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Abstract 

The indirect transformation method (program ITP) 
developed by Glatter since 1977 is still one of the most 
popular methods for obtaining real-space information 
from small-angle scattering data. In order to validate the 
novel structure interference method (SIM), a comparison 
of the two methods has been performed with both 
simulated and experimental data. Although no explicit 
smoothing criterion is used in SIM, the solutions are less 
influenced by oscillations, termination effects are smaller 
and higher real-space resolution is obtained compared 
with ITP. It has been found that the structure interference 
method is very robust even in the case of incomplete data 
(h iRma x > re) where the indirect transformation method 
fails to find a physically meaningful solution. 

1. Introduction 

Small-angle scattering of X-rays or neutrons is often used 
to get real space information [here, the volume- or 
number-weighted particle size distribution of the sample; 
Dv(R ) or Dn(R)] for mesoscopic systems [a good review 
is given in the book of Glatter & Kratky (Glatter & 
Kratky, 1982)]. Only a small amount of information can 
be deduced from the scattering curve directly. If real- 
space distributions should be obtained, the inversion of 
small-angle scattering data becomes an ill-posed problem 
because the solution is not unique and unstable: the 
transformation 

rl r2 
T" 'real space' --+ 'Fourier space' --+ 'measuring space' 

D(R)--+ I (h )= T1D(R ) ---> I(h) 

= TD(R)= T2T1D(R) (1) 

is known from scattering theory,* but different distribu- 
tions D(R) lead to intensities l(h), which fits all to the 
experimental intensities Iexp(h) within experimental and 
theoretical errors. Generally, the transformation T is not 

* I(h) is the smeared scattering intensity at the scattering vector 
h = (4n/),) sin (O), 2 is the central wavelength of  the primary radiation, 
~9 is half of  the scattering angle and D(R) is the real-space distribution. 
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only determined by scattering theory (Tl), but smearing 
effects due to camera geometry and wavelength distribu- 
tion have also to be considered (7"2). The smearing 
transformation /'2 gives rise to an information loss that 
makes the evaluation of the scattering curve more 
difficult. 

Glatter's indirect transformation method (often called 
indirect Fourier transformation; in the following denoted 
with the name of the program: ITP) is a well established 
method for small-angle scattering-data evaluation (Glat- 
ter, 1977a,b, 1980a,b; Glatter & Kratky, 1982). The 
purpose of this paper is to compare the indirect 
transformation method with the novel structure inter- 
ference method (SIM) that has been described in more 
detail elsewhere (Krauth/iuser, 1994; Krauth/iuser, 
http://www.rrz.uni-koeln.de/~,abb08 and program avail- 
able by e-mail from the author). 

Both methods mentioned here - and also all regulari- 
zation and maximum entropy methods, (e.g. Gull & 
Skilling, 1984; Hansen & Pedersen, 1991; Moore, 1980; 
Morrison, Corcoran & Lewis, 1992; Potton, Daniell & 
Rainford, 1988; Semenyuk & Svergun, 1991; Weese, 
1992) - start with an expansion of the real-space 
distribution with starting functions q~v(R): 

N 
De(R ) = ~ cv~ov(R ) = e. q~(R). (2) 

v----I 

For Glatter's ITP, these functions are equidistant cubic b- 
spline functions, for SIM, the ~0~(R) are the characteristic 
functions of disjunct intervals [R v, Rv+1 [: 

1 R ~ [Rv, Rv+l[ (3) 
¢Pv(R)= 0 else. 

Because the transformation T is linear, the scattering 
intensities Ic(h ) for a given set of coefficients c~ can be 
expressed as 

