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Analysis of two-dimensional energy and relaxation-time distributions
from temperature-dependent broadband dielectric spectroscopy
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We present a method to determine the two-dimensional 2D distributionG(W, lnto) of the relaxation time
t5toexp(W/kBT) using an inversion of temperature-dependent broadband dielectric data. In contrast to the
usual evaluation of 1D distributionsg(t), the 2D analysis reveals whether the broadening of a relaxation peak
has its physical origins in a variation of the activation energyW, or the preexponential factorto , or both. A
study of theb relaxation of a polymer blend demonstrates the validity of the analysis. We compare the
distribution obtained from dielectric ac data~5 Hz–300 MHz, 100 K–300 K! with the results of a thermally
stimulated depolarization currents sampling technique. The contour line ofG(W, lnto) is shown to follow the
compensation law.@S0163-1829~98!05815-9#
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According to the Debye model the complex dielect
function of polarization relaxation,

«~v,T!5
D«~T!

11 ivt~T!
1«`~T!, ~1!

depends on both the frequency and the temperature.
characterized by the relaxation timet and the relaxator
strength D«5«(v!1/t)2«` , where «`5«(v@1/t). In
the time domain this law corresponds to an exponential
laxation of a polarization, i.e.,P}exp(2t/t). For an
Arrhenius-like thermal activation the following relatio
holds:

t~T!5toexpS W

kBTD . ~2!

The activation energyW and the preexponential factorto are
the basic quantities describing the physics of the relaxat
For example, 1/to may be the oscillation frequency betwee
the two equilibrium positions of a polar group andW the
height of the potential barrier.1 Although the method we are
going to describe may be applied to different types of th
mal activation, we restrict ourselves to the above Arrhen
form.

The superposition of independent single dielectric Deb
relaxations~including a possible dc conductivitysdc due to
free charge carriers! is often written as2

«~v,T!5D«~T!E
2`

` gT~ lnt!

11 ivt~T!
d~ lnt!1«`~T!2 i

sdc~T!

«ov
,

~3!

where gT(lnt) is the normalized distribution of relaxatio
times at temperatureT. Figure 1 displays the permittivity o
a PETG blend. PETG is a modification of polyethylen
terephtalate~PET!. The mean valuest̄o51.9310214 s and
W̄50.446 eV of the relaxation process are close to those
570163-1829/98/57~15!/8763~4!/$15.00
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the b mechanism in PET and point to the same mechan
for PETG, i.e., to local relaxations of polar carboxyl grou
~COO! of the main chain.4 Since these molecular orientation
are independent of each other, their relaxation processe
expected to be parallel and not hierarchical. The large bro
ening of the relaxation peaks in«2 ~about 4 frequency de
cades compared to 1.14 decades for a single Debye proc!
indicates a distribution of relaxation times. There are emp
cal « functions describing the permittivity of such distribute
systems~see, e.g., Ref. 2!. Another approach5 uses a 1D
model forgT assuminga priori a constantto and an expo-
nential or Gaussian distribution ofW. The few free param-
eters are fitted to experimental«(v,T) data. The only way to
obtain gT(lnt) at a fixed temperature withouta priori as-
sumptions is to inverse Eq.~3!, which represents an ill-
conditioned problem~for a review see Ref. 6!. However,
there is a controversy about the general concept of distr
tions of relaxation times~DRT!.7 AlthoughgT(lnt) is unam-
biguously defined by Eq.~3!, the validity of an assumed
distribution may not be assessed due to a restricted frequ
range, inevitable experimental errors, and the lack of ana
cal procedures. But these difficulties are not fundamental
have been partly overcome. In Ref. 6 a stable iterative
damped least squares inversion algorithm is presented
applied to broadband data, and in Ref. 8 a regularization
method is used~see also Refs. 9 and 10!. Strictly speaking,
the results still depend on the particular method and on
choice of damping factors or regularization parameters. T
fundamental problem, however, is not related to the al
rithm used. Jonscher7 notes that for sufficiently wide loss
peaks the functional form ofgT(lnt) follows reasonably
close that of«9(2 lnv). So ‘‘the DRT function cannot, by
the nature of its derivation, contain more information th
does the experimentally determined susceptibility function
The conventional procedure of converting«(v) into gT(lnt)
for every temperature only yields a set of quasi-independ
1D functions. A physical interpretation is difficult, since di
ferent combinations ofW and to yield the same relaxation
time @Eq. ~2!#.
8763 © 1998 The American Physical Society
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The distribution of these basic quantities determines
change of shape of«(v) under a variation of the tempera
ture. In general eitherW, or to , or both may vary. In order to
account for this effect,gT(lnt) in Eq. ~3! is to be replaced
with a 2D distribution independent of temperature, i.e.,

