. The arbitrary selection of the boundary con-
ditions realized in the sample leads to statistical variations of
the autocorrelation coefficient. This has to be considered when
different mode-stirred chambers are compared. Therefore, an
additional safety margin (critical parameter) is introduced,
considering the statistical variations as a function of the sample
size for given degree of determination.

B. Probability Density Function of the Correlation Coefficient

The statistical variations of r result from the probability
density function (pdf), Ψ(r), of the correlation coefficient
r [10]:

Ψ(r) =
N − 2√

2π
· Γ (N − 1)

Γ
(
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(3)

Here, ρ is the expected value of r. It represents the true
value for the correlation coefficient, which would be obtained
using an infinitely large sample size for its calculation. The
function Ψ(r) is represented in Figure 2 for different values ρ

and N . With increasing sample size N the probability density
for the expected value increases and the distribution becomes
narrower. Thus, the probability for the calculated value r being
closer to ρ is higer for increasing N . The integral



accept H0 reject H0

H0 correct no error type 1 error (α)
H0 wrong type 2 error (β) no error

TABLE I

ERRORS OF HYPOTHESIS TESTING
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Fig. 3. Test of hypothesis.

α =

ρ0
∫

−1

Ψ(r) dr (4)

gives the probability for the occurrence of values of r, which
are smaller than or equal to the critical value ρ0.

C. Test of Hypothesis

The statistical test of hypothesis is a formalism for the for-
mulation of assured statistical statements concerning random
variables [9], [11]. For a correct application it is important
to know the possible errors of a test of the “null hypothesis”
(H0).

As a result of the hypothesis test, the null hypothesis H0

can be accepted or rejected. Thus, an error occurs only, if
the hypothesis H0 is rejected, although it is correct (type 1
error, α) or accepted although it is wrong (type 2 error, β),
see Table I. First we analyze the error in the the case when
the hypothesis is rejected, although it is correct.

With the choice of the null hypothesis H0 a statistical
population is selected (here: selection of an expected value ρ

for the correlation coefficient r and a relation, e.g., r > ρ). If
one examines the statement of H0 for measured data, the limit
of the validity of the hypothesis has to be examined. This is
done using the probability density function of the limit (here:
Ψ(r) for given N and ρ). As represented in Figure 3, the type
1 error α can be calculated by integration of the pdf over its
tail in the limits −1 to ρ0 (values in the tail only have small
probabilities to belong to the population given by the null
hypothesis). If H0 is wrong, a type 2 error (β) arises when
accepting the hypothesis. In that case, we can only conclude

Lund én und B äckstr öm
(LB)

this work (MD/BS)

ρ 0 ρ > 0 arbitrary, but
fixed

H0 r = 0
perfect uncorrelated
boundary conditions

r > ρ
correlation is stronger
than ρ

¬H0 = H1 |r| > 0
not perfect uncorrelated
boundary conditions

r ≤ ρ
correlation weaker then
ρ

limit ρ0 α/2 =
R

1

ρ0
Ψ(r)dr α =

R

ρ0
−1

Ψ(r)dr

TABLE II

COMPARISON OF THE NULL HYPOTHESISES OF LB UND MD/BS.

that the assumed pdf is not the right one, but there is an
infinite number of alternatives (here: other limit ρ). Thus it
is clear, that an approach according to the case of the type 1
error does not exist because of the lack of knowledge of the
population’s distribution. Therefore, the null hypothesis H0

has to be formulated in such a way that it is likely to be refused
in the test. Only then the error probability is limited (upwards)
by α. The formalism of the hypothesis test is like follows:
After the formulation of a meaningful hypothesis the error
probability α (level of significance) has to be set. Usual values
are 5% (α = 0.05) and 1% (α = 0.01). The solution of the
integral from equation (4) for α results in the critical parameter
ρ0. If r ≤ ρ0, the probability that the sample originates from
the population assumed in the null hypothesis is ≤ α, and
thus, H0 has to be rejected. Now, the correlation coefficient
r of the measured values can be compared with the critical
value ρ0, in order to examine the hypothesis.

The hypotheses of Lundén and Bäckström (LB) and this
work (MD/BS) are compared in Table II. The calculation of
the critical value ρ0 in the work of LB is slightly different
because of the two-sided nature of their hypothesis. In the LB
case |r| has to become larger than ρ0 in order to reject the null
hypothesis. In our case (MD/BS), r should be smaller than ρ0

to reject H0.
It has to be pointed out that the formalism of hypothesis

testing is correctly used in LB’s work [8] and that all calcula-
tions are also correct. The difference to our approach is simply
the choice of the null hypothesis.

III. CRITICAL VALUE ρ0

From the knowledge of the probability density function
Ψ(r) the critical value ρ0 of the hypothesis test can be
computed. For each N the computation depends on the level
of significance α and the expected value ρ. The latter is
always zero in the work of LB. For our approach, it appears
meaningful to select ρ such way that the (N , ρ0)-point from
the standard example (450, 0.37) is achieved (a fixpoint with
the standard). The results are represented in Figure 4.