N 
le(h ) = TDe(R ) = Y~ cvT2 Tl q~v(R) 

v=l 

N N 
= ~ cvr2Ov(h) = ~ cvzv(h) = ¢ .  X(h), 

v=l v=l 

(4) 
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8 REAL-SPACE DISTRIBUTIONS FROM SAXS DATA 

where the functions $,(h) are the theoretical intensities 
according to the real space functions q~v(R) and xv(h) are 
the functions $,(h) smeared with the beam profiles and 
the wavelength distribution. The transformation of a 
starting function opt(R) into the measuring space is 
illustrated in Fig. 1 for the case of  a dilute system of 
homogeneous spherical particles and smeared with 
profiles typical for a Kratl~ camera. The compatibility 
of  a solution De(R ) with the experimental intensities 
Iexp(h) is measured by means of  the weighted least- 
squares expression 

M 

Z 2 - -  ~_,(Iexp(hi) --  I e (h i ) / t r (h i ) )  2, (5) 
i=1 

where M denotes the number of  measured points and 
it(hi) the (statistical) standard deviation of the intensity 
Iexp(hi). With the assumption that the data are only 
affected by the statistical errors a(hi), a meaningful lower 
limit for ;(2 is given by M: 

lexp(hi)  --  l e (h i )  = r E  i t (hi)  =~ Z 2 = M .  (6) 

Of course, statistics are not the only error source. Other 
experimental errors (e.g. blank scattering correction) and 
also theoretical errors (e.g. an assumption of perfectly 
spherical scatterers) have to be considered also. Thus, all 
solutions De(R ) leading to a Z 2 smaller than M times an 
approximation grade e > 1 are possible solutions in the 
sense of  a sufficient fit. The set o f  solutions satisfying the 
approximation criterion (an N-dimensional ellipsoid, 

possibly degenerate) can be determined with usual 
numerical methods (e.g. singular-value decomposition). 
Therefore, from a mathematical point of  view the 
problem is solved but, in practice, the problem is now 
to select the 'right' solution from this set. But how to 
select a solution, since the real distribution is unknown? 
One possibility - and this is done in all regularization 
methods - is to expand the least-squares condition by an 
additional condition concerning the shape or the 
smoothness of the admissible solutions. For the indirect 
transformation method, this secondary condition is the 
norm N e of the first deviation of  the coefficients vector 
(this is the nonsmoothness of  the solution): 

N-1 
x + = + 2 E (c,+, - c ,?.  (7) 

v----1 

The solutions of  the corresponding normal equations are 
determined by matrix inversion for different Lagrange 
multipliers 2. The optimal Lagrange parameter is selected 
from the point of  inflection in the so called stability plot 
- a plot of  g 2 and N e v e r s u s  2 (GlaRer & Kratky, 1982). 

2. The structure interference method 

In contrast to regularization methods, SIM does not 
expand the least-squares condition. It only makes use of  
the demand that a physically meaningful solution has to 
be independent of  the real-space discretization given by 
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Fig. 1. Transformation of a starting function ~p,(R) into the 'measuring space' with beam profile typical for a ICratky camera. 
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the set {R v : v = 1 . . .  N}: for every randomly chosen set 
of  R v a solution can be calculated iteratively by 
minimization Z 2 until it becomes smaller than an 
approximation grade s that must be carefully chosen 
with respect to the experimental and theoretical errors. In 
the current implementation of  SIM [program F L O O D  
(available by email from the author) (Krauth/iuser, 
http://www.rrz.uni-koeln.de/~abb08)] the minimization 
is performed using a conjugated gradient algorithm, but 
other algorithms, e.g. genetic algorithms, might be 
possible also. A suitable approximation grade 
e = z 2 / M  can be determined from a plot of  e and N e 
versus the number of  iterations in the minimization 
process. A typical example of  such a 'trace plot' is shown 
in Fig. 2: the approximation grade decreases rapidly 
within the first 15 iterations while the nonsmoothness of 
the solution increases. Atter the 15th iteration, both the 
approximation grade and the nonsmoothness become 
more constant. From the trace plot of  this example, the 
approximation grade is set to 4 (horizontal line in Fig. 2). 
Up to now, the determination of the approximation grade 
has been made 'by hand' as described above from a trace 
plot, but in principle it will be possible to implement an 
algorithm that adjusts the approximation grade from the 
evolution of  the solution automatically. 

