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Abstract

A time domain simulation of acoustic propagation in the vocal tract
requires the spatial and temporal discretization of the equations of
motion and continuity. In the classic transmission line model of the
vocal tract with lumped elements, the spatial discretization is pro-
vided by the piece-wise constant area function. The temporal finite-
difference approximation of the differential equations can, however,
vary from one implementation to the other (e.g., [4] vs. [5]). In this
study, we have adopted a general finite-difference scheme that de-
pends on a parameter θ where 0 ≤ θ ≤ 1. As special cases, this
general method includes the trapezoid rule (θ = 0.5) as well as the
implicit (θ = 1) and explicit (θ = 0) finite-difference schemes. We
have examined how formant frequencies and bandwidths of sim-
ulated vowels are effected by the choice of θ. The experiments
were conducted for the sampling rates of 44.1 kHz and 88.2 kHz
and compared with the accurate and thus desirable frequencies and
bandwidths measured in frequency domain simulations of the vocal
tract. It can be shown that optimal values for θ are slightly above
0.5 depending on the sampling rate.

1. Introduction
In articulatory speech synthesis, the vocal tract is frequently rep-
resented by an inhomogeneous transmission line with lumped ele-
ments [5, 4]. In this transmission line model (TLM), the vocal tract
is approximated as a series of abutting cylindrical tube sections as
illustrated in Fig. 1 (a). Each individual section is represented as a
lumped element of the transmission line as depicted in Fig. 1 (b).

Figure 1: a) Discrete tube representation of a part of the vocal tract.
b) Lumped transmission line network for one tube section (dashed
box).

In this analogy, electrical current corresponds to volume veloc-
ity u and voltage corresponds to acoustic pressure p. The inductiv-
ities Li and the capacities Ci represent respectively the inertance
and the compliance of the air in the tube section i. The resistances
Ri account for energy losses due to viscous friction and the series
connection of Rwi, Lwi and Cwi represents the vocal tract wall
impedance. Vocal tract losses arising from heat conduction at the
wall are not included in this network, because they are essentially
negligible in the frequency region of interest [3]. The derivation
of the transmission line element values can be found, for instance,
in [3]. We summarize the values for the network components as
follows:

Li = ρli/(2Ai) Lwi = Mw/(liSi)

Ri = [Sili/(2A2
i )]

√

ρωµ/2 Rwi = Bw/(liSi)
Ci = Aili/(ρc2) Cwi = (liSi)/Kw

(1)

Si, Ai and li are the perimeter, area and length of the tube section i,
respectively. ω is the radian frequency, ρ is the ambient density, c is
the speed of sound and µ the coefficient of viscosity. The remaining
parameters Mw, Bw and Kw are the mass, resistance and stiffness
of the vocal tract walls per area, respectively. In our simulation, we
have chosen the values that were measured for the relaxed cheek
in [6], namely Mw = 21 kg/m2, Bw = 8000 kg/m2s and Kw =
845000 kg/m2s2.

Figure 2: a) T-network and b) system representation of one individ-
ual tube section.

A simplified representation of a tube section is the T-network
shown in Fig. 2 (a) or the corresponding two-port system shown in
Fig. 2 (b). The entire vocal tract consists of the concatenated two-
port systems of all tube sections. In our simulation, the entire net-
work is connected to a current source at the glottis and is terminated
by a radiation impedance at the mouth. According to Flanagan [3],
the radiation impedance is well approximated by a parallel R-L cir-
cuit as depicted in in Fig. 3, where

LR =
8ρ

3π
√

πAN

, RR =
128ρc

9π2AN

, (2)

and AN is the area of the last tube section (mouth area).
Depending on the requirements, the vocal tract network can be

simulated in either the time domain or the frequency domain. A



Figure 3: Entire network for the vocal tract consisting of N tube
sections. Glottal excitation is represented by the volume velocity
source u1.

