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Abstract—We present a model of imitative vocal learning
consisting of two stages. First, the infant is exposed to the ambient
language and forms auditory knowledge of the speech items to
be acquired. Second, the infant attempts to imitate these speech
items and thereby learns to control the articulators for speech
production. We model these processes using a recurrent neural
network and a realistic vocal tract model. We show that vowel
production can be successfully learnt by imitation. Moreover, we
find that acquisition of [u] is impaired if visual information is
discarded during imitation. This might give sighted infants an
advantage over blind infants during vocal learning, which is in
agreement with experimental evidence.

I. INTRODUCTION

Speech is an outstanding capacity of human beings. But
how do infants learn how to speak? A crucial stage of speech
acquisition is babbling, which denotes the productive speech
development from the newborn’s first cry to the first distinct
words. During babbling, infants explore their vocal tracts and
learn to associate specific muscle activations with the resulting
acoustic signals.

We posit that babbling is an imitative process right from
birth. This is supported by findings that newborns reproduce
the stress pattern of their native language while crying [1].
Further evidence suggests that newborns are able to imitate
facial gestures such as mouth opening and lip protrusion [2],
[3]. This type of imitation might facilitate vocal learning
by providing additional, visual information for the imitating
infant. We explore this idea in the current study.

Several biologically inspired models of imitative vocal
babbling exist. However, their imitation depends on factors
that are not crucial in our view. The DIVA model [4], [5],
[6] and related models [7], [8] as well as the model pro-
posed by Moulin-Frier and Oudeyer [9], [10], [11] incorporate
an imitation phase which utilizes knowledge gained from a
prior (semi-) random self-exploration phase. Both the Elija
model [12], [13] and the model proposed by Miura et al. [14],
[15] depend on the presence of an imitative caregiver, which
is not a necessity in our model. Recent work by Philippsen

et al. [16] bases imitation on prior articulatory-acoustic su-
pervised training, whereas our model starts without any prior
articulatory knowledge.

Our proposed model is based on considerations found in the
literature about birds’ song learning, which is often viewed as
a model system for human speech acquisition [17], [18]. For
example, song learning in male zebra finches is thought to
proceed in two phases [19], [20]:

• Sensory learning: The young zebra finch listens to his
father’s song and stores it as an auditory template.

• Sensory-motor learning: The young bird learns the song
by matching his vocalizations with the stored template
(memory) of his father’s song.

We adapted this schema for the case of human vocal learning.
We propose that infants are exposed to the ambient language
(sensory learning) and thereby acquire imitation targets for im-
itative babbling (sensory-motor learning) [21]. Our simulations
confirm that vowels can be acquired this way and indicate that
visual guidance facilitates vocal babbling.

II. THE MODEL

We consider a model architecture comprising the following
components (Fig. 1):

• The Reinforcement Learning agent (RL agent) is the
learner, i.e. the part of the infant brain that acquires skills
by maximizing rewards.

• The agent interacts with the environment by manipulating
the vocal tract. This interaction is the motor control that
the infant exerts on her own articulators: The brain sends
motor commands to the vocal tract, which produces a
speech sound based on the articulators’ configuration.

• The auditory system processes this speech sound and
evaluates it with respect to the imitation target. The
auditory system comprises the infant’s inner ear, auditory
memory, and the pathway in between.

• The auditory system’s evaluation of the current speech
sound is the reward signal. The higher the similarity
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Fig. 1. The model in conceptual terms. It applies reinforcement learning
to solve the imitation task. The model proceeds in two stages: (red) During
target acquisition, the auditory system models the vowels that are fed in by
external speakers. (blue) During actual imitation, the agent searches the motor
space for the motor command producing the maximal reward.

between the current speech sound and the target, the
higher the reward. Thus maximizing the reward means
uttering the sound which is most similar to the target.

Successful imitation proceeds in two phases (Fig. 1):
(1) The imitation target is acquired. The auditory system

is exposed to speech sounds from external speakers. It cap-
tures the statistics of those speech sounds and is later used
for evaluating novel speech sounds. This stage models the
perceptual part of speech acquisition, when the infant takes in
the regularities of her mother tongue during the first months
of life. The model assumes phonemes are learnt during this
stage, i.e. the infant generalizes across different realizations of
the same vowel. The phonemic distinction is crucial to gain
vowel targets for imitation.

