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Abstract—In this paper, we present a pseudo-memcapacitive
neurotransistor by embedding a nonvolatile, abrupt-switching
memristor at the gate of an NMOS transistor to emulate neuronal
integrate and fire behavior. Neural networks, implementing spike-
based computing paradigms on hardware platforms, integrating
memristor crossbar arrays on underlying CMOS circuitry, oper-
ate similarly as neuronal networks in the human brain, which can
significantly improve the time and energy efficiency of standard
data processors. We demonstrate that also nonvolatile memristors
can be considered to realize neuronal leaky integration and
firing functionality including the neuron reset being performed
intrinsically by a sufficiently discharged ’membrane’ potential at
the gate of a transistor. A versatile, compact and abrupt-switching
model of a nonvolatile memristor with built-in cycle-to-cycle
variability is proposed, forming a pseudo-memcapacitance along
with the gate capacitance and evoking conditional neuronal spike
generation depending upon the properties of the input pulse train.
The SPICE code of the pseudo-memcapacitive neurotransistor
is applied to verify the design parameters that trigger firing.
Finally, the envisaged circuit realization of the proposed design
is discussed.

Index Terms—Pseudo-memcapacitive neurotransistor, non-
volatile memristor, SPICE model, spiking neural networks

I. INTRODUCTION

The tremendous energy consumption observed during train-
ing and inference of large neural networks demands for
low-power hardware accelerators. In this regard, nanoscale
memristive devices enable to improve the time and energy
efficiency of these networks, endowing them with bio-mimetic
functionalities [1]. Memristors are widely used as synaptic el-
ements in neuromorphic circuits [2], while in different studies
the neuronal integrate and firing dynamics are investigated
as reviewed in [3]. Abrupt-switching nonvolatile memris-
tive behavior is attractive for the analog implementation of
conditional neuronal firings in spiking neural networks. A
memristive integrate and fire neuron with minimal complexity
was derived in [4], as inspired from the Hodgkin-Huxley
neuron model [5]. Volatile memristors hosting the peculiar
current-controlled negative differential resistance region [6],
[7], have been utilized in the design of neuristor circuits [8].
A compact hardware solution, employing diffusive memristors
for emulating the leaky integrate-and-fire neurons and realizing
a pattern classification task, is proposed in [9]. Similarly, the
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diffusive volatile memristor has been embedded at the gate of
a transistor enabling integration and firing behavior for neural
spiking networks [10]. However, the neurotransistor concept
has not been shown with nonvolatile memristors, which are in
fact being studied extensively to improve the performance of
memories and neuromorphic accelerators [1], [11].

In this paper, we propose a pseudo-memcapacitive neuro-
transistor implementation, consisting of an NMOS transistor
and a pseudo-memcapacitor, where the latter exploits the
combined action of a nonvolatile memristor coupled to the gate
of a transistor exploiting its inherent parasitic capacitances.
The presented implementation does not necessarily require
additional circuit elements, but takes advantage of the intrinsic
memristor capacitance, which is present in many metal-oxide-
metal stacks, and the gate capacitance of a MOSFET serving
as neuronal ’membrane’ capacitance. The integration and
firing dynamic of the proposed memcapacitive neurotransistor
is simulated using uniform spike inputs as in neural spiking
networks. The abrupt-switching or runaway dynamics, which
governs many valence change (VCM), electrochemical metal-
lization (ECM) or thermochemical (TCM) memory devices,
cf. [11], [12], is activated with spike-based stimuli, which
further charges the memcapacitive ’membrane’ to the voltage
level that a MOSFET may switch on. This switching leads to
a current flow through the drain terminal, finally emulating
a neuronal action potential. The neurotransistor is suitable
for operating in a cascaded structure realizing multiple lay-
ers of a spiking neural network with capacitively coupled
weight synapses connected to the neurotransistor [10]. The
paper is organized as follows: First, we explain the pseudo-
memcapacitive neurotransistor concept in Sec. II and then
demonstrate the integrate and fire functionality in Sec. III,
followed by discussion Sec. IV and conclusion Sec. V.

II. PSEUDO-MEMCAPACITIVE NEUROTRANSISTOR

The pseudo-memcapacitive neurotransistor, as depicted in
Fig. 1a, is a three-terminal device emulating the leaky
integrate-and-fire dynamics of a biological neuron [10]. Here,
a pseudo-memcapacitor is placed at the gate of an NMOS tran-
sistor which forms a charge reservoir through its considerably
large gate-source capacitance. The equivalent circuit repre-
sentation including the memristor-based pseudo-memcapacitor
is shown in Fig. 1b, where the memristor Rm with intrinsic
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Fig. 1: Neurotransistor structure: (a) Pseudo-memcapacitor at the
gate of an NMOS transistor (dashed box), and (b) proposed circuit
with a memristor-based pseudo-memcapacitive device (green) and the
NMOS with gate capacitance Cgs (blue). Insets show representative
signals from Fig. 5.

