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Abstract Stick-slip vibration of a cantilever beam
subjected to harmonic base excitation is analyzed in this
paper. To model the stick-slip vibration, considering
nonlinearity and discontinuity of the friction force, two
kinds of equations ofmotion are used: one formotion in
the stick state and the other for motion in the slip state.
Using the finite element method, dynamic responses of
stick-slip vibration are calculated by iteratively solv-
ing the equations and connecting the stick- and slip-
state motions; such calculations are conducted for vari-
ous excitation conditions. The dynamic responses show
that the occurrence of stick-slip vibration depends on
excitation amplitude and frequency, and an occurrence
of stick-slip vibration is associatedwith themodal char-
acteristic of a beam. Furthermore, to formulate an ana-
lytical expression for the criterion of stick-slip occur-
rence, the static friction force caused by the base excita-
tion is determined analytically. Finally, excitation con-
ditions for stick-slip occurrence are obtained and val-
idated in a parametric plane of the excitation ampli-
tude and frequency, and design guidelines for avoiding
stick-slip occurrence are presented.
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1 Introduction

Stick-slip vibration is a repetitive motion between
sticking and slipping of two contact surfaces. Many
engineers are interested in stick-slip vibration because
it produces unpleasant noise and vibrations in mechan-
ical systems. For instance, in the automotive industry, it
is well known that stick-slip vibration induces squeak-
ing noises from vehicle interior components (such as
door trim, cockpit modules, seat frames, and sunroof
headliners); thus, suppressing stick-slip vibration is
becoming a significant area of interest [1,2]. There is
a growing sense among customers that the sound and
vibration quality of machinery is of equal importance
to mechanical performance, and this is leading to a
demand for fundamental studies of stick-slip vibration.

Several researchers have attempted to understand
stick-slip vibration using self-excited oscillator mod-
els. Some have reported nonlinear characteristics of
friction force that lead to stick-slip vibration and have
explained how to model stick-slip vibration [3–6].
Such researchers have made it clear that that stick-
slip vibration arises fromdifferences between static and
kinetic forces and have introduced many friction mod-
els for numerical computation. Others have analyzed

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-018-4164-7&domain=pdf


H.-I. Won et al.

the dynamic responses of stick-slip vibration numeri-
cally and experimentally and have tried to identify the
main factor in the occurrence of stick-slip vibration [7–
11]. These researchers reported that stick-slip vibration
disappears when damping or sliding speed is increased
and pointed out that the variation in kinetic friction
force is an important factor in the occurrence of stick-
slip vibration.

With the goal of improving practical systems that
consist of several continuous parts, stick-slip vibra-
tion of continuous structures has also been investigated.
Particularly, a great deal of research has been carried
out on the stick-slip vibration of a continuous beam,
because beam structures are fundamental components
of mechanical systems that suffer from stick-slip vibra-
tion. For instance, transverse stick-slip vibration of a
beam has been studied to examine mechanical noise
and vibration problems in machine tools, robot legs,
microscopy probes, and so on [12–18]. Stick-slip vibra-
tion of a beam in the torsional direction has been inves-
tigated for application to rotating beams such as pro-
peller shafts and drill strings [19–23]. In these research
efforts, the dynamic response and instability of stick-
slip vibrations were analyzed in various manners, and
then design guides and control methods to reduce stick-
slip vibration were presented.

The present authors conducted a thorough liter-
ature search, finding many investigations by many
researchers of the stick-slip vibration that occurs when
a beam is translated or rotated in a certain directionwith
respect to the contact surface, as enumerated above.
However, we found no theoretical study of the stick-
slip vibration that occurs when the beam is oscillated
by base excitation. This type of situation is quite impor-
tant to designers attempting to analyze and suppress
the unpleasant noise and risky vibration arising from
stick-slip motion, generated from an assembled beam
that is mounted on a vibratory structure or is subjected
to transmitted force.

It is our carefully considered opinion that there is
a lack of deep theoretical knowledge about stick-slip
vibration of a beam with base excitation, because of
a number of difficulties. First, it is difficult to model
and analyze stick-slip vibration of a beam because the
beam has different boundary conditions depending on
its contact state. In other words, a beam must have a
fixed boundary condition for the stick state and a fric-
tion force boundary condition for the slip state. In addi-
tion, because the boundary condition for the sticking

motionwith base excitationwould be defined as a time-
dependent boundary condition, it is difficult to solve
the beam vibration analytically in order to calculate
the static friction force initially acting on a beam in the
stick state to cause stick-slip vibration to occur. Hence,
overcoming these difficulties and then constructing and
analyzing stick-slip vibration of a beam considering
base excitation represents a new challenge that has not
been previously accomplished.