(2) Imitation occurs in an iterative fashion. Using an arbi-
trary motor command, the agent initiates the first own speech
sound. This sound is then processed and evaluated by the
auditory system. By sampling different motor commands, the
agent explores the motor space and finds motor commands
that yield higher rewards than others. Based on the auditory
feedback, the agent then optimizes the motor command with
respect to the reward signal. Eventually, the agent finds the
motor command to reproduce the target and thus gain the high-
est reward. This motor command is then stored and becomes
accessible for imitative and communicative utterances.
This stage models the vowel babbling phase of infants up to
the point when they have learnt to utter the vowels of their
mother tongue.

A. The Vocal Tract Model

The vocal tract is simulated using Vocaltractlab 2.1
(VTL) [22], which is being used in various models of motor
learning [7], [8], [16], [23]. VTL is based on a 3-dimensional
model of the vocal tract, and it simulates the production of
speech sounds based on articulator and vocal fold motion.

The acoustic properties of the produced speech sound de-
pend on the articulators’ configuration. This is captured by
the area function, which describes the cross-sectional area

of the airway between glottis and lips. VTL calculates the
area function based on 20 articulator coordinates, two of
which (velic opening and horizontal jaw position) are constant
for the vowels under consideration ([@], [a], [i], [u]) and
thus were discarded as variables (the symbol “@” refers to
the mid-central schwa vowel, which is pronounced like “a”
in the word “about”). Two more parameters (tongue root
x- and y-coordinates) are determined automatically by VTL
based on the other motor parameters to avoid unphysiological
configurations. The remaining 16 degrees of freedom that
constitute the motor space are:

• 10 tongue parameters: tongue body coordinates (TBX,
TBY), tongue tip coordinates (TTX, TTY), tongue center
coordinates (TCX, TCY), and tongue side elevations
(TS1, TS2, TS3, TS4),

• 2 lip parameters: lip separation distance (LD) and lip
protrusion (LP),

• 2 hyoid coordinates (HX, HY),
• jaw opening angle (JA),
• velum shape (VS).
By adjusting anatomical parameters in VTL, speech pro-

duction of different speakers can be simulated. Apart from
the default male adult speaker, VTL 2.1 offers a 1-year old
infant speaker model based on [24]. For both speakers, vocal
tract configurations are available for [@], [a], [i], [u], which
were fitted to dynamic MRI data. These predefined motor
parameters are termed “mentor parameters” and used for
training the auditory memory and for analyzing the learning;
they are not accessible to the RL agent during imitation
learning (except [@], see below).

All imitation simulations are initialized in the configuration
of [@], which is produced in the most relaxed vocal tract state
and thus can likely be uttered by newborn infants. Thereby the
modeled stage of babbling is when the infant reliably utters
[@] and explores the vocal tract to establish the so-called
corner vowels [a], [i], [u].

Formally, VTL transforms a given set of motor parameters
~m into a sound s(t):

~m → s(t). (1)

B. The Auditory System
1) The Auditory Processing: The first stage of the auditory

system models the peripheral processing in the cochlea. In
multiple steps, a sound s(t) is transformed into nerve activa-
tions ~n(t) using the dual resonance nonlinear (DRNL) filter
model as described in [25]:

s(t) → ~n(t). (2)

The model is implemented in ”BRIAN hears” [26], an
extension of the BRIAN neural network simulator [27], [28]
for auditory processing.

2) The Auditory Memory: The auditory memory transforms
peripheral nerve activations ~n(t) into auditory memory re-
sponses ~a(t), which form the basis for sound evaluation during
imitation:

~n(t) → ~a(t). (3)
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It is realized by an Echo State Network, which is a
specific implementation of reservoir computing using analog
units [29], [30]. It comprises a pool of non-plastic, recurrently
connected units (static reservoir) and a set of output units
(linear readout), which are connected to the static reservoir
and are responsible for evaluating the input. Though simplistic,
ESNs are widely used neural networks whose units correspond
to neuron populations with variable firing rates.

Here, the static reservoir responds to the output of the
cochlea ~n(t) and corresponds to a non-plastic version of bio-
logical circuits in the auditory cortex. The connection between
the reservoir and the readout carries the auditory memory
and is adapted during target acquisition. During imitation
learning, the response of the linear readout ~a(t) is the basis
for sound evaluation. Sound evaluation is crucial for imitation,
as it provides the reward for the RL agent. It is important to
note that target acquisition is realized by supervised learning,
whereas imitation proceeds as reinforcement learning.

An ESN implementation in Oger (OrGanic Environment for
Reservoir computing) was used, a Python toolbox for training
and implementing various forms of reservoir computing [31].

