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Coupling path of a common EMC problem
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Problem formulation

Ingredients:

• Maxwell’s equations

• Boundary conditions

• Radiation condition

• Edge conditions (finite energy)

• Material properties

But why an analytical approach?

• Yields understanding of underlying physical mechanisms

• Yields reference solutions for benchmark tests
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Problems that are difficult to solve

Unsolved problems involve:

• cavities, containing metallic or dielectric scatterers

• apertures

• edges

• different media

• electrically large systems

– p.4
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Outline

We focus on:

Calculation of electric currents on one-dimensional structures

inside of rectangular cavities

I. Analytical analysis of linear elements

• Method of Regularization

II. Numerical analysis of linear elements

• Method of Moments and effective Green’s functions

III. Experimental and analytical analysis of nonlinear elements

• Strong cavity excitation by demodulation effect

– p.5



and Electromagnetic Compatibility

Institute for

Fundamental Electrical Engineering

M
A

G
D

EB
URG

G
U

ERIC
KE

OTT
O

V
O

N

T

UNIVERSITÄ

I. The method of analytical regularization

Suppose we have an equation of the first kind,

Lx = b

with L = L0 + L1 and L0 contains a singular kernel. Suppose further

that L0 is analytically invertible. Then:

L−1
0 (L0 + L1)x = L−1

0 b

is of the form

x + Hx = b′

where H is compact. This is an equation of the second kind.

Advantage: better convergent and more stable!
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I. General coupling to one-dimensional structures

Electric Field Integral Equation (EFIE):

(∫

1D-structure
G(l, l′)I(l′) dl′

)

t
= −Einc

t (l)

or shorthand

ĜI = −Einc

Integral Equation of the first kind for the unknown current I .

In free space:

Ĝ = Ĝfree

Within cavity:

Ĝ = Ĝcav

– p.7
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I. Solution by analytical regularization

Within cavity: Split integral operator in two parts,

Ĝcav = Ĝfree + Ĝmode

and know the inverse operator Ĝ−1
free. Then:

ĜfreeIcav + ĜmodeIcav = −Einc

=⇒ Icav = −Ĝ−1
freeE

inc

︸ ︷︷ ︸

=:Ifree

−Ĝ−1
freeĜmodeIcav

Second order integral equation for the unknown current I . Solution by

iteration:

Icav =
Ifree

1 + Ĝ−1
freeĜmode
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I. Example: Electrically small antenna

We consider first a linear wire antenna (length L, radius a, along

z-axis) in free space, which is excited by an incoming wave

Einc
z = E0 sin θi exp(jkz cos θi)

Approximate solution for the induced current:

Ifree(z, ω) = I0

[(

cos(kz) − exp(jkz cos θi)
)

+
(

exp(jkL cos θi) − cos(kL)
) sin(kz)

sin(kL)

]

where

I0 :=
j4πE0

η0Ω0k sin θi
, Ω0 := 2 ln(L/a) .

– p.9
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I. Example: Electrically small antenna

Low frequency approximation (kz, kL � 1):

Ifree(z, ω) = KE
free(ω)f(z)Einc

z

where

Kfree(ω) = jω
πε0L

2 ln(L/a)

L/2

1 − (kL)2/6

f(z) = 1 −
4z2

L2

This approximate solution for the antenna current in free space will be

used to obtain a solution for the antenna current within a rectangular

cavity:
Icav =

Ifree

1 + Ĝ−1
freeĜmode

– p.10
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I. Example: Electrically small antenna within a

rectangular cavity

Antenna of length L, λ � L, radius a, directed in z-direction:

Icav(z, ω) =
Kfree(ω)f(z)

1 + Kfree(ω)
∫

Gmode(z, z′)f(z′)dz′
Einc

z

where

Kfree(ω) = jω
πε0L

2 ln(L/a)

L/2

1 − (kL)2/6

f(z) = 1 −
4z2

L2

Therefore we know: J → E and E → J .

This results allows to calculate the coupling between two electrically

small antennas within a rectangular cavity.