Furthermore, study of the stick-slip vibration of a
beam under base excitation can contribute to design
guidelines for beam assembly modules to suppress
stick-slip vibration problems. Even though the contact
noise and vibration problems arising from stick-slip
vibration of a beam have been matters of interest for
a long time, it has still not been theoretically identi-
fied what conditions or circumstances lead to stick-
slip vibration. In particular, in the automotive industry,
stick-slip vibrations induced by vehicle interior mod-
ules made up of beam parts are becoming one of the
most important issues in attempts to reduce vehicle
operating noise and vibration and to develop electric
vehicles. For this reason, analyzing the conditions in
which stick-slip vibration occurs and suggesting design
guidelines for beams to avoid stick-slip vibrations are
worthwhile efforts that will be helpful to mechanical
engineers.

Accordingly, the purpose of the present paper is to
analyze nonlinear stick-slip vibration of a cantilever
beam arising from harmonic base excitation and to
present a criterion for the occurrence of stick-slip vibra-
tion. In Sect. 2, the contact state of the beam is classi-
fied into stick and slip states, and corresponding equa-
tions of motion and boundary conditions are derived.
Transition conditions for both states are also discussed.
In Sect. 3, vibration responses of the beam due to
base excitation are calculated using the finite element
method and the generalized-α time integration method
[24], and the conditions leading to stick-slip vibration
are investigated by studying various excitation frequen-
cies and amplitudes. In Sect. 4, to analyze the crite-
rion of stick-slip occurrence, an analytical response of
the static friction force is theoretically derived when a
beam is subjected to base excitation. Herein, a coordi-
nate system for deflection of the beam is transformed
through a quasi-static approach to allow an approx-
imate solution to the time-dependent boundary con-
dition problem. Finally, in Sect. 5, the magnitude of
the analytical static friction force is compared with
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the maximum static friction force in order to identify
the excitation conditions leading to stick-slip vibration.
The validity and usability of the presented results are
verified through numerical simulations.

2 Equations for stick and slip states

This study considers a uniform and slender cantilever
beam, mounted on a rigid base and in contact with a
frictional wall (Fig. 1). The beam has length L , cross-
sectional area A, area moment of area I , mass density
ρ, andYoung’smodulus E . An axial force P is imposed
at the rigid base and is propagated to the right end of the
beam. Herein, it is assumed that the axial deformation
is relatively small compared to the lateral deflection;
thus, vibration in the axial direction is neglected. In this
respect, based on the Euler–Bernoulli beam theory, the
governing equation for the lateral deflection u(x ,t) can
be expressed as follows:

ρA
∂2u

∂t2
+ E I

∂4u

∂x4
+ P

∂2u

∂x2
= −ρA

∂2h

∂t2
, (1)

where t is time, x is the axial distance from the origin,
and h(t) represents a transverse displacement of the
rigid base, which is determined as a function of time, by
the excitation condition of the beam. Thus, transverse
displacement of the beam denoted by y(x, t) can be
expressed as y(x, t) = h(t) + u(x, t), as shown in
Fig. 1.

The beam has two kinds of contact states, termed
the stick and slip states. These terms refer to the sliding
velocity relative to the frictional wall at the right end,
vs = ∂y/∂t |x=L , and boundary conditions of the beam
are applied differently for each state. The stick state is
the state in which the sliding velocity is zero (vs = 0),

L

x

u(x,t)
P

h(t)

reference line

y(x,t)

Fig. 1 Stick-slip vibration model of a cantilever beam mounted
on a rigid base

meaning that the right end of the beam is stuck to the
wall. The boundary conditions of the beam for the stick
state can be defined as a clamped–pinned condition,
expressed as follows:

u(x, t) = 0, u′(x, t) = 0 at x = 0 (2)

u(x, t) = us −
∫ t

ts
ḣ(τ )dτ ,

E Iu′′(x, t) = 0 at x = L , (3)

where us is a constant value for deflection at the right
end of the beam, measured at the starting time of the
stick state, which is denoted by ts . The prime and dot
marks are notations representing differentiations with
respect to position x and time t , respectively. Equa-
tion (2) expresses the condition in which the deflection
of the left end and its slope are zero. The first equa-
tion of (3) expresses the condition in which deflection
at the right end is changing owing to the travel of the
rigid base during the stick state, and the second equa-
tion of (3) means that the moment at the right end is
zero; these boundary conditions were demonstrated by
experimental testing.