3) Target Acquisition: Target acquisition was modeled by
supervised training of the ESN-to-output weights. Using VTL,
training samples were generated using both the adult male
and the infant speaker: For each target vowel (/a/, /i/, /u/) and
each speaker, white noise was added to the mentor coordinates
with standard deviations 0.1 and 0.01, and 100 samples
were created for each possible combination. These samples
were manually categorized using four classes independent of
speaker (/a/, /i/, /u/, null class (none of the previous)).

The samples and their corresponding labels were then used
for training the auditory memory.

4) Softmax Classification: The scalar sensory reward is
obtained from the ESN response after target acquisition. It
is based on confidence levels (see below) and ultimately on
the classifier output.

The response can be interpreted as a set of confidence levels
that the current sample belongs to a certain class: Given the
normalized and time averaged output activations 〈~a(t)〉 for all
classes, we define the confidence cv that the current sample
belongs to class v as a softmax function:

cv :=
exp(〈~a(t)〉v)∑
i

exp(〈~a(t)〉i)
. (4)

The relevant entity for imitation is the confidence that the
current sound belongs to the imitation target class (ctarget). This
confidence is finally selected as the current reward and passed
to the RL agent.

C. The RL Agent

”Given my judgment of the sound I just uttered, which vocal
tract setup will I try next in order to approach my imitation
target? Which vowel do I imitate in the first place?” This kind
of decision making is embodied by the RL agent and described
in the following subsections.

1) The Search Algorithm: The reinforcement learning task
is formulated as a black-box optimization problem: Maximize
the reward by tuning parameters (sampling actions) that trigger
the reward in an unspecified way. The agent can only access
the motor parameters ~m and the sensory reward cv , so the
mapping between these entities (the environment) is treated
as a black box.

The search algorithm is realized by Covariance Matrix
Adaptation – Evolution Strategy (CMAE-ES) [32]. CMA-
ES is a stochastic optimization algorithm, which determines
local optima by sampling and evaluating points ~mi in the
search space. These points are sampled by a multidimensional
Gaussian distribution N (m̄,Σ) with mean m̄ and covariance
Σ. This distribution is then modified based on the samples’
elicited rewards cv,i. The algorithm has found a local optimum
whenever the sampled parameters have converged.

The motor memory contains the knowledge to produce
speech sounds. In the model, it contains the sets of motor
parameters the agent has learnt to associate with a vowel by
successful imitation and that he can access any time. It con-
tains only the mentor configuration of [@] in the beginning.

The search is initialized in the mentor configuration of [@],
i.e. the search distribution’s mean m̄ is set to this configuration.
N samples are drawn from the search distribution:

~m1, ~m2, . . . , ~mN ∼ N (m̄,Σ), (5)

whereby each sample ~mi is synthesized by VTL. The produced
sound si(t) is processed and evaluated by the auditory sytem;
the auditory system passes the reward cv,i to the agent,
signifying the imitative value of the sample ~mi regarding
the current target v. The samples ~mi, their elicited rewards
cv,i, and the search parameters m̄,Σ yield the new search
parameters m̄′,Σ′, which are then used in the next search
iteration:

~m1, ~m2, . . . , ~mN , cv,0, cv,1, . . . , cv,N , m̄,Σ → m̄′,Σ′. (6)

As soon as one of the elicited rewards is above the re-
ward threshold, the search stops. The reward threshold was
set empirically to indicate that the corresponding sound is
indistinguishable from the target for human listeners. The
motor parameters corresponding to this supra-threshold reward
are added to the motor memory, and the current target is
considered learnt. A new target is selected if any are left
(see below). Otherwise, simulations are terminated, and the
imitation phase is over.

Terminating the search when the reward threshold has been
crossed follows from a pragmatic consideration: We hypoth-
esize that infants learn a skill not until they have mastered it
to perfection, but until they are “good enough”. In the case of
speech acquisition, the ultimate goal is communication. Infants
engage in speech imitation – and thereby learn to speak –
up to the point when their imitation is successful and they
are understood. Imitation is successful if it is acknowledged
as similar to the imitation target; thus oral communication
unfolds. During development, time is precious, and perfection
(convergence) is time-consuming. Especially when many skills
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Fig. 2. The error rate of test samples depends on the reservoir size. Each data
point is the mean error rate of 100 trained ESN readouts; the error bars are
the corresponding standard deviations. The trials differed in the connectivity
of the ESN and the test set. The dashed line indicates chance level.

are to be learnt, perfecting one skill seems a waste of time
when other skills are neglected that are similarly important on
a pragmatic level.