frequency domain simulation (FDS) is needed for the strict evalua-
tion of the system in terms of formant frequencies and bandwidths,
because this simulation method does not introduce errors (disper-
sion effects) due to a temporal discretization and can properly ac-
count for the frequency dependent resistance Ri in the transmission
line. However, a time domain simulation (TDS) is desirable for
speech synthesis, because it can account for the dynamic aspects of
speech production in a natural way. The basis for the TDS is the
temporal discretization of the differential equations that describe
the behaviour of the vocal tract network. Therefore, the differen-
tial equations must be approximated by difference equations. Well-
known methods for the finite-difference approximation are the sim-
ple implicit method, the simple explicit method and the trapezoid
rule. All three methods are special cases of a general discretization
scheme that depends on a parameter θ. In this study we examined
the influence of different θ-values (and thus different discretization
schemes) on the bandwidths and frequencies of vowel formants for
two sampling rates. The values obtained in the TDS were compared
to the desirable values from a FDS in order to find the value for θ
that gives the best spectral match. The procedures for the TDS and
the FDS are briefly described in the following two sections and the
examined cases are explained in Sec. 4. We shall discuss the results
in Sec. 5 and draw the conclusions in Sec. 6.

2. Time domain simulation
The relationships between pressures and volume velocities for a sin-
gle tube section can be readily derived from Fig. 1 (b):

ṗi =
1

Ci

(ui − ui+1 − uwi) (3)

pi−1 − pi = u̇i(Li−1 + Li) + ui(Ri−1 + Ri) (4)

pi = Lwiu̇wi + Rwiuwi +
1

Cwi

∫

uwidt (5)

Equation (5) describes the vibration of the vocal tract walls and the
Eqs. (3) and (4) express the conservation of mass and momentum.
For the volume velocities uN+1 and uN+2 through the radiation
impedance we obtain (cf. Fig. 3)

pN = uN+1RN + u̇N+1LN + (uN+1 − uN+2)RR, (6)
u̇N+2LR = (uN+1 − uN+2)RR. (7)

With regard to the forthcoming discretization we take the time
derivative of Eq. (5) so that the integral disappears from the right-
hand side. When the slow variations of the component values Lwi,
Rwi and Cwi are neglected, we get

ṗi = Lwiüwi + Rwiu̇wi +
1

Cwi

uwi. (8)

Our general approach for the finite-difference approximation reads

f [n] − f [n − 1] = θ∆tḟ [n] + θ∆tḟ [n − 1], (9)

where n is the sampling index, ∆t is the time step, θ is a constant
between 0 and 1, and θ = 1 − θ. The function f stands for p or u.
With regard to Eq. (9), the simple implicit finite-difference scheme
corresponds to θ = 1, the simple explicit scheme to θ = 0 and the
trapezoid rule to θ = 0.5.

For a better readability we introduce the following abbrevia-
tions, where n is the current sampling index and n− 1 is the imme-
diately elapsed sampling index:

f [n] ≡ f f [n − 1] ≡ f ′

ḟ [n] ≡ ḟ ḟ [n − 1] ≡ ḟ ′

The first and second time derivative can then be written as

ḟ =
1

∆tθ
(f − f ′) − θ

θ
ḟ ′, (10)

f̈ =
1

∆t2θ2
(f − f ′) − 1

∆tθ

(

θ

θ
+ 1

)

ḟ ′ − θ

θ
f̈ ′. (11)

We now combine the equations of continuity (3) and wall vibra-
tion (8) to a single time-discrete equation. Therefore, we expand
u̇wi and üwi in (8) by means of (10) and (11) and then solve this
equation for uwi. We obtain

uwi = ṗiαi + βi, (12)

where

αi = 1/

(

Lwi

∆t2θ2
+

Rwi

∆tθ
+

1

Cwi

)

βi = αi

[

u′

wi

(

Lwi

∆t2θ2
+

Rwi

∆tθ

)