«~v,T!5D«~T!E E G~W, lnto!

11 ivt~T,W, lnto!
d~ ln to!dW

1«`~T!2 i
sdc~T!

«ov
. ~4!

For the time being, the only experimental technique
lowing the decomposition of a distributed relaxation into
elementary processes or in subsets of the distribution, is t
mal sampling of thermally stimulated depolarization curre
~TSDC!.11,12 In normal TSDC a sample is polarized in
static electric field and cooled down to low temperatur
Then the field is switched off and while heating the sam
the depolarization current is measured~dashed line in Fig. 2!.
For thermal sampling the polarizing field is applied in
small temperature window during cooling. Thus, only part

FIG. 1. Dielectric function vs frequency for a PETG blend co
taining 3.86% of protonated polyaniline~between 297 and 103 K
down to 117 K in steps of220 K!. Solid lines, experiment~Ref. 3!
with 800 frequency points per temperature; filled circles, calcu
tion according to Eq.~7!. The deviation between calculated an
measured data is due to a small phase drift of the network ana
(0.07°). It gives rise to an absolut errorD«1.D«2<0.02. This
systematic deviation is hardly visible in the large real part, wh
has been used for the calculation~0.25%!. Since«2!«1 it becomes
noticeable in the imaginary part~10% in the center of the spec
trum!. Below 50 Hz the error increases due to the small transm
sion coefficient, above 50 MHz due to a nonperfect sample ge
etry ~Ref. 3!.
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the dipoles keeps its orientation and contributes to the de
larization current on heating. Repeating the procedure
different temperature windows, the initial process is deco
posed into a set of peaks~solid lines in Fig. 2!. From the
form and the position of the sampled peaks the correspo
ing (W,to)-pairs are determined. Sampled parts of the d
tribution may not necessarily represent single pairs ofto and
W but only a subset of the distribution. The current at t
low-temperature side of the sampled peaks, lnI.2W/(kBT)
2const, determines the observable activation energy.
eachW value several (W,to) pairs contribute to a 2D distri-
bution. However, due to the experimental intervention in
polarization process, TSDC thermal sampling selects on
them:to5exp@2W/(kBTm)#kbTm

2 /(Wb), whereTm is the peak
temperature andb denotes the heating rate. Thus, TSD
does not yield a complete 2D distribution but selects a par
it. While the contributing (W, lnto) pairs are determined
directly,12 three assumptions have to be made to evaluate
quasi-1D distributionG1D: ~i! The dipole moment of the con
tributing relaxators is constant or known.~ii ! The tempera-
ture dependence of the equilibrium polarizationPo is known.
From a detailed analysis of both the ac and the TSDC d
we obtain Po}D«.const. ~iii ! An additional relation be-
tween the parametersW, lnto , andTm of the sampled peaks
is observed, i.e., the assumption of a 1D distribution is
sufficiently good approximation. For our PETG blend~Fig.
2! W.aTm

l holds with l 53.15 anda56.6831028 eV/K l .
Under these conditions the distribution is given by the a
under the sampled peak atTm , Qi5* I (T)dT, and the heat-
ing ratebi :12

G1D
„Wi ,~ ln to! i…}

Qi

b

dTm

dW U
i

~5!

