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ABSTRACT 
 
This paper presents a computational estimation of vocal 
tract shape parameters as articulatory targets of Thai vowels 
in an articulatory synthesizer, by means of analysis-by-
synthesis with acoustic data as input. A speech corpus 
designed to capture the contextual variation of nine Thai 
long vowels, consisting of 81 disyllabic utterances, was 
recorded by a native Thai speaker. For each utterance, two 
targets, one for each syllable, were estimated by optimizing 
the target parameters to minimize the MFCC error between 
original and synthesized speech. Stochastic gradient descent 
was used to iteratively optimize the shape parameters. The 
estimated targets of each vowel type were then averaged, 
resulting in nine articulatory targets, each corresponding to a 
vowel. The optimized targets were then used to synthesize 
Thai vowels both in monosyllables and in disyllabic 
sequences. The results, both numerically and perceptually, 
indicate that the estimated targets effectively represent the 
underlying articulatory goals of Thai vowels. 
 

Index Terms— Articulatory synthesis, vocal tract 
shape, Thai vowel, optimization, target approximation 
 

1. INTRODUCTION 
 

In speech acquisition, acoustics of speech utterances is 
the definitive input for children, which seems to enable them 
to acquire highly intricate speaking skills without detailed 
articulatory instructions, and without direct observation of 
the articulators of the mature speakers other than the visible 
ones such as the lips and the jaw. Understanding how these 
intricate movements can be learned from acoustic data is 
thus the important step toward our understanding of the 
process of speech acquisition, and probably the basic 
mechanism of speech production.  

To computationally learn vocal tract configurations 
from acoustic data, different methods have been previously 
proposed, based on either mapping [1-8] or optimization [9-
10] strategies. Mapping strategies follow either probabilistic 
approaches such as hidden Markov models [1,2] or neural 
network [3], or codebook-based approaches [6-8]. Except 

those that are based on the task-dynamic (TD) model [4,5], 
these mapping approaches share the common drawback of 
not simulating the dynamic movement of speech gestures 
[11,12] that results in smooth spectral transitions in the 
acoustic data. In the optimization strategy, parameters of a 
synthesis model are iteratively adjusted to minimize a cost 
function [9,10]. The cost function can be the error from 
acoustic comparison between the original speech and speech 
synthesized with the optimized parameters. This strategy, 
when implemented with an articulatory synthesizer with 
sufficient capacity to generate acoustic data from model 
parameters, may have the potential to achieve the closest 
simulation of speech learning behavior. 

The mapping studies that are based on the TD model 
[4,5] do take dynamic gestural control into consideration. 
They rely on neural network [4], or discrete-time warping 
[5] to perform estimation. The TD model provides a 
mechanism for generating movements of tract variables. It 
uses a critically-damped second-order system to describe the 
movement. In TD, gestural movements are assumed to be 
completed and adjacent gesture movements are assumed to 
be overlapped.  

The present study adopts a strategy that combines 
optimization with consideration of articulatory dynamics. 
The dynamic model used is the Target Approximation (TA). 
TA differs from TD in that it does not assume that targets 
are always reached, and it allows remaining momentum at 
the end of a target approximation movement to be 
transferred to the next interval as its initial conditions. This 
strategy has been implemented in our recent work [16] on 
training a TA-based articulatory synthesizer with acoustic 
data to model vowels. The current study is an extension of 
this work. Here we attempt to identify underlying 
articulatory targets of Thai vowels by means of model-based 
optimization using the default vocal tract anatomy provided 
by VocalTractLab [17]. Thai has nine static vowels, in short 
and long minimal pairs, which are evenly spread across the 
vowel space [18]. This makes them ideal cases for testing 
the idea of target estimation for vowels. The estimated 
articulatory targets of Thai vowel are evaluated (a) 
numerically by comparing the formant trajectories of the 
synthetic vowels to those of natural utterances and (b) 



perceptually by a listening experiment that compares the 
perceptual accuracy and naturalness of synthetic and natural 
speech. 
 