+

u̇′

wi

(

Lwi

∆tθ
(θ/θ + 1) + Rwi

θ

θ

)

+ Lwi

θ

θ
ü′

wi

]

When we put Eq. (12) in (3), expand ṗi and then solve for pi, we
get

pi = Di + Eiui − Eiui+1, (13)

where

Di = p′

i + ∆tθṗ′

i − Eiβi

Ei = ∆tθ/(Ci + αi)

The equation of motion (4) and the Eqs. (6) and (7) are discretized
analogously by expanding the first derivatives of the volume veloc-
ities as

pi−1 − pi = ui

(

Li−1,i

∆tθ
+ Ri−1,i

)

− Li−1,i

(

u′

i

∆tθ
+

θ

θ
u̇′

i

)

,

pN = uN+1

(

RN + RR +
LN

∆tθ

)

− uN+2(RR) −

LN

(

u′

N+1

∆tθ
+

θ

θ
u̇′

N+1

)

, (14)

−uN+1(RR)+uN+2

(

LR

∆tθ
+ RR

)

= LR

(

u′

N+2

∆tθ
+

θ

θ
u̇′

N+2

)

,

where Li−1,i = Li−1 + Li and Ri−1,i = Ri−1 + Ri. When the
pi (1 ≤ i ≤ N ) are substituted by Eq. (13) and u1 is provided
as the excitation function, then a linear system can be defined for
computing the unknown volume velocities u2 . . . uN+2 by means
of Eqs. (14). The linear system of equations has a tridiagonal co-
efficient matrix and can be solved with great efficiency using the
Thomas-algorithm [2, p. 59]. By means of the volume velocities



ui and the equations given in this section, the following quantities
must be computed for all indices i at the current sampling point: u̇i,
pi, ṗi, uwi, u̇wi and üwi. They are needed in order to compute the
coefficient matrix for the linear system in the following time step.

Since the resistance due to viscous friction in Eq. (1) is fre-
quency dependent, it can not be used in this form in the TDS. There-
fore we use, analogous to Maeda [5], the Hagen-Poiseuille formula
for the flow resistance in our TDS: Ri = 4µliπ/A2

i .

3. Frequency domain simulation
For the vocal tract simulation in the frequency domain we recall
that each tube section can be represented by a two-port network as
in Fig. 2. The impedances Za and Zb for a tube section i are

Zai = Ri + jωLi

Zbi = (Rwi + jωLwi + 1/(jωCwi)) ‖ Ci.

The input-output relations for such a two-port network can be writ-
ten in matrix form as

(

pout

uout

)

=

(

1 + Za/Zb −2Za − Z2
a/Zb

−1/Zb 1 + Za/Zb

) (

pin

uin

)

.

The matrix Ktot for the entire vocal tract is the product of the indi-
vidual matrices Ki from the mouth opening to the glottis: Ktot =
KNKN−1 . . . K2K1. The input-output relations for the entire net-
work in Fig. 3 are then

(

uN+1ZR

uN+1

)

= Ktot

(

pg

u1

)

=

(

A B
C D

) (

pg

u1

)

,

where pg is the pressure across the volume velocity source and
ZR = RR ‖ jωLR is the radiation impedance. The volume ve-
locity transfer function can be derived as

H(ω) =
uN+1(ω)

u1(ω)
=

1

A(ω)− C(ω)ZR(ω)
. (15)

4. Investigations
We have investigated the first four formants of the vowels /a/, /ae/,
/e/ and /u/. The area functions for these vowels were produced
by the articulatory model in [1] and discretized in 32 tube sec-
tions of equal length. The entire vocal tract length varied from
15.02 cm to 17.53 cm depending on the vowel. Our first exper-
iments have shown that not all values for θ between 0 (explicit
scheme) and 1 (implicit scheme) are sensible. For θ < 0.5, all
simulations became unstable and for θ > 0.54 the bandwidths
of the higher formants became unnaturally high. Therefore, we
have restricted our simulations to the following limited set of val-
ues: θ ∈ {0.5, 0.51, 0.52, 0.53, 0.54}. θ = 0.5 corresponds to
the trapezoid rule and values above 0.5 shift the weight from the
trapezoid rule to the implicit finite-difference scheme. Each combi-
nation of a vowel and a θ-value was simulated at the sampling rates
44.1 kHz and 88.2 kHz.

