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Abstract

The superposition of Debye-like relaxation processes with di�erent relaxation times, s � s0 � exp�W =kBT �, has a 2D-

distribution, G�W ; ln s0� of activation energy, W, and pre-exponential factor, s0. With a novel method we evaluate G

via inversion of temperature dependent broadband dielectric data. Simulations as well as experimental data demon-

strate the validity of the analysis. Ó 1998 Elsevier Science B.V. All rights reserved.

1. Introduction

The permittivity, e � e1 ÿ ie2, of independently
superposed Debye-like relaxations is often written
as [1]

e�x� � De �
Z

gT � lns�
1� ixs

d ln s� e1; �1�

where De denotes the relaxation strength and e1 is
the high frequency permittivity. The normalized
distribution function, gT , describes the contribu-
tion of the respective relaxation times, s, to an iso-
thermal frequency spectrum at temperature T (see
Fig. 1). If s is given by the Arrhenius function then
s � s0 exp�W =kBT �. Depending on the physical
mechanism either the activation energy, W, or
the pre-exponential factor, s0, or both may vary.
Thus, gT is only a projection of an underlying

2D distribution, G�W ; ln s0� and sums up the con-
tributions of all �W ; ln s0�-pairs yielding the same
ss. Although di�erent algorithms allow the inver-
sion of broadband data into gT (see Refs. [2±4]),
the above description has two fundamental short-
comings: (i) there is no information on the contrib-
uting Ws and s0s, (ii) a mathematical inversion
may also be possible for hierarchical processes
[5], where gT has no physical meaning.

2. Procedure

G�W ; ln s0� determines the change of shape of
e�x� with varying temperature, i.e.

e�x; T � � De�T �
Z Z

G�W ; ln s0�
1� ixs�T ;W ; ln s0� d� ln s0� dW

� e1�T � ÿ i
rdc�T �
e0x

�2�

(rdc denotes a possible dc-conductivity). For a hi-
erarchical process a 2D inversion into a tempera-
ture-independent G-function is impossible, since
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Eq. (2) is an unambiguous de®nition of a distribut-
ed process (provided precise experimental data in a
su�ciently large frequency and temperature range
is available). We use a single sweep technique
allowing the determination of e over nearly nine de-
cades of frequency [6]. The precision is set by an an-
alytic calibration as a function of temperature. For
a numerical analysis we choose a su�ciently ®ne
discretion of energy and ln s0-space, which allows
us to approximate a distribution of arbitrary shape:

G�W ; ln s0� �
X

i;j

cijuij �3�

with real coe�cients cij P 0 and based on step
functions: uij � 1 for Wi 6W < Wi�1 and � ln s0�j
6 ln s0 < � ln s0�j�1, and uij � 0 otherwise. We
substitute G in Eq. (2) and perform the ( ln s0)-in-
tegration:

e1�x; T � � De�T �
X

i;j

cijrij�x; T � � e1�T �; �4�

e2�x; T � � De�T �
X

i;j

cijkij�x; T � � rdc�T �
e0x

; �5�

where rij and kij are known:

rij � D2
ij ÿ

1

2

ZWi�1

Wi

ln
1� �xsj�1�2
1� �xsj�2

 !
dW ; �6�

kij �
ZWi�1

Wi

farctan�xsj�1� ÿ arctan�xsj�g dW ; �7�

D2
ij � �Wi�1 ÿ Wi� � ln�sj�1=sj�, and sj � exp
�� ln s0�j � W =�kBT ��. A comparison of Eq. (4) or
Eq. (5) with experimental data via a simple least
squares algorithm does not allow us to evaluate
the normalized distribution (the coe�cients cij).
The problem is ill-conditioned, i.e. small errors in
the experimental data as well as the error intro-
duced by the discretization may result in non-
physical contributions to the solution. Therefore,
we use a 2D extension of the structure interference
method, which was developed originally to obtain
1d size-distributions from X-ray data [7]. Solutions
belonging to di�erent random discretizations
f. . . Wi . . .g � f. . . � ln s0�j . . .g are averaged so that
non-physical structures disappear. The ®t also
evaluates e1�T �, rdc�T �, and De�T � [the product
De�T �cij in Eqs. (4) and (5) is factorized via the
normalization condition

P
i;j cijD

2
ij � 1]. Extrapo-

lation of Cole±Cole plots (e2 vs. e1) can serve to
get initial values for e1 while those for cij may
be set to zero.

3. Results

For numerical tests we choose 2D distributions,
G, and calculate the corresponding permittivities.
After adding random noise we apply the inversion
algorithm and average 100 solutions. The result is
compared to the original distribution (see Fig. 2).
The method is stable with respect to noise up to
10%.

Fig. 1. Dielectric function vs. frequency for a PETG-blend con-

taining 3.9% of polyaniline [7]. Solid lines: experiment; ®lled cir-

cles: Eqs. (4) and (5) with parameters from a ®t of e1 (dashed

line: eye-guide). The deviation between measured data and ®t

is within the experimental error De1 ' De2 ' 0:02. Since

e2 � e1, it becomes noticeable only in the imaginary part:

0.25% . De1=e1 � De2=e2 ' 10%.
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For a more di�cult and realistic test we use the
real part of the experimental data shown in Fig. 1.
The b-relaxation of PETG (a modi®cation of poly-
ethyleneterephtalate) is observed [8]. Polar carbox-
yl groups (COO) of the main chains relax
independent of each other so that these processes
are expected to be parallel and not hierarchical.
The distribution function displayed in Fig. 3 is
an average of 40 solutions of Eq. (4) on di�erent
50� 60 (W ; ln s0)-grids. The complex permittivity
calculated on its basis (Eqs. (4) and (5) with
rdc � 0) ®ts the experimental data (see Fig. 1).
The main contribution (85%) of G to e lies between
0.25 and 0.75 eV.

4. Discussion

To get independent experimental evidence for
the existence of the distribution shown in Fig. 3,
we use thermally stimulated depolarization cur-
rents (TSDC). A sample is polarized on cooling
and the depolarization current is measured on
heating. Applying the polarizing ®eld only in small
temperature windows (thermal sampling) allows us
to decompose a relaxation into smaller peaks (see
Fig. 4) and to determine a set of �W ; ln s0�-pairs

Fig. 2. Numerical test: (a) original distribution; (b) distribution

obtained from the permittivity data (see text).

Fig. 3. Distribution obtained from the ac-data shown in Fig. 1 and from TSDC experiments (®lled circles; scaled).
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[9]. Under certain conditions the contribution to G
can be evaluated, which is proportional to the re-
spective peak area. The result is displayed in
Fig. 3 (®lled circles) and con®rms the 2D analysis.
However, the TSDC-distribution is broadened
since the sampled peaks are not single relaxations
but subsets of G resulting in larger peak areas.
The linear relationship for the W's and ln s0's on
the ridge of G corresponds to the well-known com-
pensation law: s0 � s1 exp�ÿW =�kBT0��, where T0

denotes the compensation temperature [10].

5. Conclusions

A novel dielectric analysis allows to determine
2D distributions of activation energy and relax-
ation time. Thus the concept of distribution func-
tions can be tested and the physical origin of the
broadening of dielectric relaxations can be elabo-
rated.
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Fig. 4. Depolarization current normalized to the heating rate

for the system shown in Fig. 1. Dashed line: complete relax-

ation. Solid lines: decomposed spectrum (thermal sampling).
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