In the stick state, a static friction force fs arises
between the beam and the wall as a reaction force cor-
responding to shear force at the right end; it cannot
exceed the maximum static friction force. That is to
say, the stick state can be maintained until the magni-
tude of the static friction force is less than themaximum
static friction force. Thus, the necessary condition for
the stick state to continue can be expressed as follows:

| fs | = ∣∣E I u′′′∣∣
x=L

∣∣ ≤ μs P, (4)

where μs is the coefficient of static friction. Equation
(4) means that the magnitude of the static friction force
is equal to the magnitude of the shear force at the right
end and less thanor equal to themaximumstatic friction
force. Thus, when | fs | exceeds μs P , the right end of
the beam begins slipping, and the contact state of the
beam changes from the stick state to the slip state.

On the other hand, the slip state occurs when the
sliding velocity is not zero (vs �= 0), meaning that the
beam is sliding on the frictional wall, and a kinetic
friction force fd is applied at the right end. In the slip
state, the boundary conditions at the left end (x = 0)
are same as those of the stick state given in (2). But
because the position of the right end is not constrained
on the wall, the boundary conditions at the right end
(x = L) differ from those of the stick state and can be
expressed as follows.
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Fig. 2 Exponential-type frictionmodel: a the friction coefficient
versus the sliding velocity and b the friction force versus the
sliding velocity

E Iu′′(x, t) = 0, E Iu′′′(x, t) = − fd at x = L . (5)

Equation (5) expresses the situation in which the
moment at the right end is zero and the shear force
at the right end is determined by the kinetic friction
force. Because the kinetic friction force fd acts in the
direction opposite to the sliding velocity vs ,

fd(vs) = − sgn (vs)μ(vs)P, (6)

where μ(vs) is the kinetic friction coefficient, which
is dependent on the sliding velocity vs . In mechanical
engineering, many kinds of friction models are used to
determine the kinetic friction coefficient [4].

Among these, the present study used an exponential-
type frictionmodel [11] that is widely used to represent
dry friction between solid surfaces. In the exponential-
type friction model, the friction coefficient is ini-
tially equal to the maximum static friction coefficient
μs . This coefficient gradually decays to the minimum
kinetic coefficient μm when the magnitude of the slid-
ing velocity |vs | is increased (Fig. 2a). The model can
be mathematically expressed as follows:

μ(vs) = μm + (μs − μm)e−α|vs |, (7)

where α is a control parameter that determines the rate
of decay of the kinetic friction coefficient. When the
sliding velocity becomes zero again (vs = 0) and the
necessary condition for the stick state is satisfied, as
given in (4), the beam’s motion changes to the stick

state. The kinetic friction force is obtained by multi-
plying the kinetic friction coefficient by the axial force
P . The range of the static friction force is given by
−μs P ≤ fd ≤ μs P . Therefore, as shown in Fig. 2b,
the friction force has a discontinuity at vs = 0, which
may lead to difficulties of a numerical method when
computing dynamic responses for stick-slip vibration.

To establish a numerical analysis model for stick-
slip vibration by the finite element method, variational
equations for the stick and slip states are derived.
Trial and weighting functions, respectively, denoted by
u(x, t) and w(x, t), are defined as follows. The trial
function u is a function that satisfies natural and geo-
metric boundary conditions, as an approximate solution
for the transverse deflection of the beam. The weight-
ing functionw is an arbitrary and infinitesimal function
and is zero at a position where the geometric boundary
conditions are specified. Because the boundary condi-
tions at the right end of the beam depend on the stick
and slip states, as expressed in Eqs. (3) and (5), the trial
and weighting functions also depend on the two states,
so separate variational equations are derived for the two
states. First, by multiplying the weighting function w

by the governing equation (1) and integrating the result-
ing equation from x = 0 to L and then applying the
boundary conditions (2) and (3) by integration by parts,
the following variational equation of the stick state can
be obtained:∫ L

0

(
ρAwü + E Iw′′u′′ − Pw′u′) dx

= −
∫ L

0
ρAwḧdx . (8)

Likewise, from the governing equation (1) and bound-
ary conditions (2) and (5), the following variational
equation of the slip state can be obtained:
∫ L

0

(
ρAwü + E Iw′′u′′ − Pw′u′) dx

= −
∫ L

0
ρAwḧdx + w|x=L

(
f − P u′∣∣

x=L

)
. (9)

Next, the trial function u(x, t) is separated into new
variables ū(x, t) and ũ(x, t) to impose the geometric
boundary conditions, in which ū and ũ are trial func-
tions for active degrees and for specified geometric
boundary conditions, respectively. By introducing ū
and ũ into Eqs. (8) and (9), the variational equations
of the stick and slip states can be rewritten respectively
as follows:
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∫ L

0

(
ρAw ¨̄u + E Iw′′ū′′ − Pw′ū′) dx

= −
∫ L

0

[
ρAw(ḧ + ¨̃u) + E Iw′′ũ′′ − Pw′ũ′] dx

(10)∫ L

0

(
ρAw ¨̄u + E Iw′′ū′′ − Pw′ū′) dx

= w|x=L
(
f − P ū′∣∣

x=L

)

−
∫ L

0

[
ρAw(ḧ + ¨̃u) + E Iw′′ũ′′ − Pw′ũ′] dx .