Whenever the search algorithm has converged on a local
optimum, the search distribution is reset to a random item of
the motor memory, and the search is restarted. This is because
convergence indicates failure to imitate, as convergence can
only be reached for sub-threshold rewards.

2) Target Selection: When imitation starts and whenever
the agent has learned a vowel, the agent needs to select
a new imitation target. To this end, samples are generated
based on the current search distribution. These samples are
evaluated by the environment (VTL and auditory system) and
assigned confidences. The highest confidence corresponding
to a remaining target class determines the next target:

• All confidence values for remaining targets are consid-
ered.

• The target with the highest confidence is selected as the
next imitation target.

This mechanism leads to developmental exploration: The
agent learns targets first which are easy to reach in the motor
space. After a vowel has been learnt, the agent is more likely
to select as next target a vowel whose motor parameters lie
close to the previously learnt ones, thus minimizing search
time. Over time, the agent commits itself to targets that are
harder to reach (further afar in the motor space). This is in
line with pragmatic self-guided learning, as discussed in the
previous section: Time is valuable during skill acquisition;
the agent aims to learn as many skills “well enough” as
fast as possible (well enough to accomplish specific goals,
e.g. communication).

III. RESULTS

A. Target Acquisition

Target acquisition was simulated using ESNs of varying
size. Thus it was quantified how the classification depends
on the reservoir size.

Fig. 3. Readout activations over time while prototypical vowel samples
are fed into the auditory system. These prototypes were generated using the
mentor configurations of both the adult (left) and infant speaker (right). The
readouts were trained using reservoirs with 1000 units.

The test error for reservoir sizes N between 1 and 1000
units is shown in Fig. 2. The error rate is maximal for N = 1
(ca. 0.68) and decreases monotonically for increasing N up to
N = 100, where it plateaus at around 0.08.

The readout responses to the infant and adult prototypes of
/a/, /i/, and /u/ for N = 1000 (Fig. 3) show that readouts with
large reservoirs are able to classify the unperturbed vowels
with high specificity. Because these unperturbed vowels act
as goals for the imitation phase, the readout is able to
clearly signal once the agent reaches the target. Thus these
readouts fulfill the model requirements and can be used during
imitation.

In the following, we consider ESNs with N = 1000 because
they display the smallest error rate.

B. Imitation

Using a trained readout with an ESN of size 1000, imita-
tion learning was investigated. In two paradigms, the agent
controlled different sets of motor parameters. Each of these
paradigms represents a different dimensionality and complex-
ity of the learning task.

• Visually Guided Learning: The agent controls all but the
jaw and lip coordinates (JA, LP, LD) corresponding to
a 13-dimensional motor space. This paradigm simplifies
the full motor learning problem; here the agent knows the
appropriate jaw and lip configurations from the start. The
jaw and lips are the only articulators that are visible to
the imitator. The imitator can thus assess the correct jaw
and lips setup visually and doesn’t need to rely solely on
auditory information.
This setting is realistic considering neonatal imitation
of facial gestures [2], [3]. If neonatal imitation exists,
it provides part of the learning problem’s solution via
orofacial (e.g. lips and jaw) imitation during articulation,
thus simplifying vowel imitation. This reasoning is the
basis of the visually guided learning paradigm.

• The Full Problem: The agent controls all parameters and
searches for solutions in the 16-dimensional motor space.
The agent is not guided in any way, which maximizes the
difficulty and complexity of the learning problem. This
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vowels are based on the mentor configurations of the infant speaker. v.g.:
visually guided 13-dimensional learning paradigm. full: full 16-dimensional
learning paradigm.

scenario corresponds to vocal learning without neonatal
imitation of facial gestures, e.g. in blind infants.

In the visually guided learning paradigm, the agent explored
a 13-dimensional motor space and successfully imitated all
target vowels. However, using all degrees of freedom for imi-
tation learning, the agent failed to imitate [u]. This judgment is
based on the fact that [u] was not successfully imitated during
10 days of simulation time, which is orders of magnitude larger
than the needed time to learn the other vowels (between 10
and 20 minutes).

The agent was able to reproduce the acoustic features of the
learnt target vowels, which is reflected in the formant space,
where the proximity between learnt and prototypical vowels
indicate acoustic similarity (Fig. 4).

