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Abstract 

The size distribution of mesoscopic metallic systems is 
determined by small-angle X-ray scattering using the 
indirect transformation method. It was found that a 
system of indium particles in an oil matrix can be best 
fitted if the particles are assumed to be homogeneous 
spheres. This assumption does not hold for a system of 
nickel in SiO2: to get a good approximation to the 
measured data, the form factor has to be refined. By 
comparison of the obtained particle-size distributions 
with theoretical models for different growth processes, 
it is possible to distinguish between Ostwald ripening 
and coalescence growth of the particles during the 
preparation. 

I. Introduction 

Small-angle scattering of X-rays (SAXS) is an 
important method for determination of particle sizes 
in the range up to 100nm integrating over a 
macroscopic sample volume. As the number of 
particles in the illuminated sample can easily exceed 
1012, small-angle X-ray scattering is a very useful 
method for the determination of particle-size dis- 
tributions. 

With the assumption of a dilute and isotropic 
sample of randomly orientated particles having the 
same shape but different size (linear size parameter R) 
in a homogeneous matrix, the particle-size distribu- 
tion D,(R) can be obtained from the smeared 
scattering intensities l(h)* according to (Glatter & 
Kratky, 1982; Vonk, 1976) 

x2 t2 22 R2 

I(h) = 2I~ ~ ~ ~ ~ Q(x)[P,//Ds](t) 
xj 0 ;t~ Rt 

x W(2')D,(R)mE(g)dp(fl)dR d),' dt dx (1) 

with 

fl = RE(h -  x) 2 + t2]l/2/J. '. (2) 

In this equation, h = (4rC/2o)sin O is the absolute 
value of the scattering vector (O is half of the 

* The intensities l(h) are only corrected for dead time, dark 
current and blank scattering. 
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scattering angle and 20 is the central wavelength of 
the primary radiation), I e is the scattering intensity for 
a single electron, Q(x) is the beam-width profile, P(t) 
is the beam-length profile and W(2') is the wavelength 
profile with 2 ' =  2/2 o. The beam-length profile P(t) 
has to be convoluted with a step function HDS of the 
length of the detector slit. The factor m(R) includes 
the electron-density distribution of the scattering 
particle: it is the integral over the excess electron- 
density distribution over the volume of the particle. 
The last and very important factor in (1) is the particle 
form factor ~b(fl) (here, the form factor is the scattering 
intensity of a single particle averaged over all 
orientations and normalized to unity in the forward- 
scattering direction). 

The most important special case for the form factor 
is a system of homogeneous spheres with radius R. In 
this case, the form factor is given by 

q~sphere(hR) -- {3[sin (hR) - hR cos  (hR)]/ (hR)3} 2. (3) 

The case of homogeneous spheres can be generalized 
to a system of randomly orientated homogeneous 
spheroids with axes (2R, 2R, v2R). The form factor for 
such a system follows from (3) with an additional 
integration (Guinier & Fournet, 1955): 

n/2 

q~spheroid(hg) = ~ q~spher~(hR~)cos 69 dO (4) 
o 

with 

= (COS 2 (9 q- V 2 s in  2 0 )  1/2. (5) 

The factor v is the ratio of the two symmetry axes. 

II. Method 

A. Instrumentation 

The SAXS curves are measured using a Kratky 
small-angle camera with secondary monochromator  
and scintillation counter with the multiple scanning 
technique (Zipper, 1972). The radiation is supplied 
from a rotating-anode tube (copper target, 20 = 
0.15405 nm) with an acceleration voltage U = 40 kV 
and a tube current I = 300 mA. 
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Since the tube focus is very small, the investigations 
of Stabinger & Kratky (1979) for the 'integrated 
camera'  are applicable: by removal of the entrance slit 
of the Kratky camera, the intensity can be increased 
by a factor of three. The laboratory has to be held at 
constant temperature (here _+ 0.25 K) to ensure the 
position of the camera relative to the tube focus 
remains constant (Heitmann, Krauth~iuser, Kops & 
Nimtz, 1994). 

