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ABSTRACT

The safety for traffic participants like pedestsaand cyclists might be effected by the current
electrification of vehicles. Detectability of eldéctvehicle sounds is an important attribute fdegareasons.
The aim of this work is to determine the detecthilf different electric vehicle sounds for a ctarg speed,
single car pass-by situation. For this purpose, differences in detection time are investigatedhwit
perception studies. The correlation between phlypegchoacoustical parameters and detection time
estimations obtained from jury testing is also stigated in this study. Moreover, an artificial redunetwork
(ANN) is also used as a prediction tool of deteititsitestimations for further evaluations of diféert possible
stimuli. Lastly, advantages and shortcomings aigigiNNs for detectability estimations are also désed.
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1. INTRODUCTION

In today's urban environment, the inhabitants arenpnently exposed by increased noise levels, which
are mostly dominated by traffic noise. For yearaffit noise has been one of the most prominergenoi
sources in urban areas. Recently, thanks to theepsoof electrification of vehicles, lower noiseels are
expected in the city centers in the near future.

However, decreasing noise levels has also a distalya. Cars being quieter than before makes them
harder to be detected. Especially for the loweridg speeds, where the tire noise component i©®ngelr
available, accidents become almost unavoidable.tfatr reason, car manufacturers are implementing
external sound emission systems in electric cagguRtions are also prepared accordingly, for exangtl
new electric vehicles in Germany should emit areel sound from 2019. (1)

The external sounds should be designed regardithg toerceptions of the listeners, i.e. pedestiaads
residents. The goal of making electric vehicle sisuis both detectability as well as interpretapiithile
keeping the noise levels under allowable limits.

In this study, the detection time of the synth&tbicle sounds in a background noise is investijate
In order to have a safe traffic situation, the ehnoise should be detectable before a criticahdce where
the remaining time is enough to avoid an accideémtthis purpose, reaction times were measurestaning
tests, with various synthetic external noises withie scope of that study.

2. STIMULI

Within this study 9 different stimuli of electriehicle sounds were created. For all those 9 stjriutdi
different levels were used. The subjects evaluatedal of 18 stimuli. All of them are synthetiausmls.The
stimuli we used in this study are general basidolelsounds, which can be adapted by the manufctor
the respective requirements in the sense of a lafesidn.

Furthermore, a realistic background noise was fsethasking. To create a realistic background
noise (TU-Dresden Background) acoustic recordingh w dummy head was carried out at different
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locations in the city center of Dresden. Afterdising by experts from the chair, a recording wasseh for

the use of the experiment. The homogeneity of thieenwas the main criterion, since the dominance of
individual events should be avoided. Figure 1 shthesspectrogram of the TU-Dresden Background noise
and in Figure 2, some example spectrograms oftiitmells are given.
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Figure 1. Spectrogram of the background noise (TrelsBen Background)
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Figure 2. Examples spectrograms from the stimdus this study

3. SUBJECTIVE EVALUATIONS
The aim of the experiment is to measure the readine required by subjects to react to the auglitiv
recognition of a vehicle passing by in a backgronoide.

3.1 Experimental procedure

In this study, detection times of approaching viglsievere measured at a constant speed of 10 km/h in
a realistic background noises. In urban trafficoselary roads without traffic lights or pedestrimassings
and a speed limit of 30 km/h are common, so thasituation examined here is a typical traffic afion in
which a pedestrian must make a decision to crassttieet. The main experimental procedure is dirtola
the one in (2). In order to prevent the subjeamfguessing the beginning of the vehicle soundioanized
delay times between 1 s and 3 s were introduceel.v€hicle sounds were randomized in the listendsg t
and presented in a laboratory via a calibrated pieaak of Sennheiser type HD 600. In the test sallup
delays were determined and compensated. The sutimeofincorrectable hardware-related delay times
resulted in an error of the reaction time measurgmmiEbelow 10 ms which is negligibly small compéite
the standard deviation of the results. A graphisar interface was used for the evaluation of Xipeements
and implemented as a Matlab GUI. The actual lisigtést was preceded by a training session by piege
all vehicle sounds individually. The subjects wiastructed to answer the question "When do yowcedtie
approaching vehicle?" by pressing a button immedjatfter detecting the approaching vehicle. Thigcet
distance can be calculated with the following eiumat
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For typical reaction timesgt,.q.:) Of concentratedt,.,.; = 0.7s) and unconcentratett, ., = 1.5s)
traffic participant (3), a deceleration@f,. = 8 m/s? and a vehicle velocity af,,.;, = 10 km/h a critical
distance of 5.82 m (concentrated) or 10.26 m (ucentrated) could be measured.

The subjects were given additional explanationghef traffic scene and received training before the
experiment.