(11)

Lastly, by discretizing the variational equations into
element matrix-vector equations and then assembling
the resultant equations to give global matrix-vector
equations, equations of motion for the stick and slip
states are obtained, and a finite element model of the
beam is finally established. In the present work, a
two-node beam element is used for the finite element
method.

3 Beam vibration due to harmonic excitation

It is interesting to study the vibration of the beam due to
base excitation, because stick-slip vibration can occur
depending on the conditions of the excitation. To cal-
culate the vibration of the beam, at every moment, the
contact state of the beam is first determined according
to criterion conditions explained in Sect. 2, and then
the equation of motion for the corresponding state is
solved by the generalized-α time integration method
[24] using the time step size of 10−4 s. This step size
is chosen by trial and error to obtain reasonable com-
putation results. For convenience of numerical compu-
tation, the criterion conditions for the sliding velocity
vs = 0 and vs �= 0 are changed to |vs | ≤ ε and
|vs | > ε, respectively, where ε represents a threshold
value for the sliding velocity that is sufficiently close
to zero. The right end of the beam is considered to be
in the stick state if the sliding velocity vs is zero and
the static friction force fs is bounded by the maximum
static friction force (i.e., |vs | ≤ ε and | fs | ≤ μs P).
Otherwise, the stick state is switched to the slip state.
The condition to switch between the stick and slip states
is explained in [18] in more detail.

As the initial conditions, the deflection and velocity
of the beam are set to zero, and the beam is stuck to

the wall at t = 0. The sinusoidal function A0sin�t is
used to express the transverse displacement of the rigid
base h(t) as the harmonic base excitation, in which
A0 and �, respectively, denote the excitation ampli-
tude and frequency. Unless otherwise noted, the fol-
lowing values of dimensions and material properties
are used for the computer simulation: L = 2m, A =
0.01m2, I = (1/12)×10−6m4, ρ = 1000kg/m3, E =
2 × 109N/m2, P = 500N, μs = 0.6, μm = 0.3, α =
1, and ε = 10−4m/s. Herein, the mass density ρ and
Young’s modulus E refer to the material properties of
acrylonitrile butadiene styrene, awidely used engineer-
ing plastic, and the dimensions of the beam are selected
to demonstrate the stick-slip vibration obviously and
clearly.

To begin with, when the left end of the beam is
excited with the fixed excitation amplitude A0 =
0.5mm, vibration responses of the beam are com-
puted for various values of the excitation frequency
� = 15, 25, 35, and 70Hz. The corresponding time
flow motions and time histories of displacement at the
right end of the beam are shown in Figs. 3 and 4, respec-
tively. As shown in the figures, when the excitation fre-
quency � is 15Hz (Figs. 3a, 4a) or 35Hz (Figs. 3c,
4c), the right end does not move and is stationary. In
other words, the beam vibrates in the stick state at all
timeswhile the rigid base oscillates.However,when the
excitation frequency � is 25Hz (Figs. 3b, 4b) or 70Hz
(Figs. 3d, 4d), the right end moves from its original
position, after which it repeatedly becomes stuck and
moves again; that is to say, stick-slip vibration occurs.
In these results, it is shown that stick-slip vibration
occurs under 25Hz excitation, but not the faster 35Hz
excitation.

As a next step, the excitation amplitude is increased
to A0 = 1mm, and the vibration responses of the
beam are computed with the same excitation frequen-
cies given above; the corresponding time histories of
displacement at the right end of the beam are plotted
in Fig. 5. Under this amplitude, the beam remains in
the stick state only at 15Hz (Fig. 5a), and stick-slip
vibration of various patterns occurs under excitations
of 25, 35, and 70Hz (Fig. 5b–d). In comparisonwith the
cases of 0.5-mm excitation amplitude, stick-slip vibra-
tion additionally occurs at 35Hz. It is considered nat-
ural that stick-slip vibration is more likely to occur as
the excitation amplitude increases. However, because
stick-slip vibration still does not occur at 15Hz, it is
interesting to determine theminimumexcitation ampli-
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Fig. 3 Time flow motion of
the beam for various
excitation frequencies � of
a 15, b, 25, c 35, and d
70Hz at the oscillation
amplitude A0 of 0.5mm

Fig. 4 Time histories of
displacement at the right
end for various excitation
frequencies � of a 15, b,
25, c 35, and d 70Hz at the
oscillation amplitude A0 of
0.5mm
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tude (i.e., the critical amplitude) required at a given
frequency for stick-slip vibration to occur.