– p.11
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I. Example: Coupling between two electrically

small antennas within a rectangular cavity

Consider an active and a passive antenna, both directed in

z−direction:

• current on active antenna due to

• free space part

• selfinteraction with cavity

• interaction with passive antenna within cavity

• current on passive antenna due to

• interaction with active antenna within cavity

– p.12
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I. Example: Coupling between two electrically

small antennas within a rectangular cavity
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Outline

I. Analytical analysis of linear elements

• Method of Regularization

II. Numerical analysis of linear elements

• Method of Moments and effective Green’s
functions

III. Experimental and analytical analysis of nonlinear elements

• Strong cavity excitation by demodulation effect
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II. Method of Moments and interior problems

General statement:

For interior problems and close to resonance the Method of

Moments can become inaccurate.

Note:

Commercial Method of Moments codes take advantage of the

Green’s function of free space.

Our strategy:

• Use cavities’ Green’s function.

• Use a representation which quickly converges both in the

source region and close to resonance.
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II. Modes and Rays within a cavity

Modes:

• Describe the electromagnetic field by eigenfunctions of the

cavity, i.e., by its resonant properties.

Rays:

• Describe the electromagnetic field by direct, scattered, or

diffracted wave fronts, i.e., by the electromagnetic

propagator.

Note:

Modes and Rays have complementary properties!

– p.16
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II. Modes versus Rays

Modes Rays

yield global information yield local information

characterize late response characterize early response

advantageous for advantageous for

low-frequency components high-frequency components

Hybrid-formulation:

Combines advantages of both modes and rays!
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II. Green’s function of a lossy rectangular cavity I

Well-known: Mode expansion

¯̄GA
cav zz(r, r′, k) =

4µ0

abc

∞∑

nx=1

∞∑

ny=1

∞∑

nz=0

ϕν(r)ϕν(r′)

k2
ν − k2

εnz,0

ϕν(r) := sin(kxx) sin(kyy) cos(kzz)

ν ≡ (nx, ny, nz)

εnz,0 =







1 for nz = 0,

2 for nz > 0.

• Advantage: Satisfying convergence close to resonance

• Disadvantage: Poor convergence close to the source region
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II. Green’s function of a lossy rectangular cavity II

Also well-known: Ray expansion

¯̄GA
cav zz(r, r′, k) =

µ0

4π

∞∑

n1,n2,n3=−∞

(−1)n1+n2
e−jkρ(r,r′,n1,n2,n3)

ρ(r, r′, n1, n2, n3)

• Advantage: Satisfying convergence close to the source

region

• Disadvantage: Poor convergence close to resonance
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II. Green’s function of a lossy rectangular cavity

Use “Ewald-transformation” to construct hybrid representation

GA
zz = GA

zz1
︸︷︷︸

mode part

+ GA
zz2

︸︷︷︸

ray part

with excellent convergence properties!

GA
zz1 =

µ0

8abc

∞
X

m,n,p=−∞

7
X

i=0

Azz
i

exp
`

−
k2

0
−k2

4E2

´

k2
0
− k2

exp
`

j(k0xXi + k0yYi + k0zZi)
´

GA
zz2 =

µ0

8π

∞
X

m,n,p=−∞

7
X

i=0

Azz
i

h exp(jkRi,mnp)erfc(Ri,mnpE + jk/2E)

Ri,mnp

+
exp(−jkRi,mnp)erfc(Ri,mnpE − jk/2E)

Ri,mnp

i
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II. Efficient Calculation of Complex Complementary

Error Function

erfc(z) := 1 −
2
√

π

∫ z

0
exp(−t2) dt

Rational Expansion method, implemented in MATLAB (vector code):

function w = cef(z,N)

z=-z/i;

M = 2*N; M2 = 2*M; k=[-M+1:1:M-1]’;

L = sqrt(N/sqrt(2));

theta = k*pi/M; t=L*tan(theta/2);

f = exp(-t.ˆ2).*(Lˆ2+t.ˆ2); f=[0;f];

a = real(fft(fftshift(f)))/M2;

a = flipud(a(2:N+1));

Z = (L+i*z)./(L-i*z); p=polyval(a,Z);

w = 2*p./(L-i*z).ˆ2+(1/sqrt(pi))./(L-i*z);

w = 1-w./exp(-z*z);
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II. Example: Solution of Hallen’s equation

inside a rectangular cavity
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II. Input Impedance of a Dipole Antenna

inside a cavity (imaginary part), (Q=500, Q=1000)
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Outline