For the MD/BS approach the expected values are ρ = 0.43
for α = 0.05 and ρ = 0.456 for α = 0.01. These values
give the statistical interpretation of the limit from the standard
example, which was missing up to now. Thus, the degree
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of determination results to ρ2 = 18.5% for α = 0.05 and
ρ2 = 21.6% for α = 0.01. For LB’s approach, the (450,
0.37)-pair is only met with an unreasonable small selection of
α = 10−16. Furthermore, it can be seen that in this case the
critical value ρ0 becomes practically one for small numbers of
tuner positions. Therefore, experimental r-values will become
smaller as the critical value, already for very small movements
of the tuner, leading to an unreasonable large number of
independent tuner positions. In particular, the decrease of ρ0

versus N may result in the determination of a smaller number
of independent tuner positions for larger N .

In contrast, our approach (MD/BS) leads to an increasing
slope of ρ0 versus N , reaching ρ in the limit of large N . This
will result in an increase of the number of independent tuner
positions for increasing N (increasing measurement accuracy),
reaching a limit (expected value, true value) for N → ∞.

IV. EXPERIMENTAL RESULTS

The following results are based on measurements of the
electrical field strength (individual cartesian components) at a
fixed position in the active volume of the large Magdeburg
mode-stirred chamber at different frequencies. Discussed are
the results for f = 200 MHz (within the range of the LUF)
and f = 1 GHz. The tuner was rotated over 360 degrees in
steps of 1 degree (N = 360).

From these measured values the autocorrelation functions
(r as function of the disalignment angle β∗) for N ≤ 360 can
be determined by removing data from the original dataset.
For the two mentioned frequencies and different N these
autocorrelation functions are represented in Figure 5 together
with the critical limits ρ0 according to LB and MD/BS which
can be derived from figure 4.

The resulting numbers of independent tuner positions
(#POS) for both approaches are summarized in Table III
and in Figure 6. As expected, a decrease of the number of
independent tuner positions for increasing N is obtained at
f = 200 MHz using LB’s approach. At f = 1 GHz this effect
is much smaller; here, the effect of changing the pdf of the

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

r

β* [Degrees]

MSC MD, f = 200 MHz, original dataset with N=360 positions, α=0.05

MD/BS: ρ0 = 0.44, N → ∞
N=360
N=180 N=36
N=60 (MD/BS, LB)

N=36
N=180

N=360 LB: ρ0 = 0, N → ∞

N=360
N=180
N=60
N=36

MD/BS: ρ0 for different N
LB: ρ0 for different N

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

r

β* [Degrees]

MSC MD, f = 1 GHz, original dataset with N=360 positions, α=0.05

MD/BS: ρ0 = 0.44, N → ∞
N=360
N=180 N=36
N=60 (MD/BS, LB)

N=36
N=180

N=360

LB: ρ0 = 0, N → ∞

N=360
N=180
N=60
N=36

MD/BS: ρ0 for different N
LB: ρ0 for different N
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autocorrelation coefficient by reducing N nearly compensates
the variation of the critical value.

The compensation of these two effects in the LB approach is
also visible in Figure 7. Here, the experimental autocorrelation
coefficients are plotted versus frequency (100 MHz – 4.2 GHz)
and angular displacement (0 – 40 degrees). Additionally, the
critical limits according to LB and MD/BS are shown as
contour lines. In the two upper graphs the upper contour line
belongs to the MD/BS approach; in the lowest graph this is the
lower contour line. The three graphs are obtained for N = 360,
N = 120, and N = 20, where N = 120 and N = 20 are
obtained from the original data set by reduction.

V. CONCLUSION

The determination of statistically independent tuner posi-
tions is of central importance for investigations of mode-
stirred chambers. On one hand, the number of independent
boundary conditions is of major importance for the definition
of the lowest usable frequency (LUF). On the other hand, the
statistical theory of of mode-stirred chambers is based on the
assumption of statistically independent boundary conditions.
The standard IEC 61000-4-21 treats the determination of
independent boundary conditions only in the informative part



MD/BS LB
200 MHz 1 GHz 200 MHz 1 GHz

N ρ0 β∗[o] #POS β∗[o] #POS ρ0 β∗[o] #POS β∗[o] #POS
36 0.19 9.05 39.8 10 36 0.33 7.49 48.1 8.29 43.4
60 0.25 9.17 39.3 4.29 83.9 0.25 9.17 39.3 4.29 83.9

180 0.34 7.76 46.4 2.77 130 0.14 9.91 36.3 3.95 91.1
360 0.37 7.5 48 2.41 149.4 0.1 10.41 34.6 4.02 89.6

TABLE III

COMPARISON OF THE NUMBER OF INDEPENDENT TUNER POSITIONS (#POS) ACCORDING TO LB AND MD/BS.
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and only on the basis of an example with a single sample
size N . An approach to consider different sample sizes is
given in the literature [8], but this approach leads to results
— especially for low frequencies — that do not meet the
daily measurement practice in mode-stirred chambers. It has
been shown, that a small change of the null hypothesis can
overcome that problem. This new null hypothesis implies that
no perfect uncorrelation of the boundary conditions is called
for, but the correlation has to be smaller than a certain limit,
directly given by the degree of determination. Still meeting the
(N , ρ0)-pair from the standard’s example it is now possible
to give the critical limit ρ0 for the autocorrelation coefficient
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r for any number of measured tuner positions N .
The two free parameters — the degree of determination ρ2

(ρ: expected value) and the significance level α — have to be
established by the community. In Section III it is shown that
ρ2 = 18.5% (ρ = 0.43) and α = 0.05 maintain the fix point
given in the standard’s example.
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