To investigate the critical amplitudes for various
excitation frequencies, numerical simulationswere car-

ried out in which the excitation amplitude was itera-
tively increased from zero in increments of 0.01mm
until stick-slip motion was detected. In this way, for
excitation frequencies from 5 to 100Hz with the step
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Fig. 5 Time histories of
displacement at the right
end for various excitation
frequencies � of a 15, b,
25, c 35, and d 70Hz at the
oscillation amplitude A0 of
1.0mm
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Fig. 6 Critical amplitudes of stick-slip occurrence for various
excitation frequencies

size of 5Hz, the critical amplitudes for stick-slip occur-
rence were obtained as drawn in Fig. 6. In addition, to
facilitate understanding of the result, natural frequen-
cies and mode shapes of the beam in the stick and slip
states were calculated by performing modal analysis
(Fig. 7). As shown in Fig. 6, the critical amplitude gen-
erally decreases with increasing excitation frequency,
but is extremely small at 25Hz and shows a slight valley
at 85Hz. This is because, as shown in Fig. 7, the exci-

tation frequencies of 25 and 85Hz are close to the first
and second natural frequencies of the beam in the stick
state, 25.0 and 81.1Hz, respectively. In other words,
because the beam vibrates in the stick state alone, if the
excitation frequency is close to any natural frequency
of the stick state, the beam vibration at the right end
has small amplitudes.

4 Analytical expression for static friction force

It is valuable to obtain a criterion for the occurrence
of stick-slip vibration in the form of analytical formu-
las, because this occurrence is difficult to predict due
to the complex relations between the excitation condi-
tions and the modal characteristics of the beam, as dis-
cussed above. Although this criterion can be obtained
numerically as shown in Fig. 6, it is difficult to estab-
lish a numerical analysis model, and iterative simula-
tions are very time-consuming. In this section, prior to
obtaining a criterion for stick-slip occurrence, we first
analytically derive the static friction force experienced
at the right end of the beam.

As expressed in (4), because the static friction force
corresponds to the reaction force of shear force at the
right end of the beam in the stick state, a solution for the
deflection of the beam in the stick state is first derived
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Fig. 7 Mode shapes and
natural frequencies for the
stick- and slip-state motions
of the beam. a First mode in
the stick state. b First mode
in the slip state. c Second
mode in the stick state. d
Second mode in the slip
state. e Third mode in the
stick state. f Third mode in
the slip state

(a) (b)

(f)(e)

(c) (d)

25.0 Hz 5.7 Hz

100.2 Hz169.3 Hz

81.1 Hz 35.8 Hz

using the governing equation (1) and the boundary con-
ditions (2) and (3). Because the excitation function
A0 sin�t is used as h(t) and the beam begins to vibrate
without any initial deflection, the geometric boundary
condition at x = L given in the first equation of (3) can
be rewritten as u(L , t) = −h(t) = −A0 sin�t . How-
ever, because this boundary condition is time depen-
dent, the separation of variables, which is awell-known
method for solving differential equations, cannot be
used directly.

Thus, it is necessary to convert all boundary condi-
tions to functions of only position, not time. Using the
method proposed by Mindlin and Goodman [25], the
variable u representing the deflection of the beam can
be divided into two variables as follows.

u(x, t) = u0(x, t) + �u(x, t). (12)

Herein, u0 denotes the quasi-static deflection of the
beam and �u denotes the perturbed deflection of the
beam measured from u0 as illustrated schematically in
Fig. 8. Assuming that u0 is in the quasi-static state,
substitution of (12) into (1) leads to the following two
equations:

E I
∂4u0
∂x4

+ P
∂2u0
∂x2

= 0 (13)

ρA
∂2�u

∂t2
+ E I

∂4�u

∂x4
+ P

∂2�u

∂x2

= −ρA

(
∂2h

∂t2
+ ∂2u0

∂t2

)
. (14)

u 0u

y

( )h t

x
O

uΔ

Fig. 8 Relation between coordinates of the beam: u is deflection
measured from the base, u0 is quasi-static-determined deforma-
tion, and �u is perturbed deflection from u0

Since the function u0 should satisfy the time-indepen
dent boundary conditions, it can be expressed as

u0(x, t) = S(x)h(t), (15)

where h(t) is given by h(t) = A0 sin�t . Introducing
(15) to (13), we obtain the following equation:

S(4) + σ 2S′′ = 0, (16)

whereσ = √
P/E I .When the rigid base has a unit dis-

placement, the time-independent boundary conditions
for (16) are given by

S(0) = 0, S′(0) = 0, S(L) = −1, E I S′′(L) = 0.