Usually, the Kratky camera is evacuated to avoid 
parasitic scattering. It has been proved by the authors 
that a helium atmosphere in the camera does not 
provoke more parasitic scattering than a vacuum. So 
it is now possible to examine samples that cannot be 
put into a vacuum without any foils between sample 
and camera volume (Heitmann et al., 1994). 

The wavelength profile W(2') was measured very 
accurately using an Si (111) single crystal at a 
large-angle diffractometer mounted in front of the 
second beam window of the same tube. 

B. The indirect transformation method 

The evaluation of the particle-size distribution from 
the scattering intensities was done by means of the 
indirect transformation method, developed by Glatter 
(1977, 1980). 

The indirect transformation method starts with a 
linear expansion for the size distribution: 

N 

D,(R) = ~ c~q),(R). (6) 
v = 1  

Here, (pv(R) are equidistant cubic B-spline functions 
(Grevi]le, 1969; Schelten & Hossfeld, 1971). The 
expansion coefficients have to be determined. The 
number of spline functions, N, is limited by numerical 
considerations so that the size distribution is assumed 
to be band-limited. The spline functions can be 
transformed into the 'measuring space' according to 
(I). This transformation leads to an approximation 
IA(h) for the measured intensities: 

N 

I a(h) = ~ cvz~(h), (7) 
v = l  

where the L.(h) are the Fourier-transformed and 
smeared spline functions (pv(R). The unknown 
coefficients Cv are determined by solving a normal 
equation according to the extended least-squares 
condition 

L + 2Nc, = ~ h , ) -  c~z~(h,)  a(h,) 2 
i = 1  v = l  

N - I  

+ ;. ~_, ( c v + ~ - c ~ )  ~ 
v = l  

= min. (8) 

In this equation, ~.N c, is a damping term for the 
coefficient vector c,.. The damping is regulated by the 
Lagrange multiplier 2. 

C. Computation 

The calculations are performed using Glatter 's 
(1977) Fortran program system ITP-81 on an 
HP9000/720 workstation. The program code was 
optimized to give an increase of a factor of three in 
speed. Also, the routines for calculating the Fourier 
transformation for polydisperse systems with a given 
form factor (no spheres) were rewritten to guarantee a 
very accurate consideration of the form factor even 
for large values of hR [-see (4)]. 

III. Experimental results 

A. Indium in oil 

Fig. 1 shows the smeared scattering intensities ]'(h) 
for a system of indium particles in an oil matrix 
together with two independent approximations. The 
indium system was produced using the VERL method 
(VERL = vacuum evaporation on a running liquid) 
(Nimtz, Marquardt  & Gleiter, 1988). The volume 
fraction of the indium particles is 4 )=  0.018. The oil 
is polyetherpolyol BaygalR K390. 

The two approximations to the measured data are 
a polydisperse system of homogeneous spheres and a 
polydisperse system of randomly orientated homo- 
geneous spheroids with v = 1.1. The system of spheres 
leads to a more satisfactory approximation of the 
measured data than the system of spheroids. 

The particle-size distribution D,(R) according to the 
approximation of a system of homogeneous spheres 
is shown in Fig. 2. The other two curves shown in this 
figure are theoretical size distributions, which will be 
discussed later. 
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Fig. 1. Smeared scattering intensities "[(h) versus the absolute value 
of the scattering vector h. Points give experimental intensities for 
a system of indium in oil (volume fraction 4) = 0.018); - -  best 
approximation of a system of homogeneous spheres; - - -  best 
approximation of a system of homogeneous spheroids with 
v=l . I  
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B. Nickel in SiO 2 

The scattering intensities [(h) of a system of nickel 
in SiO 2 are shown in Fig. 3. The system was produced 
by a sol-gel process. The volume fraction of the nickel 
particles is about @ = 0.2. In this figure, the best 
approximations according to a system of homogen- 
eous spheres and a system of homogeneous spheroids 
with v = 1.2 are also represented. The approximation 
according to a system of spheroids is nearly perfect 
over the whole measuring range compared with a 
system of spheres. 

