
Transfer Impedance at High Frequencies
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Abstract— A partially new analysis method to determine the
transfer impedance (TI) of coaxial cables is proposed. The
method involves two steps. The first (experimental) step consists
in the determination of the voltage between the interior wire
and the cable shield which is exposed to an exterior TEM field.
In the experiment the investigated cable forms a semicircular
loop, whose plane is orthogonal to an ideally conductive plane.
The measurements have been performed in a GTEM cell. In the
second step the calculation of the TI of the cable is carried out.
These calculations are based on the analytical solutions for the
current in the cable shield.

It is shown that with the proposed method — in principal —
one can determine the complex transfer impedance for frequen-
cies up to 10 GHz for typical cable diameters. Furthermore, the
experimental setup is rather simple compared to other methods.

At the moment, the evaluation of the experimental data is
limited to 600–700 MHz, approximately. This is due to the lack
of a more adequate Green’s function for the description of the
loop in the field inside the GTEM cell.

I. INTRODUCTION

The urgency to determine the cable TI at high frequencies
is well known. Theoretical and experimental results are found
in [1]–[4]. An exhaustive review of up to date theoretical
and experimental results is presented in [5]. The problem
of determining Zt(jω) is very pressing at present [6]–[10].
It is shown in our papers [11], [12] that the difficulties to
experimentally determine the cable TI considerably grow with
increasing frequency. Operational frequencies of cables and
noise frequencies constantly grow. Therefore, the development
of new and the perfection of existing designs of cable shields
is necessary. There is a significant interest for designing noise-
resistant electronic devices and signal transmission systems.

In this work we will examine an experimental setup for
the TI determination with the aid of a loop-method [13]. In
Section III, we will consider a new method to calculate the
current of the tested cable shield. This current is needed in the
loop-method for the TI calculation from the experimental data.
The final part of this paper (Section IV) presents the results
of the experiment.

II. EXPERIMENTAL SETUP OF THE LOOP-METHOD

Recently, measurements of the TI at microwave frequen-
cies have been described by Sali using a quite sophisticated
experimental setup [14].

The simple experimental installation of the loop-method
to determine the TI is presented in Fig. 1. The tested cable
forms a semi-circular loop above an ideally conducting plane.
The current I in the cable shield is induced by an external
plane electromagnetic wave (this differ from the original
setup described in [13]). The voltage U1, induced between
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Fig. 1. The scheme of the experimental setup of the loop-method.

the interior wire and the shield of the cable is measured.
Measurements can preferably be carried out in an anechoic
chamber or in a GTEM cell.

The current I flowing along the cable shield and inducing
the voltage U1 through the TI mechanism does not flow
along plugs connecting the tested cable with loads or the
measuring equipment. This eliminates one essential source of
an experimental error. According to estimates in [15], [16]
the TI increases through cable joints up to 13dB/Dec. This is
confirmed also by our measurements [11], [12].

The geometry of the experimental setup is rather simple and
allows to calculate the current under the assumptions that the
current density is uniformly distributed over the cross-section
perimeter of the cable shield, and the wavelength λ of the
exciting field satisfies the inequality λ > 8a, where a is the
shield radius [17]. The latter inequality yields a frequency f <
10 GHz for a = 4 mm, which gives an upper frequency bound
for the application of the loop-method for cables with such
radii. Therefore, the loop-method is a potential method to be
used to measure the TI at high frequencies. As will be shown
in Section III, the functions used in calculating the TI have
no sharp peaks. This allows us to obtain stable results with
reasonable measurement errors. Moreover, with the increase in
frequency, these functions become smoother, which in many
respects is caused by radiation losses.

III. CALCULATION OF THE TRANSFER IMPEDANCE

APPLYING THE LOOP-METHOD

In this section, we consider theoretical aspects of the TI cal-
culation. At the beginning, we examine the so-called “external
problem” consisting of the determination of the cable shield
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Fig. 2. The external problem.

current, and later on the “internal problem”, the problem to
determine the cable TI from a voltage measurement.