(17)

The solution of the governing equation (15) and the
boundary conditions (17) can be obtained as

S(x) = −σ x cos σ L + sin σ L − sin σ(L − x)

σ L cos σ L − sin σ L
. (18)
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Cantilever beam subjected to harmonic base excitation

Next, a differential equation for �u and its boundary
conditions can be derived as follows:

ρA
∂2�u

∂t2
+ E I

∂4�u

∂x4
+ P

∂2�u

∂x2

= −ρA
∂2h

∂t2
(1 + S) (19)

�u(0, t) = 0,
∂�u(0, t)

∂x
= 0, �u(L , t) = 0,

E I
∂2�u(L , t)

∂x2
= 0. (20)

As expressed in (20), all boundary conditions for �u
are time independent, so a solution for �u can be
approximated by applying the separation of variables
method and the eigenmode expansion method as fol-
lows:

�u(x, t) =
N∑

n=1

Un(x)Tn(t), (21)

where Un is a basis function of the nth eigenmode, Tn
is a modal coordinate ofUn , which is a function of time
to be determined, and N is the total number of bases. In
this study, N = 10 is used for analysis. The total num-
ber of bases is determined by some convergence tests
for time responses. The basis function Un satisfies the
differential equation (19) and the boundary conditions
(20) as an eigenfunction, written as

Un(x) = cosh βnx − cos β̄nx

− cosh βnL − cos β̄n L

β̄n sinh βnL − βn sin β̄nL(
β̄n sinh βnx − βn sin β̄nx

)
, (22)

where βn and β̄n are the nth solutions of the following
characteristic equation.

β tan β̄L = β̄ tanh βL where β2, β̄2

= −P

2E I
±

√(
P

2E I

)2

+ ρAω2

E I
(23)

in which ω is the natural frequency. When the axial
force P is zero, (22) and (23) are, respectively, the same
as the eigenfunction and characteristic equation for a
clamped–pinned cantilever beam.

By substituting (21) into (19) and applying the
orthogonal condition of eigenfunctions, the modal
equations for Tn can be derived as N independent equa-
tions as follows:

T̈n(t) + ωnTn(t) = Cnḧ(t) for n = 1, 2, . . . , N (24)

whereωn is the natural frequency of the nth eigenmode
andCn is a generalized force coefficient for eachmodal
equation. The natural frequency and generalized force
coefficient, ωn and Cn , can be expressed as follows:

ωn =
√√√√

∫ L
0

(
E IU ′′

n U
′′
n − PU ′

nU
′
n

)
dx∫ L

0 ρAUnUndx
,

Cn = − ∫ L
0 Un (1 + S) dx∫ L
0 UnUndx

. (25)

As expressed by (24), because each modal equation for
Tn is equivalent to a single-degree-of-freedom mass–
spring system, the forced vibration response for Tn can
be solved using the convolution integral after replacing
h(t) with A0 sin�t. This yields the following solution
for Tn :

Tn(t) = A0�
2Cn

[−� sinωnt + ωn sin�t

(�2 − ω2
n)ωn

]
. (26)

By collecting the above equations and according to
the relation given in (12), an approximate solution for
deflection of the beam subjected to harmonic base exci-
tation can be expressed as follows:

u(x, t) = A0

{
S(x) sin�t

+
N∑

n=1

Un(x)�
2Cn

[−� sinωnt + ωn sin�t

(�2 − ω2
n)ωn

]}
.

(27)

Finally, the following expression is obtained for the
response of the static friction force between the beam
and the wall due to the base excitation:

f (t) = E I
∂3u

∂x3

∣∣∣∣
x=L

= E I A0

{
∂3S

∂x3

∣∣∣∣
x=L

sin�t +
N∑

n=1

∂3Un

∂x3

∣∣∣∣
x=L

�2Cn

[−� sinωnt + ωn sin�t

(�2 − ω2
n)ωn

]}
. (28)

According to (28), the response of the static friction
force f (t) is proportional to the flexural rigidity of
the beam EI and the excitation amplitude A0. We can
also see from the form of this equation that resonance
occurs and the static friction force is drastically ampli-
fied as the excitation frequency� approaches any natu-
ral frequency of the beam ωn because the denominator
(�2 − ω2

n)ωn of the last term of (28) approaches zero
in this situation.
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Fig. 9 Comparison of a displacement at x = 0.5L and b the
static friction force for the excitation amplitude and frequency
of A0 = 0.5mm and � = 15Hz

Solutions for the deflection of the beam and the
response of the static friction force analytically obtai-
ned by applying (27) and (28) were verified by compar-
ison with solutions numerically calculated by applying
the finite element model established in Sect. 2. The
conditions used were A0 = 0.5mm and � = 15Hz,
with other parameters being the same as given in
Sect. 3. Figure 9a shows the time response of the dis-
placement of the beam measured at x = 0.5L; i.e.,
y(0.5L ,t) = h(t) + u(0.5L ,t), and Fig. 9b shows the
time response of the static friction force f (t). In each
plot, the solid line represents the analytical solution
and the circle symbols represent the numerical result.
The analytical solutions obtained by applying (27) and
(28) fit very well with the numerical results, validating
the accuracy and usefulness of the presented analytical
method.