All single solutions for a given discretization show 
both systematic and unsystematic structures. By aver- 
aging of  solutions according to different real-space 
discretizations, a solution is obtained that: 

(i) satisfies the approximation criterion; 
(ii) shows only the systematic structures of the single 

solutions. 
In Fig. 3, the averaging of  single solutions is illustrated 
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approximation grade e = Z /M Fig. 2. An example 'trace plot': the 2 
and the 'nonsmoothness' N e =}--~.~l(c~+ t -c~) 2 are plotted 
versus the number of iterations of the minimization process. As 
described in the text, this plot helps to fred an adequate termination 
criterion for the determination of a single solution. 

for a real scattering system. It has been shown that this 
very simple algorithm is sufficient to obtain physical 
meaningful solutions (Krauth~iuser, 1994). 

The number of  single solutions that has to be averaged 
to obtain sufficient real-space distributions is typically 
50-100. Thus, the computation time used to get the final 
real-space solution is very large, especially if all 
smearing effects have to be considered. The computation 
time for an ITP  solution is approximately the same as for 
one single SIM solution. In order to overcome the 
problem of large computation times for the complete 
SIM solution, the program F L O O D  has been parallelized, 
which was a very simple process since the computation 
of  single solutions is absolute independent. Up to now, 
the program has been used on workstations, workstation 
clusters (using PVM3), multiprocessor workstations 
(PVM3) and the massively parallel transputer system 
Parsytec GCel-3/1024 with 1024 nodes. A comparison of  
computing times for one single solution for different 
architectures is given in Table 1. The speed-up with 
PVM3 is shown in Fig. 4 together with a fit to Amdahl's 
law that gives a formula for the speed-up for a program 
with a serial fraction s: Speed-up = 1/[s + (1 - s ) /N]  < 
1/s,  where N denotes the number of  processors. The 
serial fraction can be obtained from a fit of  Amdahl's law 
to the CPU times for different numbers of processors: 
s =  0.01. 

3. Results 

In the following, a direct comparison of  the results 
obtained from both methods is presented. All curves are 
evaluated with the same or very similar parameters 
concerning the size range in real space and the real-space 
discretization. Certainly, the scattering curves, also, the 
primary data evaluation (blank scattering correction, 
Porod correction* etc.) and the beam profiles used to 
calculate the smearing have been the same. 

3.1. Real - space  discretization 

The code of the program I T P  was optimized compared 
with Glatter's original version (double-precision calcula- 
tion, renunciation of  divisions and the power function 
etc.). Owing to this optimization, a higher real-space 
resolution and smaller computation times have been 
achieved. One might ask whether these changes are really 
optimizations. Glatter gives a highest value for the 
number of  spline functions for his original version of  

* The final slope of scattering curves is given by Porod's formula 
l(h) cx h -x with x = 4 for point collimation and x = 3 for slit 
collimation. If the intensifies are affected by an additional constant 
background, this background can be determined from the Porod plot [a 
plot of h XI(h) versus h x]. This determination is called Porod correction 
within this work. 
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Table 1. Computation times for different architectures 

All times were obtained for a sample run with typical parameters: slit length and slit width smearing, 100 coefficients in real space (N), 343 
measured intensities (M). The computation time is proportional to the product N x M. 