3.2 Subjects

A total of 20 test subjects with an average ag84o8 years (21 to 70) took part in the listeningt¢e12
subjects were male and 8 subjects were femalehémanbre, 5 of these 20 subjects were blind or \lisua
impaired. Before the listening tests, the hearimgghold was measured for each subject. Subjetits wi
hearing impairments were excluded as “dropoftrsin the study. Only subjects with presbyacusisewer
allowed.

3.3 Results
Figure 3 shows the experimentally determined péimepntervals of the detection experiment as
boxplots over all test subjects. Box plots are usedjraphical display of the distribution of thetdction
times. It summarizes different robust scatteringetisions in a representation. The blue box correlpto
the area in which the average 50% of the datac&tdal. The length of the box corresponds to ttreedoartile
range (IQR). The IQR is a measure of the dispersicthe data. In addition, the median is indicadsda
continuous red stroke in the box. Due to its laratvithin the box, one gets an impression of thensiess
of the data underlying the data. The lines (“whisReshow the values outside the box. The lengtthef
whiskers is determined by the data values and ynéidinterquartile distance alone. This is alsoréason
why the whiskers do not have to be the same lemgihoth sides. If there are no values outsideithié of
1.5 x IQR, the length of the whisker is determifgdthe maximum and minimum values. Otherwise, the
values outside the whiskers are entered sepaiatelthe diagram. These outliers are shown asnesbkes.
The x-axis shows the vehicle sounds and the y-sixisvs the detection times in seconds. The two
horizontal lines mark the critical distances foconcentrated (black) and concentrated (gray-dasheftiy
participant for a constant speed of 10 km/h. Thende above of the lines are only audible at a too |
distance, so it would be difficult to prevent arident. The detection times of all sounds wererdated
with a background noise with 55 dB(A).

Detection estimations
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Figure 3: Results of the experimentally determipecteptive detection times for approaching vehitles
boxplots.



4, PSYCHOACOUSTICAL PARAMETERS

Psychoacoustical parameters are calculated in MdathiS software. Considered acoustical variables
are A-weighted sound pressure level, loudness tines, sharpness over time, tonality over time and
roughness over time. It is assumed through thidystinat the car, while driving with constant speéd0
km/h, generates the constant level of externakn@sly difference in levels for the stimuli used listening
tests, are obtained because of the distance betwegeand listener. In order to calculate the singleies
from the stimuli, only the maximum values of theadbrementioned parameters are used. Those vataes
assumed to be the ones, when the car is at thegantavith the listener, basically representing generated
noise itself, disregarding the effect of the dis&@n

Loudness calculations are based on DIN 45631 agigles in soneGF; sharpness calculationdased
on DIN 45692; roughness calculations are basedwmes tonality calculations are including 50% oapging.
For roughness calculations, in order to obtainaeakle results, first 0.5 seconds are not congidé4@

4.1 Correlations with subjects estimations

The software IBM SPSS statistics 23 was used fosthtistical analysis. The calculation of corietatan
be used to show a relationship between two mesi@kiles. This consists of a correlation coeffitiemd a
p-value. The correlation coefficient indicates siength and direction of the relationship. It é&tveen -1
and 1. A value close to -1 indicates a strong regaelationship. A value close to 1 indicates rargj
positive correlation. If there is no connectiorg talue is close to 0. The p-value indicates whethe
correlation coefficient differs significantly fro i.e. whether there is a significant correlatiosually, p-
values less than 0.05 (*) are referred to as 8itaily significant and p-values less than 0.01) @re referred
as highly significant. The Pearson correlation ficeht is used when the data is normally distrdsbiaind
there is a linear relationship between the twoalsdes.

Table 1 shows the correlation between the medidmesaof the subjective estimations and the
calculated psychoacoustic parameters. The higlegsttive correlation show the median values withithe
weighted levels and loudness. The detection estmablso show significant negative correlationthhe
calculated roughness. No significant correlatios veaind with the sharpness and the tonality.

Table 1. Correlation (Pearson) between calculasgdipacoustical parameters and median values of
detection times obtained from listening tests

A-weighted L oudness Roughness Shar pness Tonality
level (dB(A)) (sone) (asper) (acum) (tu)
Detection
Time (median -0.700** -0.601** -0.495* -0.245 0.140
values)
Significance p=0.001 p=0.008 p=0.037 p=0.327 p=9.57

5. ARTIFICIAL NEURAL NETWORKS (ANN)

Artificial neural networks are computational unitigveloped by imitating on the biological structure
and operation methodology of a biological neurdreyiconsist of layers of interconnected neuronsidtieg
activation functions, and all the connections hseme mathematical expressions called as weightsy Th
act like a usual biological neuron: getting infotima from the other neurons, processing the dataercell
body and transferring it to another neuron.