In order to determine the formant frequencies and bandwidths,
the time domain simulations were excited with a volume velocity
impulse. The discrete impulse responses uN [n] were recorded for
0.743 s. From each impulse response, the magnitude spectrum was
calculated by means of the discrete Fourier transform. Estimates
of the formant frequencies were obtained by parabolic interpolation
around the corresponding peaks in the magnitude spectra. For each
formant, the 3 dB bandwidth was calculated. The exact frequen-
cies and bandwidths of the formants were determined by means of
the FDS for comparison. Therefore, we have computed the transfer

θ = 0.5 θ = 0.52 θ = 0.54 FDS
/a/ B1 16.6 22.0 27.0 28.2

B2 36.3 47.2 57.7 49.5
B3 132.9 199.3 265.1 147.8
B4 10.1 137.9 285.4 34.4

/ae/ B1 12.1 16.2 20.5 19.7
B2 109.8 136.0 161.7 117.6
B3 70.6 122.3 173.8 85.5
B4 33.7 134.9 240.6 52.8

/e/ B1 16.1 18.8 21.8 26.6
B2 13.3 56.5 101.7 23.8
B3 186.1 277.1 384.0 216.7
B4 56.2 174.0 324.8 73.5

/u/ B1 22.1 25.4 28.9 31.5
B2 5.8 12.3 18.7 22.2
B3 2.2 40.7 79.0 16.1
B4 1.6 90.2 172.4 15.3

Table 1: Formant bandwidths of the vowels for different values of
θ at 44.1 kHz. The reference values from the FDS are given for
comparison.

functions according to Eq. (15) with a resolution of 1 Hz and eval-
uated them analogously to the TDS-spectra. The comparison of the
TDS and FDS formants allowed us to assess the θ-value(s) giving a
best spectral match. Since the structure of the acoustic network is
identical for both the TDS and FDS, all differences in the transfer
functions can be attributed only to the temporal discretization and
the different expressions for the resistance components.

5. Results and Discussion

Figure 4: Discrete measurements and regression lines for the for-
mant frequencies and bandwidths over θ for the vowel /a/. The
arrows indicate the θ-values, where the bandwidths are equal to the
exact bandwidths according to the FDS.

The tables 1 and 2 show the measured data for the sampling rate
44.1 kHz. From the TDS, the formant frequencies and bandwidths
are listed for θ ∈ {0.5, 0.52, 0.54}. The reference values from the
FDS are listed in the right column. Both the formant frequencies
and the bandwidths show a nearly linear dependence on θ in the ex-



θ = 0.5 θ = 0.52 θ = 0.54 FDS
/a/ F1 735.9 738.4 740.9 737.1

F2 1093.8 1094.3 1094.6 1095.9
F3 2808.4 2811.8 2812.8 2848.8
F4 3976.1 3990.2 4006.2 4086.1

/ae/ F1 663.1 665.5 667.9 666.3
F2 1717.6 1719.8 1721.5 1726.4
F3 2464.0 2464.6 2463.6 2489.9
F4 3531.7 3538.2 3540.7 3608.0

/e/ F1 339.6 342.6 345.5 342.4
F2 2318.6 2322.7 2327.8 2339.5
F3 3031.1 3034.3 3038.4 3076.4
F4 3724.5 3726.9 3720.4 3813.6

/u/ F1 310.6 314.4 318.1 312.6
F2 874.4 875.9 877.2 874.2
F3 2206.0 2208.0 2208.3 2226.8
F4 3380.7 3386.3 3388.4 3446.5