Fig. 4 shows the particle-size distribution according 
to the approximation for the spheroid system from 
Fig. 3. The solid line is a theoretical size distribution, 
which will be discussed later. 
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Fig. 2. Particle-size distributions D.(R) versus the particle size R. 
© Distribution according to the system of homogeneous spheres 
(see Fig. 1). The range strongly influenced by errors owing to the 
evaluation method is marked by smaller circles. - -  - -  log-normal 
distribution with R o = 9 n m  and a = l . 2 8 ;  time-in- 
dependent Ostwald distribution for /~ = 9nm and volume 
fraction @ = 0.018. 
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Fig. 3. Smeared scattering intensities [{h) versus the absolute value 
of the scattering vector h. Points show experimental intensities 
for a system of nickel in SiO2 {volume fraction 4, = 0.2); best 
approximation of a system of homogeneous spheres; - - -  best 
approximation of a system of homogeneous spheroids with 
v =  1.2. 

C. Electron-microscopy data 

One of the systems discussed here - indium in 
Baygal - has been analyzed using transmission elec- 
tron miscroscopy (TEM). From these investigations, it 
follows that: most of the particles are isolated but 
there are also large clusters of agglomerated particles; 
the isolated particles can be assumed to be spherical; 
the mean radius of the particles is 7.5 nm. 

Since the samples have to be diluted for the TEM 
investigations, it is very probably that the agglomera- 
tion of the particles is an artifact of TEM preparation. 

IV. Discussion 

A. Particle growth 

1. Coalescence growth. A statistical analysis of the 
coalescence growth of particles leads to the result that 
the logarithm of the particle volume is Gaussian 
(Granqvist & Buhrman, 1976). So it follows that the 
distribution of the particle-size parameter R is a 
log-normal distribution. The (normalized) log-nor- 
mal distribution is given by 

fEN(R) = 1/[(2rt)'/2(ln a)] 

x exp [--(ln R -- In Ro)2/2 In 2 a]. (9) 

Here, cr is the standard deviation {dimensionless and 
larger than unity) and R o is the most probable particle 
size. Following Granqvist & Buhrman (1976), typical 
values for the standard deviations are in the range 

1.1 < a _< 1.6. (10) 

2. Ostwald ripening. The first theoretical considera- 
tions of Ostwald ripening were given by Lifshitz & 
Slyozov ( 1961 ) and Wagner ( 1961). This theory - well 
known as the LSW theory of Ostwald ripening - is 
only valid in the limits of infinite dilution of the 
system. Modifications to the LSW theory for the case 
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Fig. 4. Particle-size distribution D.(R) versus the particle size R. 
o Distribution according to the system of homogeneous 
spheroids (see Fig. 3). The range strongly influenced by errors 
owing to the evaluation method is marked by smaller circles; 
- -  log-normal distribution with R o = 21 nm and a = 1.4. 
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of finite volume fractions, • 4: 0, are given by Ardell 
(1972) and later by Voorhees & Glicksman (1984; 
Vorhees, 1985). The particle-size distribution for 
Ostwald ripening, f(z, p, O), can be expressed as a 
product of two functions: 

f(z, p, O) = 9(z)h(p, 0), (11) 

where z is a dimensionless time and p is a 
dimensionless size parameter, defined as the particle 
size R normalized to the mean particle size /~. 
Following the considerations of Voorhees & Glicks- 
man, the time-independent size distribution h(p, O) 
can be calculated numerically. The resulting distribu- 
tions are shown in Fig. 5 for several values of the 
volume fraction O. 

B. Indium in oil 

It was shown that the scattering intensities for the 
system of indium in oil can be best fitted assuming 
the particles are homogeneous spheres. This is a very 
astonishing result because - owing to strong sym- 
metry - the form factor of spheres shows a very typical 
and restrictive behavior. The transition from a system 
of spheres to a system of spheroids can be regarded 
as a step from an ideal (theoretical) system to a real 
system: any deviation from the ideal 'system of 
homogeneous spheres' breaks up the strong symmetry 
and smooths out the form factor in a typical way. 

So, in most cases, the form factor of real systems 
looks more like the form factor of a system of 
spheroids than that of a system of spheres. This 
emphasizes that the indium particles in the oil matrix 
are indeed spherical. 