Neural networks are being used in different stuttiegerform complex curve fitting, data clustering,
speech recognition, image recognition purposesvith the help of enough training data, artificrural
networks can be developed to perform aforementitesds, basically by adjusting the connections betw
the neurons, called weights. (5) In this studyadiificial neural network is tailored to have noar curve
fitting between the calculated psychoacousticabpeters of the synthesized stimuli and detectiom ti
estimations obtained from listening tests. Theesdififerent parameters need to be considered foritay



a neural network architecture, such as traininghogbtsize of the network -particularly number ofirens

in the hidden layer, division of the input dataiiaining and validation parts and function tygediwithin

the tests. Most of the former studies using ANNsallg in sound quality estimations use directly thest
efficient neural network architecture and the eatiom results obtained by using this single ANNigles
However in this study, selection procedure of thstlperforming network is also investigated in ifletbey
keeping some of the design parameters of a neetalonk parametric. At the end, 30 different neural
network are obtained for each estimation and perdoice of the different neural networks are compared
with each other to find the most efficient ANN atebture. Table 2 shows the values that kept parame
during the study, while division of data into triaig and validation is similar for all cases (70%irting, 30%
validation and test) and function type within tlefi<are being kept as constant (sigmoid functions)

Table 2. Parameters considered for comparing @ifteANN architectures

Number of training sets 5 different states

sLevenberg-Marquardt
Training function *Bayesian regularization
*Scaled conjugate gradient

2 neurons in hidden layer

Network size — hidden layer size +3 neurons in hidden layer

Result: 5*3*2 = 30 different neural networks

In order to compare the performances of differentral network architectures, mean squared erraresal
(MSE) between the calculated outputs from ANN aadydéts obtained from listening tests are used.
Performance values are calculated by using thetiatiuli for all 30 different neural network strucds.
Results are compared at the end, by using thereilifteneural network architecture to understand the
importance of tailoring process of a neural network

For this study, A-weighted sound pressure levelsdhess, sharpness, roughness and tonality values
are used as inputs for neural networks. As theetarglues, the median values of reaction time exysts
are used. Figure 4 shows the two layer, feed-fawaddN architecture used in this study. It shouldhbéed
that, the number of neurons used in hidden layersaried as 2 and 3.

Input Layer  Hidden Layer Output Layer

A-weighted Level

Loudness

Sharpness o& /\/ Detection Time (median)
Roughness

Tonality

Figure 4. ANN architecture used in the study. Nb& number of neurons in hidden layer is varied



5.1 DETECTABILITY PREDICTION BASED ON ANN

The estimations obtained from 30 different ANN #@ettures are given in Figure 5. It can be seefy tha
for the neural networks which have lower perfornreanalues, discrepancies between the target values
obtained from listening tests and outputs obtafnemh ANNSs are quite high. Even for some neural roekw
architectures, training state is so irrelevanthstiat the network gives the same output regardiesise
input of all stimuli. However, the general tendescof the results obtained from neural networks lman
regarded to lie in the acceptable range.

Detection estimations
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Figure 5: Results obtained from 30 different ANMspared to subjective detection times.
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Figure 6. Results obtained from the worst and pedbrming network compared to subjective detection
times



In order to see the differences between the besiamst performing network, results obtained froothb
network architectures are given in Figure 6 in iflethe blue line corresponds to the results otgdifrom
worst performing network while the best is représdnwith red. Here it can be clearly deduced that,
performance of the network is crucial for detectiiome evaluations. Moreover, it is clear to se€igure 6
that, despite high values of standard deviatidresbest performing neural network can fit the détaedian
values quite well.

6. CONCLUSION

The main aim of this study is to understand theec&in time of different synthesized external car
noises and understand the effectiveness of ustifigiat neural networks (ANNSs) for predicting deteon
time estimations. For that reason, detectabilitymegions of electric vehicle sounds are obtaingd b
subjective jury testing. 18 synthesized stimuluged for listening tests with 20 test subjectsuditlg 5
blinds and visually impaired people. All the stiinafe presented with a realistic background nors# a
obtained results are given in boxplots.

Maximum A-weighted sound pressure levels, loudnesgghness, sharpness and tonality values are
calculated for each stimuli and the correlationueal are obtained between calculated psychoacdustica
parameters and median values of detection timesrdut from listening tests. All the regulationsated to
this topic includes minimum A-weighted sound presdevels to be implemented in the cars to increase
detectability, however, the correlation studiesgasgs that, loudness and roughness have alsog stifect
on detectability issues.

For the second part, 30 different artificial neunakwork architecture are obtained and results are
compared. It is stated that, tailoring a neuralvoet is an important part of a study using ANNsaas
prediction tools, since it includes different paedens to be considered. Comparing the MSE valuest, b
performing neural network is selected within thigdy. Best performing neural network fits the datéained
from listening tests quite well.
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