2. METHOD 
 
2.1. Corpus 
 
The corpus was designed to have full contextual variations 
in Thai vowels. The sentences are composed of two 
syllables consisting of only vowels, in the form of /V1 V2/, 
where both V1 and V2 are one of the nine long vowels (/aː/, 
/iː/, /uː/, /eː/, /εː/, /ɯː/, /ɤː/, /oː/, /ɔː/). Thus there are 81 
disyllabic sequences in total. 

A longitudinal design is often used in acoustic-to-
articulation studies [1-10], thus only few subjects were used. 
This is because the estimated vocal tract shape represents 
only an individual. In this study, speech data were recorded 
from a native male Thai speaker who had been living in the 
Greater Bangkok region in the past 20 years and had no self-
reported speech or hearing disabilities. Recordings were 
done in a sound-treated room at the King Mongkut’s 
University of Technology Thonburi, Bangkok, Thailand. 
The speaker was instructed to produce the disyllabic vowel 
sequences in a continuous manner with the mid tone on both 
syllables. No further instruction on the stress placement was 
given, so stress was placed on the second syllable according 
to the general rule of Thai pronunciation. The utterances 
were recorded at a sampling rate of 22.05 kHz and 16-bit 
resolution. 
 
2.2. Annotation 
 
The corpus was annotated using Praat [19]. Syllable 
boundaries were manually marked according to the concept 
of target approximation (TA) [14-16,20]. That is, the 
articulation of a segment is considered as a unidirectional 
movement toward its underlying target. Therefore the 
boundary between two vowels should be marked at the point 
where the spectrogram starts to change toward the target of 
the next vowel, as shown in Figure 1. This strategy, which 
was also used in our previous studies [14-16,20-22], differs 
from the conventional segmentation of demarcating a vowel 
by its steady-state interval [23]. Since the syllables 
contained only vowels, no consonantal boundaries were 
marked. 
 
2.3. Optimization of Articulatory Targets 
 
The optimization procedure is based on our previous study 
[16]. The basic idea is to estimate the underlying 
articulatory targets with an analysis-by-synthesis approach, 
in which the articulatory synthesizer is used to repeatedly 
generate acoustic data that can be compared to the original 

speech. The optimization process, as shown in Figure 2, 
encapsulates the synthesizer in an analysis-by-synthesis 
loop. For each vowel, the vocal tract shape is initialized with 
a neutral configuration, and then iteratively adjusted until 
the overall acoustic error is reduced to below a given 
threshold or until the maximum number of steps is reached. 

The articulatory synthesizer used is VocalTractLab 2.1 
[17], which is a 3D articulatory synthesizer capable of 
generating a full range of speech sounds by controlling 
vocal tract shapes, aerodynamics and voice quality [24-26]. 
VocalTractLab simulates the acoustic signal by 
approximating the trachea, the glottis, and the vocal tract as 

 
Figure 1: Annotation scheme based on TA framework. 

 
Figure 2: Scheme for the optimization of articulatory 
targets [16]. 



a series of cylindrical tube sections with variable lengths as 
shown in Figure 2. The aerodynamic-acoustic simulation is 
based on a transmission-line circuit model of the tube 
system [27]. 

The objective of optimization is to estimate for each 
vowel the underlying articulatory target parameters, as 
shown in Table 1, that define the vocal tract configuration. 
Beside these positional parameters, VocalTractLab also 
requires the specification of a time constant parameter (τ) 
for each interval. In the TA framework [14,15,25], this time 
constant value determines how fast the articulatory target is 
approached. The adjustment of τ would directly affect the 
rate of articulatory movement and in turn affect the rate of 
formant change. The modeling process therefore needs to 
learn, for each vowel, a vocal tract shape associated with 18 
articulatory parameters, as shown in Table 1, and the time 
constant τ that defines the transition time from the first to 
the second vowel. Because each utterance consists of two 
vowels, 37 parameters need to be learned in total in each 
simulation run. 
 