System Processor CPU time (s) Index (%) 
Linux-PC Intel 80486DX2 (50 MHz) 671 100 
HP9000/720 PA-Risc (50 MHz) 184 365 
DEC 7000/640 Alpha (275 MHz) 127 528 
HP9000/735 PA-Risc (99 MHz) 94 714 
IBM RS/6000-990 RS6000 73 919 
Parsytec GCel-3/1024 16 x Inmos T805 (30 MHz) 158 425 
Parsytec GCel-3/1024 64 x Inmos T805 (30 MHz) 41 1637 
SNI SC900 1 x R8000 (75 MHz) 63 1065 
SNI SC900 6 x R8000 (75 MHz) 11 6100 
SNI SC900 10 x R8000 (75 MHz) 7 9586 

N _~ 30 (Glatter, 1980b). In a newer paper dealing with 
optical sizing of small colloidal particles, Schnablegger 
& Glatter argue, that 'It is neither necessary nor 
profitable to use a narrow grid (sampling) for the 
representation of D(R), since the information content of 
polydisperse scattering functions is not high'. (Schna- 
blegger & Glatter, 1991). In Fig. 5, the volume-weighted 
particle-size dislribution obtained wi th /TP for a system 
of 1.1% water in a matrix of butyl rubber (this system 
will be discussed later in more detail) is illustrated for 
different numbers of spline functions. For small numbers 
of splines (N < 50), the solution is smooth and shows 
only one structure that starts - depending on the number 
of  splines - below 10 um and is not fully relaxed to zero 
even for the last spline. When the number of splines 
becomes larger than -,~ 50, the solutions start to oscillate 
and two sharp peaks arise, one at each end of the size 
range. Which of these 'new' structures are real? 
Obviously, the oscillations are not. A detailed analysis 
of  a whole concentration series of this system [by 
transmission electron microsopy (TEM), energy-disper- 
sive X-ray fluorescence spectrometry (EDX), wide-angle 
diffractometry, differential scanning calorimetry (DSC) 
and broadband complex impedance spectroscopy] shows 
that it is the first sharp peak that is due to the water in the 
system (only this structure depends systematically on the 
water content) and the broad structure- which has been 
found for small numbers of splines too - has to be 
assigned to ZnO 2 crystallites in the rubber matrix (this 
structure does not depend on the water content). The 
peak at large sizes cannot be assigned to a real structure 
in the system; it is a termination effect. It must be 
emphasized that it is impossible to decide that the first 
peak is real and the other a termination effect without 
additional knowledge. Also, it has to be emphasized that 
for this system the most interesting information (about 
the water) is only available for large numbers of spline 
functions. Thus, .for this system it is necessary and 
profitable to use a narrow grid for the representation of 
particle size distributions, but it is also necessary to use a 
method that can handle this fine grid in real space and 

that does not produce oscillations or termination effects 
with increasing real-space resolution. 

3.2. Simulation results 

In simulations, arbitrary real-space distributions can be 
transformed to the 'measuring space' according to the 
transformation T. Additionally, any kind of error (noise, 
constant background etc.) can be added to these 
intensities to simulate experimental conditions. Since 
the original real-space distribution is known, simulations 
are an excellent tool to test what amount of information 
can be retrieved from the simulated 'measuring curve' by 
a given evaluation program. 

First simulation results are presented in Fig. 6. The 
original distribution ('Cologne Cathedral') is assumed to 
be a number-weighted particle size distribution of a dilute 
polydisperse system of homogeneous spheres. The 
transformation T also includes the smearing transforma- 
tion with typical beam length, beam width and 
wavelength distribution profiles. The main characteristics 
of this distribution that should be resolved by the 
evaluation program are: 

(i) Dn(R ) = 0 for R < 16 nm and R > 46 nm; 
(ii) three peaks (spires) at 21, 26 and 34 nm. 
Before the evaluation using SIM and ITP, 1% Gaussian 

error has been added to the simulated scattering curve. 
Fig. 6 shows the original distribution together with the 

results obtained from SIM and ITP. In the SIM solution, all 
main characteristics of the original distribution are 
archived. The first two spires began to unify, but they are 
still separated. The ITP solution has only one main peak at 
the positions of the first two spires and a small shoulder at 
the position of the third spire. In the range between 0 -  
16 nm, where the original distribution equals zero and, 
also, the SIM solution shows only little noise around zero, 
the ITP solution has a strong peak to negative values that is 
not shown in Fig. 6. The plot of the residuals shows that the 
approximation to the scattering intensities is significantly 
worse for t h e / T P  solution. /TP solutions with smaller 
Lagrange multipliers give a better approximation but the 
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real-space solutions are strongly oscillating (there is no 
clear point of inflection in the stability plot for this 
simulation; the I T P  solution shown here is that looking 
most similar to the original distribution). 