(or external) capacitance Cm forms the neuronal ’membrane’
capacitance, together with the intrinsic (or external) gate-
source capacitance Cgs of the NMOS transistor. Regarding
the realization of such a device, the memristive stack might
be deposited on the gate of a transistor, while the off-to-
on memristance and capacitance ratios, i.e. Roff/Ron and
Cgs/Cm, critical design parameters in this study, can be tuned,
if necessary, through a careful selection of the memristor and
transistor devices.

The neurotransistor operates as follows (cf. insets in Fig. 1b
or Fig. 5): In a spiking neural network a spike train reaches the
memcapacitance input node vin and leads to an incremental
charging of the ’membrane’ potential vg at the gate. When the
voltage level at the gate node reaches the transistor threshold
voltage Vto (dashed line in the inset depicting vg over time),
the transistor emulates neuron firing by passing a spike cur-
rent i through the drain. In parallel, the raised ’membrane’
potential, in conjunction with the input spike train, switches
the memristor ON in low resistance state (LRS), which causes
first a faster charging of the ’membrane’ potential and then a
discharging of the same node through the memristor after the
firing pulse. In parallel to the firing event, as the input signal
vin returns to zero, the voltage vm = vg − vin, falling across
Rm, exceeds the SET threshold, and the memristor switches
on. Its low resistance state (LRS) offers a discharging path for
the membrane capacitance. With the gate potential sufficiently
low, as soon as a new spike arrives at the input, the memristor
undergoes a RESET transition, attaining once again the HRS,
and the neuristor returns back to its initial condition.

The memristor-based pseudo-memcapacitor [10] consists of
a memristor connected in parallel and in series with two capac-
itors, which can be programmed to low and high capacitance
values by switching the memristor to HRS and LRS, respec-
tively, cf. Fig. 2. The time constant τ = Rm(Cm +Cgs) of the
pseudo-memcapacitor changes according to the memristance
Rm = [Ron, Roff ] establishing a slow or fast charging of
the ’membrane’ voltage vg, cf. Fig. 2. Taking into account a
sufficiently large off-to-on memristance ratio Roff/Ron > 10
and a considerable high capacitance ratio Cgs/Cm > 5,

the low capacitance state (LCS) becomes approximately Cm,
while the high capacitance state (HCS) is Cgs. This pseudo-
memcapacitive switching between LCS and HCS is visualized
by the I-V sine wave response in Figs. 2d and 2e.
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Fig. 2: Memristor-based pseudo-memcapacitor: (a) schematic with
state dependent memcapacitance C(x, vm), (b) schematic for HCS
with τon = Ron(Cm + Cgs), (c) schematic for LCS with τoff =
Roff(Cm+Cgs), (d) and (e) time and I-V response for a 10 kHz ±1 V
sine wave input (green) for memristor-based pseudo-memcapacitor
(gray; median in black) with values Cm = 5 pF and Cgs = 45 pF,
as well as for the ideal cases HCS (red) and LCS (blue).

III. VERIFICATION OF INTEGRATE AND FIRE BEHAVIOR

For the verification of the proposed neurotransistor we
analyze the equivalent circuit of Fig. 1 based on a SPICE
simulation. The diode-like memristor description [13] provides
a versatile model for abrupt switching memristive devices in
agreement with the experimental data for many memristive de-
vices and is suitable for the proposed neurotransistor concept.
The voltage-controlled memristor current is:

im = K(x, ion, ioff) · sinh
(
K(x, aon, aoff) · vm

)
, (1)

where the state variable x reads values in the interval [0, 1],
and the function K(x, λon, λoff) = λoff + x · (λon − λoff) is
a linear function of x bounded in the interval [λon, λoff ]. The
memristor state dynamics are defined individually for set and
reset according to the memristor voltage polarity with

ẋ =

{
(xmax − x) exp [ηs(vm − V ∗

s )] for vm ≥ 0
(xmin − x) exp [−ηr(vm − V ∗

r )] for vm < 0
. (2)