I. Analytical analysis of linear elements

• Method of Regularization

II. Numerical analysis of linear elements

• Method of Moments and effective Green’s functions

III. Experimental and analytical analysis of nonlinear
elements

• Strong cavity excitation by demodulation effect
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III. Demodulation at nonlinear elements

• Known problem: back-door coupling

modulated high frequency signal couples into a system

→ demodulation at nonlinear elements yields low

frequency components

→ low frequency components disturb the system

• System: rectangular cavity (MSC)

Signal: generated by a transmitting antenna

Victim: receiving antenna

• First: no nonlinear element present

Second: introduce a nonlinear scatterer within the cavity
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III. The MSC at the University of Magdeburg
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III. Experimental Setup

w=6.375 m

h=3.43m

5.68 m

2.195m
1.24 m

1.24 m

2.74 m
1.2 m

Rx

Tx

scatterer4.9 m
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0.6
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1

0 5e-08 1e-07 1.5e-07 2e-07

Time / s

Carrier: 90 MHz, PRF: 10 MHz, Duty: 50 %

U(t) = U0F (t), F (t) =

N
X

n=0

f(t − nTm)

f(t) = sin(ωct)θ(t)θ(Tp − t)

N � 1, θ(t): unit step function, ωc � ω1

Ũ(ω) = U0e−jω
Tp

2

2jωc

ω2
c − ω2

1 − e−jωTmN

1 − e−jωTm
sin

ωTp

2
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III. Variation of Pulse Repetition Rate
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III. Results – empty resonator
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III. Theoretical description

Current induced in the receiving antenna (→ received power) is

given by

IR(ω) = KI(ω)Yin(ω)Ũ(ω)

where

• KI(ω): current transfer function (analytically known)

• Yin(ω): input admittance of transmitting antenna

(analytically and numerically known)

• Ũ(ω): Fourier transform of feeding signal at input of

transmitting antenna (analytically known)
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III. Comparison Theory – Experiment
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III. The nonlinear scatterer

40.7 cm

16 cm

Nonlinear Scatterer:

8 Schottky diodes

→ demodulation

→ current in loop contains low frequency components

→ low frequency components couple to cavity modes
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III. Experimental Results
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III. Amplification of low-frequency content

n with scatterer without scatterer ∆ / dB

2 -31.96 dBm -85.39 dBm 53.43

3 -48.08 dBm -94.23 dBm 46.15

4 -34.61 dBm -89.98 dBm 55.37

5 -50.20 dBm -98.95 dBm 48.75

6 -40.47 dBm -93.66 dBm 53.19

7 -55.50 dBm -105.01 dBm 49.51

8 -40.63 dBm -95.95 dBm 55.32

9 -49.23 dBm -104.05 dBm 54.82

10 -47.64 dBm -98.17 dBm 50.53

power level at 900 MHz: -14 dBm → -18 dBc
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III. Theory: A simple model

Represent the electromagnetic field inside the resonator as
independent, forced oscillators:

Ez(r, t) =
X

ν

Eν,z(r, t)

“ ∂2

∂t2
+ 2γν

∂

∂t
+ ω2

ν

”

Eν,z(r, t) = Eν,0(r) ω2
ν,ρF (t)

Suppose
ω1 ≈ nωm

Then:

Ez(r, t) ≈ E1,0(r) ω2
1

Z t

0

F (t′)K(t − t′) dt′

with

K(t) =
exp(−γν t) sin(

q

ω2
1
− γ2

1
t)θ(t)

q

ω2
1
− γ2

1
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III. Summary of results

• Without nonlinear scatterer the low frequency components

are enhanced by about 30 dB if the modulation frequency

corresponds to a resonance of the cavity.

• This can be explained by a theoretical model.

• The presence of a nonlinear scatterer further enhances the

low frequency components by 55 db.

• This can qualitatively be explained by a simple model

(consider modes in the cavity as independent, forced

harmonic oscillators).
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Conclusion

• Electromagnetic coupling within cavities can greatly differ

from that in free space.

• For analytical considerations it is advantageous to separate

the coupling in a “free space” and a “mode part”.

• Numerical procedures must be able to deal both with

source singularities and resonances.

• Within cavities, demodulation at nonlinearities can yield

surprisingly large resonance effects.

Thank you for your attention!
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