The particle-size and -shape information following 
from SAXS measurements is in agreement with that 
obtained from TEM investigations but it is more 
detailed. 

To interpret the obtained particle-size distribution, 
shown in Fig. 2, the data are compared with 
particle-size distributions obtained from theoretical 
considerations. 
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Fig. 5. Normalized time-independent size distributions h(p, O) 
versus the normalized size p for different values of the volume 
fraction O. 

The first model is coalescence growth of the 
particles. As shown before, a statistical analysis of 
coalescence growth leads to a log-normal distribution 
of the particle size (here the radius). Secondly, the 
extended model of Ostwald ripening was chosen. Two 
curves according to these theoretical models are 
shown in Fig. 2 together with the particle-size 
distribution obtained from the best approximation to 
the scattering intensities. Both models lead to a good 
approximation in the middle and the outer part of the 
curve (R > 6 nm). In the central part (R < 6 nm), 
Ostwald ripening gives a better result but does not fit 
the experimental data satisfactorily. It must be 
emphasized that the time-independent Ostwald 
distribution is fully determined by the well known 
volume fraction of the system, the mean size and the 
peak value of the distribution. In fact, there is no free 
parameter for the Ostwald distribution. 

In contrast to the Ostwald distribution, the slope 
of the log-normal distribution (owing to coalescence 
growth) is adjustable in a wide range by changing the 
standard deviation tr. 

Hence, there is a greater possibility for the 
log-normal distribution to fit any given size 
distribution more satisfactorily than for the Ostwald 
distribution. 

The central part of the particle-size distribution 
(R < 6 nm) is hardly influenced by the choice of the 
Lagrange multiplier 2. So the interpretation of this 
part of the curve is obscure. 

C. Nickel in SiO 2 

In contrast to the system discussed above, in the 
case of nickel in SiO2 it was shown that a variation 
of the form factor could improve the approximation 
to the measured data. From this, more information 
on the sample can be obtained. 

The alternatives for interpreting the results are: 
(1) the system of nickel in SiO2 is really a system of 
homogeneous spheroids with axes (2R, 2R, v2R); 
(2) the system is neither a system of homogeneous 
spheres nor a system of homogeneous spheroids but 
a system of which the form factor looks more like that 
of a system of spheroids than that of a system of 
spheres. The second case would be true if all the 
particles cannot be assumed to have exactly the same 
shape. If one takes the preparation process into 
account, the second possibility is more probable. 

A comparison was attempted between the particle- 
size distribution for the system of nickel in SiO2, 
shown in Fig. 4, and particle-size distributions 
according to coalescence growth and Ostwald 
ripening. Owing to the large volume fraction, the 
Ostwald distribution according to this system is very 
broad and does not fit the experimental data - it is not 
presented in Fig. 4. As one can see in this figure, the 
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log-normal distribution leads to a good approxima- 
tion of the obtained particle-size distribution (the 
misfit in the central part (R < l0 nm) of the curve is 
not interpreted because of the artifact discussed above 
for the system of indium in oil). 

Hence, by analysis of the particle-size distribution, 
it was shown that the model of Ostwald ripening can 
be rejected for this system. 

V. Concluding remarks 

The SAXS investigations have shown that 
(a) particle-size distributions can be evaluated from 

scattering data; 
(b) if the quality of approximation for different 

particle form factors is monitored, it is possible to 
distinguish between spherical and non-spherical 
systems; 

(c) the obtained particle-size distributions are in 
agreement with theoretical models of particle growth; 

(d) for the system indium in oil (volume fraction 
= 0.018), one cannot distinguish between Ostwald 

ripening and coalescence growth because the theoreti- 
cal distributions are very similar. Of course, it is less 
probable for the Ostwald distribution to fit the data 
purely by chance; 

(e) for the system nickel in SiO2 (volume fraction 
q)--0.2), the particle-size distribution is in good 
agreement with a log-normal distribution. So for this 
system it is possible to distinguish between Ostwald 
ripening and coalescence growth. 
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