Our results are displayed in Fig. 3~filled circles!. UsingG1D

we have calculated«(v) at room temperature@Eq. ~4!# and
compared with the experimental ac data~not shown!. The
result confirms our analysis.

In order to decide whether the concept of DRT is usefu
interprete dielectric data, a method is required that de
mines unambiguously and withouta priori assumptions the
2D distributionG(W, lnto) of the basic quantities. Since a

-
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-
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FIG. 2. Depolarization current normalized to the heating rate
the system shown in Fig. 1. Dashed line: normal TSDC techniq
Solid lines: decomposed spectrum using thermal sampling.
width of the polarization window~around the respective maximum
of a peak! was 5 K.
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every temperature the whole 2D distribution contributes
the frequency dependence of«, Eq. ~4! implies that experi-
mental data in a sufficiently large frequency and tempera
range have to be simultaneously used to determineG. For a
further numerical analysis of Eq.~4! we use the discrete form

G~W, lnto!5(
i

(
j

ci j w i j ~6!

with real coefficientsci j >0 and based on step function
w i j 51 for Wi<W,Wi 11 and (lnto)j<lnto,(lnto)j11, and
w i j 50 otherwise. On the basis of a chosen discretization
energy andto space@the Wi and (lnto)j values#, the step
functions in Eq.~6! can approximate a distribution of arb
trary shape. Now Eq.~4! yields for «5«12 i«2,

«1~v,T!5D«~T!(
i

(
j

ci j r i j ~v,T!1«`~T!, ~7!

«2~v,T!5D«~T!(
i

(
j

ci j ki j ~v,T!1
sdc~T!

«ov
, ~8!

where

FIG. 3. ~a! Distribution function obtained from the quasi-1
TSDC thermal sampling~filled circles; scaled! and from the 2D
analysis of ac data«(v,T). ~b! Contour lines of the above distribu
tions ~TSDC, filled circles; ac data, shadowlike regions!. For the
sake of completeness the whole (W, lnt0) grid used for the inversion
of the ac data is displayed. The algorithm is stable, since it o
generates contributions toG that are necessary for the descriptio
of «(v,T) and yieldsG50 otherwise.
o
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f

r i j 5~Wi 112Wi !ln~t j 11 /t j !

2
1

2EWi

Wi 11
lnH 11~vt j 11!2

11~vt j !
2 J dW, ~9!

ki j 5E
Wi

Wi 11
$arctan~vt j 11!2arctan~vt j !%dW, ~10!

and t j5exp@(lnto)j1W/(kBT)#. The integrals do not depen
on unknown parameters and are easily calculated num
cally. Now the experimental data can be compared w
those obtained using Eq.~7! or ~8!, or a combination of both.
The deviation between experimental and calculated value
given by

D„ci j ,D«~T!,«`~T!,sdc~T!…

5 (
T5T1

TL

(
v5v1

vK ueexp~T,v!2ecalc~T,v!u2

s2~T,v!KL
, ~11!

wheree5«, «1, or «2, etc. ands denotes the standard devia
tion of the experimental data. However, the unknownci j as
well as thesdc, D«, and«` values cannot be obtained b
simply using a least-squares algorithm minimizingD until
the experimental error limit is reached. The problem is
conditioned and small deviations in the experimental res
as well as the error introduced by the discretization m
result in nonphysical contributions to the solution. For su
kinds of problems the structure-interference method has b
developed, originally to obtain 1D size distributions fro
x-ray data.13 It is based on the idea that a physically mea
ingful solution must be independent of the discretization. S
lutions belonging to different random discretizatio
$•••Wi•••%3$•••(lnto)j•••% are averaged so that nonphys
cal structures disappear. For example, taking simulate«
data @Eq. ~4!# and adding different noise levels, the proc
dure finds the original distribution. This is not surprisin
since least-squares algorithms are intrinsically insensi
with respect to noise.