Table 1. Articulatory targets of each TA movement [24]. 

Parameter Description 

HX, HY Horz. and vert. hyoid positions  
JX, JA Horz. jaw position and jaw angle 
LP, LD Lip protrusion and vert. lip distance 
VS, VO Velum shape and velum opening 
TTX, TTY Horz. and vert. tongue tip positions 
TBX, TBY Horz. and vert. tongue blade positions 
TCX, TCY Horz. and vert. tongue center positions 
TS1 – TS4 Tongue side elevation at 4 positions 

 
Mathematically, VocalTractLab models articulatory 

trajectories as responses of target-driven sixth-order 
critically damped linear dynamic system [25]. The input to 
this model is a sequence of articulatory targets. For each 
syllable, VocalTractLab generates articulatory movement of 
all articulatory parameters according to the initial 
articulatory dynamic condition of each parameter, the given 
target and the time constant. This process significantly 
reduces the degrees of freedom of the optimization problem, 
as for each syllable only one set of articulatory parameters 
needs to be optimized. Also, based on sequential target 
approximation, no gestural overlap is assumed as far as any 
particular articulator is concerned. A target approximation 
movement does not start until the previous one is over. To 
ensure the smoothness of the articulatory movement at the 
interval boundary, up to sixth-order dynamic states are 
transferred from the end of the preceding syllable to the 

beginning of the following syllable. Figure 3 illustrates the 
movements of articulators according to the target 
approximation model. 

The optimization process uses a stochastic gradient 
descent algorithm. In the process, the articulatory 
parameters are initially set to neutral positions and the error 
is computed as the sum of square errors of Mel-Frequency 
Cepstral Coefficients (MFCCs) between original and 
synthesized data. Then, in each iteration, parameters are 
randomly adjusted one-by-one and used to generate the 
synthetic utterance that is compared with the original data. 
Any adjustment that results in a worse error is rejected. This 
process repeats until the error converges or the maximum 
number of iterations is reached. 

 

 
Figure 3: An illustration of articulatory movements based 
on the target approximation model. 

Table 2. Mean formant RMSE in percent of the vowels. 
Errors were averaged over all vowel instances  in both 
syllables. 

Vowel 
Formant RMSE (%) 

F1 F2 F3 

/aː/ 9.3 4.1 6.1 
/iː/ 7.5 4.6 7.7 
/uː/ 5.9 8.2 7.5 
/eː/ 3.6 5.1 4.4 
/εː/ 8.8 7.2 4.5 
/ɯː/ 7.2 5.8 4.7 
/ɤː/ 4.6 3.6 3.1 
/oː/ 6.2 4.3 8.2 
/ɔː/ 7.6 3.4 6.2 

 



3. RESULTS 
 
3.1. Numerical Assessment 
 
After the optimization, the estimated targets were used to 
resynthesize speech utterances. The accuracy of the 
estimated targets was assessed by comparing the formant 
tracks (F1-F3) of synthesized and original utterances, using 
FormantPro [28], a Praat script for large-scale systematic 
analysis of continuous formant movements. Root Mean 
Square Error (RMSE) of both syllables was calculated, as 
shown in Table 2. Relatively low RMSEs can be observed 
for all vowels compared to the average RMSE levels 
reported in the previous study [29]. This indicates that the 
estimated articulatory parameters effectively represent vocal 
tract shape of each vowel and are able to accurately generate 
the acoustic patterns that are close to the natural ones. 
 