The results of an other simulation are presented in 
Fig. 7. This example has been performed as a blind test: 
one of the authors has done the simulation with a 
distribution chosen by him and added noise (1% 
Gaussian error) and a constant background to the simu- 
lated 'scattering curve'. Then, the evaluation for this data 
has been performed with SIM and I T P  by another author 
without knowledge concerning the original distribution 
except that the largest radius (particle size) is 100 nm. 
The background has been determined from a Porod 
plot. 

The original distribution does not consist of one 
compact structure but an extended structure in the middle 
of the particle size range is flanked by two very sharp 
structures, one at each end of the size range that could be 
investigated in real small-angle X-ray experiments using 
a Kratky camera. Because the scattering intensity is 
proportional to the sixth power of the particle radius, the 
question is whether the structures at smaller particle sizes 
could be obtained from the scattering curve or not. 
Another difficulty comes with the h range of the 
simulated data: the smallest scattering vector for the 

given data set is h 1 _~0.06nm -1. Therefore, the 
scattering curve contains the full information only for 
particles with R < rc/h 1 " 52 nm, which is very small 
compared to the size range in the original distribution. 

Looking at the solutions in Fig. 7, one must conclude 
that I T P  does not work for this example. The solution 
produced with I T P  gives a structure at --,20 nm, where 
nothing is seen in the original distribution. The middle 
part of the IT[ '  distribution is characterized by a strong 
oscillation and even the contribution at large sizes is far 
from the original distribution. The SIM solution gives a 
better result: the two narrow peaks at both ends of the 
particle size range are reproduced in their positions, but 
they have become broader. Also, the size and the 
asymmetry of the structure in the middle is archived. 
Only one small structure between 70 and 80 nm arises in 
the SIM solution that does not appear in the original 
distribution. It is very astonishing that the slope of the 
residuals for both methods is quite similar over the range 
of scattering vectors since the real-space distributions 
look absolutely different. 

One might argue that both examples presented here are 
far from realistic, since 1% statistical error for the whole 
range of scattering vectors is not to be reached in real 
experiments and the original distributions have structures 
that are much sharper than is usual in real systems. 
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However, the aim of  these simulations is not to model 
reality. It is more essential to use simulations to test 
the behaviour of  a given algorithm particularly in 
very extreme situations. The abilities of  the two 
methods to deal with data are compared in the 
following section. 

3.3. Water in butyl  rubber  

Figs. 8 and 9 show the volume-weighted particle size 
distributions according to the first two points of  a 
concentration series of  water in butyl rubber (investiga- 
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tions on very similar systems have been published by 
Pelster, Kops, Nimtz, Enders, Kietzrnann, Pissis, Kyritsis 
& Woermann, 1993). The measurements were performed 
with  a K r a t l ~  camera .  

Fig. 8 shows the results for the dry rubber (0% water). 
For this system, SIM and /TP both produce two 
structures in the range of small particles (R < 20 nm). 
The structure at larger sizes was identified as ZnO2 
crystallites by TEM, EDX and wide-angle diffractometry. 
Particles that could be assigned to the structure at small 
sizes are found in the TEM pictures too, but an 
identification with EDX was impossible because of  their 
small size.* The position of  the first structure is shifted to 
smaller sizes in the ITP  result. From the TEM pictures, 
the larger size of  the SIM solution has been confirmed. In 
the region from 20 to 45 nm, it is impossible to decide 
whether the /TP or the SIM solution is closer to the 
unknown real distribution. No structure has been found 
in the TEM pictures that could be assigned to the strong 

* Possibly, these structures correspond to carbon or sulfur clusters that 
are embedded in the rubber matrix. 