For a more difficult and realistic test we have used
real part of the data shown in Fig. 1. 40 solutions on differ
50360 (W, lnto) grids were averaged to determine the d
tribution function@Eqs.~6!, ~7!, and~11!#. The complex per-
mittivity calculated on its basis@Eqs. ~7! and ~8!# is com-
pared with the experimental data in Fig. 1. The deviation
within the range of the measurement error~see figure cap-
tion!. Figure 3~a! displays the 2D temperature-independe
(W, lnto) distribution compared with the TSDC results,
Fig. 3~b! the contour lines are shown. The main contributi
of G to « lies between 0.25 and 0.75 eV with a maximu
nearto.6310216 s andW50.5 eV. Thus, this peak can b
attributed to theb process. The half-width isDW.0.2 eV
and D lnto@lns#.7. An approximation by a single Gaussia
fails, because the peak is asymmetric. The form of the
tribution, an elongated ridge with rather steep sides, justi
the approximative quasi-1D evaluation of the TSDC da
However, the TSDC distribution is broadened since
sampled TSDC peaks are no single relaxators but~partly
overlapping! subsets of the distribution resulting in enhanc
peak areas@Eq. ~5!#. Above 1 eV,G(W, lnto) is small. The
contribution to«1 at 297 K is below 1%~Fig. 1! and de-
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creases at lower temperatures, since these fast compo
are shifted out of the frequency window. The TSDC valu
above 1 eV correspond to sampled peaks at the h
temperature side of the spectrum~see Fig. 2 near 200 K! and
may be distorted due to additional processes above 200 K
indicated by the increasing baseline. Thus, for both meth
the experimental error above 1 eV is large.

Below 0.2 eV no TSDC data are available due to t
restricted temperature range. The peak in the 2D data
tributes about 15% to the relaxator strengthD«. Since the
activation energies are small and the peak is well separ
from that at 0.5 eV, we conclude that it is not associated w
the b mechanism. For the time being we are not able
provide a microscopic explanation.

In summary, only for 0.2 eV,W,1 eV G can be physi-
cally interpreted as distribution function of theb relaxation.
The contour plot in Fig. 3~b! indicates a linear relationshi
for the W and lnto values on the ridge of the distribution.
corresponds to the well-known compensation lawto}exp
@2W/(kBTo)#, whereTo denotes the compensation tempe
ture ~see Ref. 14 and references cited therein!. The smallto
values find an explanation in the Eyring theory of the ac
vated state, wheret}exp(DG). DG is the Gibbs free-energy
change which depends on activation enthalpyDH and acti-
vation entropyDS of the relaxation, i.e.,DG5DH2TDS.
Thus, the activation energyW in Eq. ~2! is to be identified
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with DH and to}exp(2DS/kB). A nonvanishing activation
entropy can result in very smallto values. In this case, 1/t0

cannot be interpreted as a simple rate of oscillation. T
compensation law follows whenDS}DH and has been
shown to arise naturally in systems, whereDH is much
larger than bothkBT and the typical excitations.14

By comparing the results of our 2D method with TSD
data we have given independent experimental evidence
the existence of a (W, lnto) distribution associated with ab
mechanism. The 2D dielectric analysis is based on~i! a
stable method for the solution of inverse problems,13 ~ii ! a
broadband measurement technique of high precision du
temperature-dependent calibration.3 No a priori assumptions
on the shape ofG(W, lnto) are made; i.e., in principle, the
algorithm is applicable to discrete and continuous distrib
tions. Experimental and numerical investigations are
progress to determine the resolution of the method. Fur
studies have to show whether a superposition of indepen
Debye processes can be distinguished from hierarchical
cesses. Also the question whether the marked broadenin
relaxations observed in many materials is due to comm
features of the 2D distribution is of interest.
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