A. The External Problem

Let us consider a semi-circular loop near a perfectly con-
ducting ground (see Fig. 2). The loop is excited by a plane
wave. The current I(l) and the potential Φ(l) (in the Lorenz
gauge), induced in the loop are described by the following
system of integro-differential equations [17], [18] (in the thin-
wire approximation):

∂Φ(l)

∂l
+ jω

µ0

4π

∫ πR

0

gA(k, l′, l, R, a)I(l′)dl′ = E0
l (l)(1)

∫ πR

0

gΦ(k, l′, l, R, a)
∂I(l′)

∂l′
dl′ + jω4πε0Φ(l) = 0 (2)

where

gΦ(k, l′, l, R, a) =g(k, l′ − l, R, a)

− g(k, l′ + l, R, a)

gA(k, l′, l, R, a) = cos

(

l′ − l

R

)

g(k, l′ − l, R, a)

+ cos

(

l′ + l

R

)

g(k, l′ + l, R, a)

g(k, l, R, a) =
e−jk

√
4R2 sin2(l/2R)+a2

√

4R2 sin2(l/2R) + a2

(3)

l (0 ≤ l ≤ πR) is the length along the semi-circle.
Because all physical quantities are periodical along the

circle, we are looking for the solution as Fourier series. For
the exciting tangential electric field, we have:

E0
l (l) =

∞
∑

m=0

E0
m,l

√

ε0m/π cos(mϕ) =
∞
∑

m=0

E0
m,l(l)

ε0m = 2 − δm,0, ϕ = l/R

(4)

In the case of the excitation by a plane wave (also taking into
account the reflection from the ground) one finds

E0
m,l =E0

√
ε0mπ(−j)m+1·

(Jm+1(kR) − Jm−1(kR)) cos(mθ)
(5)

where Jm(x) is the Bessel function of order m, and θ is the
angle of incidence. For the induced current I(l) we obtain the
following classical result [19]–[21]:

I(l) =

∞
∑

m=0

Im

√

ε0m

π
cos(mϕ) (6)

Im = −
4πjkE0

m,l

η0R
· 1

k2

2 (gm+1 − gm−1) − k2
mgm

(7)

with the modal wave number km = m/R and

gm(k,R, a) =

∫ 2π

0

ejmϕ−jk
√

4R2 sin2(ϕ/2)+a2

√

4R2 sin2(ϕ/2) + a2

dϕ

=2π

∫ ∞

0

e−a
√

k2
ρ−k2

√

k2
ρ − k2

kρJ
2
m(kρR)dkρ

(8)

For the thin wire a � 1/k,R, it is possible to write the
function gm(k,R, a) as [19], [22]:

gm(k,R, a) ' 2

R
· (ln(2R/a)− γ − ψ(1/2 − |m|))

+
π

R

∫ 2kR

0

(

E2|m|(x) − jJ2|m|(x)
)

dx
(9)

whereE2|m|(x) is the Weber-Function, ψ(x) is the logarithmic
derivative of the Gamma-function.

The results for the current distribution along the circle agree
well with these obtained by numerical methods (MoM, NEC).

B. The Internal Problem

For the definition of the induced currents and voltages in
the internal circuit (see Fig. 1) (the so-called internal problem)
we have the following system of Telegraphers equations (the
˜refers to internal quantities) [5]:

dŨ(l)

dl
+ jωL̃′Ĩ(l) = Ẽe

z(l)

dĨ(l)

dl
+ jωC̃ ′Ũ(l) = 0

(10)

with the boundary conditions

Ũ(0) = −Z̃1 · Ĩ(0) Ũ(L) = Z̃2 · Ĩ(L) (11)

In Eq. (10) L̃′ and C̃ ′ are the per-unit length internal
inductance and capacitance, respectively:

L̃′ =
µ0

2π
ln

(a

ã

)

, C̃ ′ =
2πεε0

ln
(

a
ã

) (12)

where ε is a relative electric permittivity of the insulating
dielectric, and ã is the radius of the inner conductor. The
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distributed voltage source Ẽe
z(l) is defined as Ẽe

z(l) = I(l) ·
Zt(jω). Here I(l) is the shield current (solution of the external
problem (6)), and Zt(jω) is the TI [5], [23]. We assume here
that Zt(jω) is a constant along the line.