However, considerable differences exist between the learnt
vocal tract configurations and the mentor configurations. Over-
all, the agent used more extreme positions in the individual
degrees of freedom than the mentor, yet the learnt target
sounds were matched well.

To find the reason why [u] was learnt during visually guided
learning but not in the full learning paradigm, we investigated
how the reward depends on perturbations of motor parameters.
This consideration reveals the most difficult parameter to learn:
the lip protrusion (LP) for imitating [u] (Fig. 5). For this
case, the reward is minimal in most of the coordinate range
(ca. from 0.1 to 0.8) and peaks above threshold in a narrow
interval in an extreme position, i.e. within about 0.95 to 1.0.
Also, the peak lies apart from the target ranges of [a] and
[i], which makes it difficult to discover [u] right after another
vowel has been learnt. At the other end of the extreme (at
LP=0), there is even a sub-threshold peak, which enables the
search to get stuck in this local optimum. Considering the fact
that these dependencies only reflect the simplified case of one-
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Fig. 5. The relationship between the reward and one-dimensional motor
perturbations: The elicited reward is plotted as a function of the normalized
lip protrusion (LP) when the other parameters take on the values of the mentor
configuration of the imitation target (red: [a], green: [i], blue: [u]). The dashed
horizontal line denotes the reward threshold for accepting a sampled vowel.
The dotted vertical lines mark the mentor coordinates of the corresponding
imitation target. The agent controls the LP only during the full learning
problem.

dimensional perturbations from an assumed optimum, it seems
likely that the LP-supra-threshold range is even smaller during
simulations, when few parameters are optimal. The difficulty
of sampling lies not only in the width of the target ranges; it
also increases exponentially with the number of dimensions.
So in the full 16-dimensional problem, imitation of [u] by
exploration alone is possible, yet highly unlikely.

IV. DISCUSSION

In this preliminary study we demonstrated that vowel ac-
quisition by imitation is possible if imitation is preceded by
auditory learning. We compared the imitation problem includ-
ing all articulator positions with a visually guided imitation
paradigm in which the agent has access to ideal positions of
the visually accessible lips and jaw. The agent was able to
reproduce all imitation targets ([a], [i], [u]) in the visually
guided paradigm and failed to acquire [u] in the full learning
problem. We showed that this failure is due to a sensitive
dependency of the sound evaluation on the lip protrusion if
[u] is the imitation target.

Using auditory feedback alone, it seems hardly possible
to infer the exact shape of the lips needed to articulate [u].
Yet the lips’ shape is a salient visual feature in the face of
a speaker, which could be easily picked up by orofacially
imitating infants.

This raises the question how blind infants acquire vowels
like [u]. Experimental evidence indicates that missing visual
information may impair the quality of speech acquisition [33],
[34], [35]. According to Mills, ”visually-impaired children
clearly follow a different and slightly slower path in their early
phonological acquisition”, which suggests a significant role of
visual feedback during babbling [36].

These results motivate further extensions of our model. We
plan to use more diverse speech items as imitation targets,
i.e. to model the acquisition of realistic vowel systems and
and consonant-vowel syllables. We suspect that the inclusion
of other rounded vowels in natural languages – such as [o] –
might help infants to acquire [u].

We also plan to address the problem of speaker nor-
malization. During imitation, our model relies on acoustic
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matching between the produced sounds and the target vowels.
Because infants’ utterances differ acoustically from those
of adults, voice-invariant acoustic matching of infants’ and
adults’ speech sounds is non-trivial. We circumvented this
problem by including prototypical vowels produced by the
infant speaker in the training data during auditory learning,
which is somewhat unrealistic. To tackle the problem of
speaker normalization, we plan to diversify the speakers of
the infant’s environment. In a more realistic setting the infant
receives input from many different proficient speakers during
auditory learning. Moreover, their infant-directed speech sim-
plifies acoustic matching by mimicking the high pitch of the
infant. Modeling these aspects might facilitate generalization
in the auditory system by the learning of voice-invariant
features and enable correct evaluations of the infant speaker’s
speech samples without including the infant speaker in the
auditory learning.

Finally, we plan to replace the ESN by an unsupervised
training method for modeling auditory learning. So far, the
use of ESNs places unbiological constraints on our work,
such as the need for manual labeling of the training samples
and the predetermination of the number of speech items to
be learnt. By adopting the previous extensions as well as a
biologically plausible unsupervised learning method, we hope
to achieve a higher level of realism and gain new insight into
vocal babbling.
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