5 Criterion of stick-slip occurrence

The analytical expression of static friction force obtai-
ned above allows us to predict which excitation condi-
tions can lead to stick-slip vibration. Because stick-slip
vibration occurs when the static friction force exceeds
the maximum static friction force, the criterion for

stick-slip occurrence can be defined as follows:

If | fmax| ≤ μs P, stick-slip vibration cannot occur .

(29)

If | fmax| > μs P, stick-slip vibration can occur .

(30)

Herein, | fmax| denotes the absolute maximum of
the static friction force while the beam is subjected
to base excitation, calculated according to (28) under
the assumption that the beam vibrates in the stick state.
Basically, if the maximum static friction force exceeds
μs P , slippingwill occur, leading to stick-slip vibration;
otherwise, the beam will remain in the stick state.

To determine the excitation conditions that are
expected to result in stick-slip vibration according to
(29) and (30), the absolute maximum of the static fric-
tion force | fmax| can be calculated for given base excita-
tion amplitude and frequency. Unfortunately, because
the response of the static friction force as expressed
in (28) is of complex and nonlinear form with respect
to time, it is difficult to obtain | fmax| in a closed-form
equation. Thus, in the present work, the response of the
static friction force is calculated over the time range
from 0 to 10s, and | fmax| is considered to be the max-
imum absolute value of the results. The absolute max-
ima of the static friction force | fmax| obtained in this
manner over the range of excitation amplitudes from 0
to 1mm and the range of excitation frequencies from
0 to 120Hz are plotted in Fig. 10; the other parame-
ters used are as given in Sect. 3. In addition, the max-
imum static friction force μs P = 300N is drawn in
the figure as a flat plane. The absolute maximum of the
static friction force | fmax| seems to increase generally
with increasing excitation amplitude or frequency, but
is sharply amplified and shows a resonance effect for
excitation frequencies close to the natural frequencies
of the stick state ωn .

The results of using (28) to determine whether stick-
slip occurs or not were compared with the responses
obtained in Sect. 3. When the excitation amplitude
A0 is 0.5mm, the excitation frequencies � of 15 and
35Hz, respectively, result in | fmax| of 40.38N (marked
as A in Fig. 10) and 254.87N (marked as B); both of
which are less than μs P = 300N. Thus, these exci-
tation conditions can be determined to cause the stick
state only. Contrastingly, the excitation frequencies of
25 and 70Hz result in | fmax| of 3.03×104 N (marked
as C) and 977.54N (marked as D), which are greater
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Fig. 10 Absolute
maximum of the static
friction force | fmax| versus
base excitation amplitude
and frequency compared to
the maximum static friction
force μs P (flat plane)
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Fig. 11 Criterion diagram for stick-slip occurrence in the para-
metric plane of base excitation amplitude and frequency

than μs P = 300N, so that these excitation conditions
can be determined to cause stick-slip vibration. The
stick-slip occurrence results determined in this manner
are consistent with those that were numerically investi-
gated by the finite element model, explained in Figs. 3
and 4.

Furthermore, the excitation conditions for the stick-
slip occurrence can also be represented using a para-
metric plane of base excitation amplitude and fre-
quency as shown in Fig. 11, by tracking the excitation
amplitude that satisfies | fmax| = μs P at each excita-
tion frequency. In this figure, the solid line indicates
the excitation conditions of | fmax| = μs P and the ω1

and ω2, respectively, indicate the first and second natu-

ral frequencies. Hence, the lower region represents the
parametric area for the stick condition (| fmax| ≤ μs P),
i.e., the stick region, and the upper region represents the
parametric area for the stick-slip condition (| fmax| >

μs P), i.e., the stick-slip region. Figure 11 clearly shows
that extremely small amplitudes are sufficient to pro-
duce stick-slip vibration when the excitation frequency
is the same as the natural frequency of the stick state.