For the external current in the form of a forward running
wave I0 exp(−jkml)) and with matched loads Z̃1 = Z̃2 = Z̃c

it is easy to obtain a solution of (10) and (11) for the load
voltages (see also [23], Chapter 5)

Ũm(0) = I0Zt
j

2
(

k̃ + km

) ·
(

1 − e−j(k̃+km)L
)

(13)

Ũm(L) = I0Zt
1

2j
(

k̃ − km

) ·
(

e−jkmL − e−jk̃L
)

(14)

where k̃ = k
√
ε is the wave number of the internal problem,

L = πR is the length of the system. In (6), for the shield
current, we have the forward and backward running waves
with the same amplitudes for each mode and, due to linearity
of the problem, we can write after some calculations:

Ũ(0) =

∞
∑

m=0

Ũm(0), Ũ(L) =

∞
∑

m=0

Ũm(L) (15)

with

Ũm(0) =Im

√

ε0,m

π
· Zt(jω)·

k̃ cos(kmL) + jkm sin(kmL) − k̃ejk̃L

2j
(
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m

)

Ũm(L) =Im

√

ε0,m

π
· Zt(jω)·
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(
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m

)

(16)

Here the modal amplitudes of the external current Im are
defined by (7). The frequency dependencies of the functions
(15) for the unit TI Zt(jω) and an incident field of unit

Fig. 4. Internal configuration of the network analyzer Rohde&Schwarz ZVC
(taken from the data sheet).

amplitude are presented in Fig. 3. Then we obtain the TI as
the ratio of the values:

Zt(jω) =
Ũexp.(L, jω)

Ũtheor.(L, jω)
∣

∣

∣

Zt=1Ω/m

· 1Ω/m (17)

where Ũexp.(L, jω) is the experimental internal voltage
(across the matched load at the point l = L), and
Ũtheor.(L, jω)

∣

∣

∣

Zt=1Ω/m
is the theoretical value of function (16)

for the unit TI and the electric field which was used in the
experiment.

IV. EXPERIMENTAL TI DETERMINATION WITH THE AID OF

THE LOOP-METHOD

Experiments to determine the TI with the aid of the loop-
method were conducted in the GTEM cell.

A Rohde&Schwarz ZVC network analyzer was used in
a setup for “external measurements”, i.e. the internal S-
parameter test set was not used. An overview of the interior
of the analyzer is given in Fig. 4. For external measurements
the switches B21–B24 are in the opposite position. Output a1
is used to drive the amplifiers, inputs b1 and b2 are used to
pick up the internal voltage Ũexp. and the voltage of the E-field
sensor (short rod antenna), respectively. The setup of the loop
and the sensor is shown in the photos of Fig. 5.

The advantage of the external measurement setup is that
both, the internal voltage and the sensor voltage, can be mea-
sured simultaneously. Therefore, instabilities of the amplifier’s
gain (magnitude and phase variations) are irrelevant.

The primary result of the experiments is ratio m(f) of the
two voltages

m(f) =
Uinternal

Usensor
(18)

The relationship between the sensor voltage and the E-field
is expressed by the antenna factor AFE = E/Usensor, which



Fig. 5. Measurement setup inside the GTEM cell and connections at the
bottom.

is well known from the literature for short rod antennas of
height h and radius a (ka� kh� 1) [24]:

AFE =
Z0 + ZL

ZL
· 1

he(ϑ) cosψ
(19)

Here, ZL is the load impedance (50 Ω), Z0 the antenna input
impedance, he the effective length of the antenna, ϑ the angle
of incidence (here: ϑ = π/2), and ψ the polarization mismatch
(here: ψ = 0). For thin rods Z0 is approximated by