3.2. Graphical Comparison 
 
Figure 4 shows examples of formant contour comparisons 
obtained with FormantPro [28]. Note that each vowel is 
annotated to terminate at a point where its target is best 
achieved, so that the formants in each segment move 
unidirectionally toward an ideal pattern. Smooth formant 
transitions from one vowel to another can be observed in the 
synthetic utterances (solid lines in Figure 4), just as in the 
natural utterances (dotted lines in Figure 4). Visual 
inspection of spectrograms of all other cases also confirmed 
the accuracy of the formant patterns generated by the 
estimated vocal tract shapes. The smooth synthetic formant 
movements are thanks to the TA dynamics of all the 
articulators involved. Note that while there are certain 
mismatches, for example in F3 of /uː/ in /uːeː/ as shown in 
Figure 4, between the original and synthesized formant 
frequencies, these mismatches are evened out once they are 
averaged together with other cases (e.g. for /uː/, /aːuː/ and 
/uːɤː/ as shown in Figure 4). 
 
3.3. Perceptual Evaluation 
 
We further assessed the quality of the synthetic Thai vowels 
by a listening experiment. Target parameters of the same 
vowel were averaged together across multiple contexts as 
the underlying representation of that vowel. They were used 
to synthesize monosyllabic words made of each individual 
vowel. The natural stimuli of the same words were recorded 
as references by the same speaker used in the training 
corpus at a sampling rate of 22.05 kHz and 16-bit resolution. 

Twenty native Thai listeners participated in the 
listening experiment, which was conducted with the 
ExperimentMFC function of Praat. All natural and synthetic 
vowels were presented to the listeners in randomized order 
over earphones, and for each item, the listeners were asked 

to identify the presented vowel in a forced choice manner 
and judge its naturalness on a five-point Likert scale 
(1=very unnatural; 5=very natural). Furthermore, the 
reaction time was measured for each rating. Figure 5 shows 
the results of the experiment. Listeners could identify 

 
Figure 4: Time-normalized comparisons of formant 
movements of example original (dotted black lines) and 
synthetic (solid red lines) utterances. 

 
Figure 5: Mean vowel identification rate, naturalness 
score and listener reaction time of each vowel for both 
original and synthetic utterances. 



vowels equally well for both natural and synthetic vowels 
(t(8) = 1.25, p = 0.247). The lowest identification rate of 
synthetic vowels is that of /uː/ which was perceived by three 
listeners as /oː/, while the perception of the natural /uː/ was 
perfect. The reaction time, which indicates the cognitive 
load, is also higher for the synthetic /uː/. This indicates the 
artifact in synthesis and possibly due to the continuous 
nature of the estimated velum parameters. This makes it 
difficult for an optimization to fully close the velo-
pharyngeal port in /uː/. Listeners identified both the natural 
and synthetic vowels in roughly the same score ranges, 4.2-
5 for natural stimuli and 3.9-5 for synthetic stimuli. This 
result indicates that the present method could generate 
close-to-natural vowels with underlying articulatory targets 
learned from natural speech. 
 

4. DISCUSSION AND CONCLUSIONS 
 
This study explored the estimation of articulatory targets of 
Thai vowels using a model-based analysis-by-synthesis 
strategy. The results show that it is possible to estimate the 
underlying articulatory targets of vowels using such a 
strategy with surface acoustics of continuous speech and 
TA-based segmentations as the input. The numerical 
assessment as shown in Table 2 and the visual impression as 
shown in Figure 4 indicate that the learned targets can be 
used to consistently synthesize acoustic data that closely 
approximate those of the natural utterances. The perceptual 
evaluation shows that underlying articulatory targets learned 
this way can be used to effectively generate isolated vowels 
that are perceptually close to their natural counterparts, as 
shown in Figure 5. All these results indicate that the 
estimated articulatory parameters closely represent the 
underlying targets of the Thai vowels. 

A further development of the framework for organizing 
trained targets is still needed. Strategies have yet to be 
developed to simulate the learning of overlapped CV 
gestures. The incorporation of a timing model in the 
articulatory synthesis is also needed, as timing specifications 
of the segments are required prior to the generation process. 
The incorporation of the visible articulatory data (e.g. lip 
and jaw movement) into the process is also required to fully 
emulate actual speech acquisition. 
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