To validate the excitation conditions presented
above for stick-slip occurrence, numerical simulations
were performed using the finite element model devel-
oped in Sect 2 with respect to excitation conditions.
The results appear in Fig. 12, overlaid on Fig. 11 trace
of critical amplitudes. In the figure, the squares indi-
cate the conditions of excitation amplitude and fre-
quency that make the beam vibrate only in the stick
state, and the circles indicate the conditions that lead to
stick-slip vibration. The solid line represents the crit-
ical amplitude determined according to the analytical
method (Fig. 11). As shown in the figure, the analytical
and numerical solutions for the stick-slip occurrence
agreed well. These results demonstrate that the ana-
lytical method presented herein can be used to predict
the stick-slip occurrence, instead of time-consuming
numerical simulations.

We now discuss how the stick-slip criterion is
affected by decreases in the flexural rigidity of the
beam. Related to this discussion, we performed cal-
culations for the case in which the flexural rigidity
of the beam EI is halved and the other parameters
are unchanged compared to those used in the work
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described above. In this case, the first three natural fre-
quencies of the beam in the stick state were calculated
as 17.6, 57.3, and 119.6Hz, smaller than those of the
previous case (25.0, 81.1, and 169.3Hz). Accordingly,
the excitation frequencies leading to resonance also
decreased. By using the proposed method, the stick-
slip criterion can be plotted as in Fig. 13. Because the
frequency regions near the resonance frequencies, at
which only small excitation amplitudes are required
for stick-slip occurrence, differed from the previous
case, the scale of the excitation frequency in Fig. 13 is
adjusted for better comparison; as a result, the positions
of the resonance frequencies appear equal to those of
Fig. 11. Compared to Fig. 11, in Fig. 13, it can be seen
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Fig. 14 Criterion diagram for stick-slip occurrence in the para-
metric plane of axial force P and beam length L for the fixed exci-
tation amplitude and frequency of A0 = 1mm and � = 25Hz,
respectively

that the critical amplitude for stick-slip occurrence is
larger. In other words, a low-rigidity beam better with-
stands excitation and resists stick-slip vibration than a
more rigid beam.

It is also interesting that the presented method can
be used to determine design guidelines of a beam that
will avoid stick-slip vibration. For example, when the
excitation amplitude and frequency that a beam is sub-
jected to are given by A0 = 1mm and � = 25Hz,
respectively, a diagram of the stick-slip criterion with
respect to the beam length L and the axial force P
can be obtained as shown in Fig. 14. In this case, the
range of beam lengths considered is from 0.4 to 2m,
and the width and height of the beam are, respectively,
set to 0.2 and 0.02m, to satisfy Euler–Bernoulli beam
theory, while the length of beam is varied. The other
parameters, except axial force, are the same as before.
In Fig. 14, the solid line corresponds to | fmax| = μs P ,
and the lower and upper regions represent the stick-slip
region (| fmax| > μs P) and the stick region (| fmax| ≤
μs P), respectively. The axial force must be extremely
high to escape the stick-slip region when the length of
the beam is close to L1 and L2. This is because the
excitation frequency � = 25Hz coincides with the
first natural frequency of the beam in the stick state
when L1 = 0.88m and with the second natural fre-
quency when L2 = 1.58m. Thus, the occurrence of
stick-slip vibration is inevitable in the vicinity of L1

and L2 under the given conditions, so a beam length
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can be recommended by excluding values close to L1

or L2.

6 Conclusions

Stick-slip vibration of a cantilever beam under har-
monic base excitation was studied herein. Variational
equations of motion for the stick and slip states were
respectively derived, considering the nonlinearity and
discontinuity of the friction force with respect to the
relative sliding velocity. Then, a numerical analysis
model was established by means of the finite ele-
ment method and the generalized-α time integration
method. Using the numerical analysis model, vibration
responses of the beam were investigated with respect
to excitation amplitude and frequency. It was found
that stick-slip vibration tends to occur as the excitation
amplitude is increased or as the excitation frequency
approaches the natural frequency of the beam in the
stick
state.

Next, an analytical expression of static friction force
was proposed. By this expression, a criterion for stick-
slip occurrence was presented and validated. To deter-
mine this criterion, the response of the static friction
force arising from the base excitation was theoretically
derived. To solve the time-dependent boundary condi-
tion problem, the variable representing deflection of
the beam was separated into two variables to allow
a quasi-static approximation. Then, by comparing the
analytical expression of static friction force with the
maximum static friction force, a criterion of stick-slip
occurrence was formulated with respect to the base
excitation amplitude and frequency and was validated
by comparison with the numerical results. By applying
the proposedmethod, it was shown that a beamof lower
flexural rigidity is more stable, resisting the occurrence
of stick-slip vibration in terms of the normalized exci-
tation frequency. In addition, we identified trends in
beam length that can be recommended for avoiding
stick-slip vibration as an example of an application to
structural design. The proposed analytical approach to
the criterion of stick-slip occurrence can be extended
to various types of structures in addition to the beam
and can be used to prevent the stick-slip vibration in
many machines.
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