Z0(f) ' −j η0ΨdR

2πkh
, ΨdR = 2 ln

(

h

a

)

− 2 (20)

The equivalent height is given by

he(ϑ) =
hΨdR

2(Ω − 3)

[

1 + k2h2G

1 + k2h2S/3

]

· sinϑ

G =
1

Ω − 3

(

2 ln

(

h

a

)

− 11

12

)

S =1 +
3 ln 2 − 1

Ω − 3

Ω =2 ln

(

2h

a

)

(21)

Using the antenna factor, we can calculate the internal voltage
normalized to unit field strength:

Uinternal(f)

E
=

m(f)

AFE(f)
(22)

We performed measurements on two types of shielded
cables. One is a type RG58 braided shield cable, and the
other one is a semi rigid cable of type EZ-250-TP-M17 (from
Huber&Suhner).

A. Results for the RG58 Cable

The experimentally obtained normalized internal voltage for
a typ RG58 cable is shown in Fig. 6.

Along with the experimental data, two calculated curves
are shown in Fig. 6. These are the magnitude and phase of
the internal voltage calculated using the standard formula for
the transfer impedance and two different expressions for the
m-representation of the Green’s functions gm. The first is the
usual free-space formula. The second is a modified version that
takes into account that in the GTEM radiation is restricted to
one direction. This leads to a first guess for gGTEM

m :
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Fig. 6. Magnitude (upper graph) and phase (lower graph) of the normalized
internal voltage.

gm → gGTEM
m = <(gm) + 1/6 · =(gm) (23)

As one can see, the modified version gives better results for
the representation of the first resonance, but is less accurate at
higher frequencies. A better formula for the Green’s function
of the given problem would be helpful and is under current
investigation.

Since the transfer impedance is calculated from the exper-
imental internal voltages using the analytical solution of the
external problem, i.e. using an calculated current on the screen,
it is helpful to compare this current with a measurement (using
a current probe F2000 from FCC). The results are given in
Fig. 7.

Again, we obtain a better agreement using the modified
Green’s function for the first resonance. Above approximately
700 MHz deviations are visible. Because of the disagreement
of the experimental und the theoretical current above 700 MHz
the transfer impedance results beyond that limit are less
confidential. However, experimental data have been obtained
up to 4.2 GHz, and the evaluation will be extended to that
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frequency as soon as a more adequate Green’s function for
the external problem is available.

Using eq. (17), the transfer impedance can be calculated
from the experimental data. The results are shown in Fig. 8.

The formula for the theoretical curve in Fig. 8 (standard
formula) is Vance formula

Zt = Zd + jωL′
a (24)

with empirical data for the parameters of the RG58 cable taken
from [5]. Up to 600 MHz a good agreement of both, magnitude
and phase, is obtained.

B. Results for the Semi Rigid Cable

Due to the essential better shielding (lower |Zt|), the internal
voltages for the semi rigid cable are much smaller compared
to these of the RG58 braided shield cable. The measured
normalized internal voltages for the semi rigid cable are shown
in Fig. 9. Obviously, the overall shapes of the curves for
the experiments follow the theoretical data. However, both
magnitude and phase do not give the correct absolute values.
Especially for the phase there is an offset of nearly 180 degrees
for small frequencies. This indicates a possible sign error, e.g.
in the data evaluation. This problem is currently investigated.

The transfer impedance calculated from the internal voltage
is shown in Fig. 10. Again, discrepancies, both for magnitude
and phase, appear in the graphs. As one can see |Zt| can
be calculated from the measurements down to 1 · 10−4 Ω/m,
showing the sensitivity of the method.

V. CONCLUSION

It has been shown that the loop-method is an experimental
simple method for the measurement of the transfer impedance.
The method is applicable for frequencies up to 10 GHz
(for a cable radius of ∼4 mm). That considerably exceeds
the possibilities of other methods. However, the use of the
method is currently restricted to frequencies up to 700 MHz
due to limitations of the Green’s function used to solve the
external problem. Of course, the transfer admittance has to be
addressed too at higher frequencies.
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