Fig. 4. Speed-up and time per solution for different numbers of 
processors on a multiprocessor workstation (SNI900) using PVM3. 
The speed-up is nearly linear. The serial part of the algorithm is 
determined to 1% from a fit to Amdahl's law. 
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peak at the end of  the ITP solution. Probably, this is a 
termination effect. The plot of  the residuals shows that 
the approximation to the scattering data is similar for 
both methods. 

Fig. 9 shows the distributions for 1.1% water in the 
same piece of  butyl rubber. The first structure, which has 
increased by a factor of--,  3.5 compared to dry rubber, 
can be assigned to water droplets, which have nearly the 
same size as the (not clearly identified) scatterers in the 
dry rubber. Although the water concentration is low and 
the electron-density contrast between water and butyl 
rubber is small, the water droplet conceals the structure 
seen in the dry rubber. 

The comparison of the results obtained with ITP and 
SIM is very similar to that of  dry rubber: good agreement 
is obtained for the first two structures, in the outer part 
the deviation becomes greater and the ITP solution shows 
a strong termination effect. As before, the approximation 
to the scattering data is very similar for both methods. 

3.4. Ind ium in o i l  

The system 'indium in oil' has been investigated in a 
recently published paper using the indirect transforma- 
tion method (Krauth/iuser, Heitmann, Kops & Nimtz, 

1994). Now, the evaluations have been redone using the 
structure interference method. In Fig. 10, the SIM 
solution for a system of 1.2vo1.% indium is presented, 
together with the ITP solution and the results of a TEM 
analysis, made at the Fraunhofer Institut ffir angewandte 
Materialforschung (IFAM) at Bremen. 

The agreement between the most probable particle 
sizes obtained from SIM and from TEM is perfect. 
Comparing ITP and TEM, a clear deviation has to be 
mentioned. Although no size distribution could be 
deduced from the TEM pictures because the number of 
particles was too small, it is obvious that the strong 
contributions in the ITP solution for particle sizes smaller 
than 5 nm are not real. The residuals are similar for the 
two methods. 

4. Conclusions 

It has been shown that the structure interference method 
is a fully adequate alternative to Glatter's indirect 
transformation method to obtain particle size distribu- 
tions from small-angle scattering data. For both simulated 
and experimental data, the ITP solutions show contribu- 
tions that could not be assigned to real structures. In the 
volume weighted size distributions investigated above, 
ITP and SIM are closer together as for the number 
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weighted size distributions, but the /TP solution is 
strongly influenced by termination effects. Thus, the 
interpretation of  the ITP solution is more difficult. 

The structure interference method can be used with a 
very fine grid in real space and with an increasing 
number of  functions in real space more information can 
be resolved from the scattering data. In contrast to SIM 
solutions, the information gain for the ITP solutions with 
increasing resolution is very poor, since strong oscilla- 
tions influence the distributions and termination effects 
occur that could not be distinguished from real structures 
without additional information. 

In the case of  incomplete data (Fig. 7), the ITP 
solution has strong negative contributions that are not 
physically meaningful. Probably, every user would reject 
such solutions and it would be considered t ha t /TP  had 
failed on that data set. Possibly, the introduction of  a 
positivity constraint would produce be t te r /TP solutions, 
but up to now that has not been implemented in t h e / T P  
program [it has been implemented in Glatter's program 
for light scattering evaluation (Schnablegger & Glatter 
(1991) and it is in planned to implement it in ITP]. 

The main disadvantage of  SIM is the computation 
time. But even if  only PCs are available, it is possible to 
reach acceptable computation times by building a virtual 
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parallel computer from the PCs using PVM3 and a 
multitasking operating system such as Linux. 
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