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Introduction

A widely used approach for the simulation of vocal tract
acoustics is the transmission line model (TLM) with
lumped elements [2, 3]. The TLM is based on one-
dimensional acoustic propagation in a tube with a piece-
wise constant cross-sectional area. The governing equa-
tions for the TLM were originally derived under the fol-
lowing assumptions: The sound field causes only small
perturbations of the thermodynamic equilibrium and the
particle velocities are small compared to the speed of
sound. However, the assumption of small fluid velocities
in the vocal tract is often not justifiable. For instance at
the constriction of fricatives or shortly after the release
of plosives the particle velocities can exceed 0.1 Mach [1,
p. 47-51]. The peak velocities of the airflow through the
glottis during normal phonation are of the same order of
magnitude, too. The consequences of these high veloc-
ities are the Bernoulli effect and, if the occasion arises,
energy losses due to flow separation from the vocal tract
walls at sudden expansions (shock losses) or due to flow
contractions at sudden constrictions (e.g., at the inlet of
the glottis).

These effects are not captured by the linear equations of
sound propagation. Therefore, with regard to an acous-
tic simulation of the vocal tract system in the time do-
main, we present in this paper the spatial discretization
of the equation of motion which includes the nonlinear
”Bernoulli term”. However, we approximate this term
by a linear expression during the temporal discretization.
The results of the implementation of this term in our vo-
cal tract simulation will be discussed at the end of the

paper.

Equation of motion

Conservation of momentum in a one-dimensional, fric-
tionless fluid is fully described by Euler’s equation,
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where p is the pressure, p is the density, v the particle
velocity and x the spatial coordinate. In acoustics, den-
sity and pressure are each written as the sum of a static
part and a small perturbation part: p = py + p’ und

p = po + p'. When we furthermore substitute v% by
1 aa”m , Eq. (1) becomes
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This equation is usually linearized in acoustics by ne-
glecting products of small quantities (p’, p’ and v). This
yields the well known equation of motion for the one-
dimensional sound field:
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However, in the vocal tract, velocities are not small in
any case, so that the v2-term in Eq. (2) should not be
neglected. Thus, we use the following equation as start-
ing point for the discretization:
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Spatial discretization

For the computer simulation, Eq. (3) must be trans-
formed into a discrete representation. The grid for the
spatial discretization is provided by the division of the
vocal tract in short abutting tube sections. The pressure
p is sampled in the middle of each tube section and the

volume velocity u is sampled at the borders of adjacent
1

sections. A short piece of the vocal tract, consisting of
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Figure 1: Spatial discretization of a piece of the vocal tract.
a) continual case, b) discrete case.

two sections, is shown in Fig. 1. The lengths and areas
of the two sections are denoted as l;_1, [; and A;_1, A;,
respectively. We discretize Eq. (3) by the multiplication
with an infinitesimal distance dx and the integration be-
tween the positions ;1 and z; (position coordinates in
the middle of the individual tube sections). When we as-
sume a time-independent area function A(z) and consider
that the volume velocity satisfies u(x,t) = v(z,t)A(z),

we get
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1We drop the prime to denote the sound pressure in the follow-
ing.
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Due to the spatial sampling, u(z,t) = u;(¢t) for x;,—; <
x < x;. The partial derivatives on the right-hand side of
the equation can now be transformed into total deriva-

tives, yielding
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The integration over the piecewise constant area function
A(x) gives

Pi-1 —Di = iti(Li—l + Li) + U?(Wz‘ - Wi—l)v (4)

where L; = poli/(2A;) and W; = po/(2A2). Recall that
this equation was derived from Euler’s equation for the
frictionless case. However, in reality the vocal tract has
several loss mechanisms. Losses due to viscous friction
can approximately be considered by means of a linear
resistance R that causes a pressure drop proportional to
u [3]. Other losses of energy can be found at sudden
expansions or contractions of the vocal tract due to flow
separation from the vocal tract walls [2]. These cases can
be considered by means of a ”correction coefficient” 7; in
front of the second order term in Eq. (4). A sudden ex-
pansion in the vocal tract geometry in conjunction with
sufficiently high fluid velocities usually produces turbu-
lence noise that can be represented as a source of sound
pressure at the appropriate place. This source of noise
can be considered by an additional pressure term p;.
With these modifications, Eq. (4) becomes

Di—1—pi = ﬂi(LiqJrLi)Jrui(Ri71+R¢)+u1277i(W¢*Wi71)*pf-
(5)
This equation describes the relationship between pres-
sure and volume velocity depicted by the circuit in Fig. 2.
Compared to the conventional circuits, we have repre-
sented the nonlinear resistances (pressure drop propor-
tional to u?) by the diamond-shaped symbols for better
discrimination.
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Figure 2: Lumped transmission-line representation of the vo-
cal tract from the center of section ¢—1 to the center of section
¢ including the nonlinear resistances.
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Each of the capacitors represents the compressibility of
the air in one of the two tube sections. They result from
the spatial discretization of the continuity equation. The
relation between pressure and volume velocity for the
capacities reads

1
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where C; = [;A;/(poc?) and c is the speed of sound.

Temporal discretization

The equations (5) and (6) are coupled by the quantities
pi(t) and w;(t) and are the foundation for the acoustic
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simulation in our synthesizer. The temporal discretiza-
tion is implemented by means of the trapezoid rule

At . .
flnl = fln =1+ —(f[n = 1] + fln]) (7)
for f € {p,u}. In order to linearize the second-order term
in Eq. (5) in u[n], we make the following approximation:
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By combining the equations (5), (6), (7) and (8) we ob-
tain a linear system of equations, whose solution is the
wanted vector of the volume velocities. At the glot-
tal end and at the mouth of the vocal tract, the cor-
responding boundary conditions have to be implemented
(lung/glottis and radiation impedance) [3, 2].

2[n] =~ —u?[n — 1] + 2u[n]uln — 1].

Results and Discussion

In some implementations of transmission line models,
nonlinear resistances have been used by other researchers
before, but usually only with regard to vocal fold vibra-
tion or in order to model pressure losses after narrow
constrictions in the vocal tract [2, 4]. However, at the
other places in the vocal tract, where no energy losses
are expected (either due to turbulence or flow separa-
tion), the Bernoulli effect is not considered.

In our simulation of the TLM we can choose to switch
the nonlinear resistances either on or off along the en-
tire length of the vocal tract in order to examine their
influence on the spatial and temporal pressure distribu-
tion during speech production. For instance, when we
simulate "breathing out” with a wide open glottis we
can clearly observe the change of pressure depending on
the cross-sectional area along the tube axis, just as we
would expect it due to the Bernoulli effect for a station-
ary flow. However, during the simulation of speech with
a time varying vocal tract geometry we could in some
cases detect numeric instabilities, especially in the time
intervals immediately preceding or following alveolar or
labial closure. These instabilities do not occur when we
switch the nonlinear resistances off. Thus, we attribute
the mistakes to the approximation made in Eq. (8) and
are currently seeking to improve the method.
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