Table 2: Formant frequencies of the vowels for different values of
θ at 44.1 kHz. The reference values from the FDS are given for
comparison.

amined interval. The results for θ = 0.51 and θ = 0.53, which are
not listed in the tables, confirm this trend. Fig. 4 shows the mea-
sured formant frequencies and bandwidths over θ together with the
regression lines for the vowel /a/. The gradients of the lines (the re-
gression coefficients) are clearly smaller for the formant frequencies
than for the bandwidths. Fig. 5 shows the regression coefficients of
the bandwidths of all vowel formants over the corresponding for-
mant frequencies. It can be seen that the bandwidth grows faster
with increasing θ when the formant frequency is higher. A similarly
regular dependence of the formant frequency regression coefficients
was not observed.

Figure 5: Regression coefficients of all measured formant band-
widths over the formant frequencies for 44.1 kHz and 88.2 kHz.

Concerning the differences between the TDS and FDS, all for-
mant frequencies and bandwidths in the TDS with the trapezoid rule
(θ = 0.5) are smaller than the exact values of the FDS (the only ex-
ception is F2 of /u/).

The reasons for the bandwidth deviations are not only the tem-
poral discretization but also the different expressions for the resis-
tance Ri. In the FDS, Ri is proportional to

√
f (Eq. 1) and for this

reason, according to Flanagan [3, p. 52], also its contribution to the
bandwidths. In the TDS we have approximated viscous friction by
means of the flow resistance. The flow resistance is frequency in-
dependent and causes a smaller contribution to the bandwidths than
the boundary layer resistance of the FDS, especially for middle and
high frequencies.

The reason for the lower formant frequencies in the TDS is the
frequency warping caused by the finite-difference approximation.

Maeda [5] has derived a formula that describes this dispersion re-
lation quantitatively. Essentially, frequency warping gets stronger
when the temporal and spatial sampling rate is decreased and the
higher the formant frequency is.

When θ is increased in excess of 0.5, both the formant frequen-
cies and bandwidths move toward the reference values. Depending
on the formant frequencies, the bandwidths in the TDS cross the ref-
erence values at certain values of θ. For the vowel /a/, these values
(marked by black arrows in Fig. 4) vary between 0.504 and 0.54.
The formant frequencies in the TDS reach the reference values only
for low frequencies and high θ-values.

For the 88.2 kHz simulations the trends were very similar to
those described for the 44.1 kHz simulations. However, the for-
mant frequencies for θ = 0.5 were much closer to the reference
frequencies and their regression coefficients were generally smaller
compared to the 44.1 kHz simulations. The bandwidths for θ = 0.5
were approximately the same for both sampling rates, but the ac-
cording regression coefficients were about half of those for the
44.1 kHz simulation (cf. Fig. 5).

6. Conclusions
For a time domain simulation of acoustic propagation in the vocal
tract we have examined how formant frequencies and bandwidths
change, when the temporal discretization scheme is shifted from
the trapezoid rule (θ = 0.5) towards the implicit finite-difference
approximation (θ = 1) in small steps. The data show an increase of
both formant frequencies and bandwidths for small increments of
θ. Thereby they move towards the ideal reference values that were
determined by means of a frequency domain simulation. While the
increase of the formant frequencies is very small, the bandwidths
exceed the reference values for certain values of θ, depending on
the corresponding formant frequencies. For the first four formants,
this θ-value varies approximately between 0.504 and 0.54. Prelim-
inary listening tests with synthesized vowels have shown a clear
preference for θ = 0.52 (compared to θ = 0.5 and θ = 0.54).
Essentially, it was shown that a lack of accuracy of formant fre-
quencies and bandwidths in the TDS can partly be compensated by
a proper choice of the temporal discretization scheme.

7. Acknowledgments
This research was supported by the Graduate College 466 of the
German National Research Council (DFG).

8. References
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