The switching speed is determined by the factors ηs and ηr.
A built-in intrinsic white noise source n(t), with variance
of 0.05 V2 for 10 ns sample time, is embedded into the
memristor SET and RESET voltage thresholds, according to
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Fig. 3: I-V curves of 20 periods (gray) and its median (black) of the
memristor for 1 Hz sine wave input demonstrating abrupt-switching
with variability for set around 0.35 V and for reset around −0.42 V

V ∗
s = Vs(1 + n(t)) and V ∗

r = Vr(1 + n(t)), respectively,
to account for the effects of cycle-to-cycle variability in
the abrupt switching dynamics. The cycle-to-cycle variability
of the switching is visualized for 20 cycles together with
its median in Figs. 2e and 3. The variability also lowers
the nominal switching thresholds Vs,r. These ’snapback’ and
’snapforward’ effects, i.e. known for filamentary VCM de-
vices, lead to abrupt-switching at certain thresholds that vary
in time [14]. The implemented memristor model is designed
within parameter space reported in [13] and fits to this class
of abrupt-switching memristors. The SPICE implementation
of the pseudo-memcapacitive neurotransistor is given by Fig.
4. To obtain results without numerical defects, we use the
function limit(x, xmin, xmax), which bounds the state within
[0, 1], as well as the memristor current Icc in a physically
reasonable range.

The neurotransistor functionality is visualized in Fig. 5 for
uniform spike inputs of 1.8 V amplitude, 10 µs width and
variation of the spike intervals ∆t = {200, 100, 40, 15}µs. The
output spike events are marked by arrows above each plot. For
the initially arriving spikes with an interval of 200 µs, the gate
node can neither exceed markedly the transistor threshold nor
it switches the memristor ON. As a result, no firing event
may be reached in the first phase, cf. Fig. 5g. Hereafter, the
’membrane’ potential leaks through the memristor, cf. Fig. 5f
from 1 ms to 1.5 ms. Following a decreased spike interval of
100 µs starting at 1.5 ms, three successive pulses are sufficient
for vg to exceed noticeably the transistor threshold Vto (see
Fig. 5f) and thus resulting in a firing event of the transistor
current (cf. Fig. 5g). Meanwhile, the memristor switches ON,
i.e. its resistance undergoes an abrupt transition from HRS to
LRS (cf. Figs. 5d, 5e), and leads to a fast discharge of the
’membrane’ gate voltage as a negative current flows through
the memristor (cf. Fig. 5c). The subsequent incoming pulse
switches the memristor back to the OFF state (i.e. HRS)
and thus resets the neurotransistor, since the voltage drop
across the memristor is below Vr. In addition, one can observe
the influence of switching variability at 2.6 ms, where the
memristor is not fully switched ON, but the fire event can
still happen. As expected, shorter spike intervals of 40 µs and

** Memristor-based memcapacitive neurotransistor
.SUBCKT MemNeuroTransistor IN D G S SV

** Parameter
.params Icc=1m xmax=1 xmin=0 x0=0
+ion=1u ioff=100n aon=4 aoff=2
+etas=250 etar=100 Vs=0.5 Vr=-0.5
+Cp=5p Cgs=45p Rp=200Meg Rs=10

** Circuit

* Noise source for snap forward/snap back current
Gn 0 N value={white(1e8*time)}
Rn N 0 {1}

* Series resistance
Ri G M {Rs}

* Current source for memristance IV response
Gm M IN value={limit(Im(V(SV,0),V(M,IN)),-Icc,Icc)}

* Parallel capacitance and resistance
Cm G IN {Cp}
Rm G IN {Rp}

* State dynamics dx/dt = F(V,x)
Cx SV 0 {1} ic={x0}
Gx 0 SV value={F(V(SV,0),V(G,IN),I(Gn))}

* NMOS and gate-source capacitance
Mn D G S NT
Cg G S {Cgs}

** Functions

*linear state dependency
.func K(x,on,off)=off+(on-off)*limit(x,xmin,xmax)

*diode-like current function
.func Im(x,vm)= K(x,ion,ioff)*sinh(K(x,aon,aoff)*vm)

*set and reset time constants with noise n
.func TS(v,n)=exp(-etas*(v-Vs*(1+n)))
.func TR(v,n)=exp( etar*(v-Vr*(1+n)))

*State equation for state in range of [0,1]
.func F(x,v,n)= if(v>=0,(xmax-x)/TS(v,n),(xmin-x)/TR(v,n))

** NMOS transistor
.model NT NMOS(LEVEL=3 L=1u W=4u Vto=0.45 Tox=12n
+Uo=798 PHI=66)
.ENDS MemNeuroTransistor

Fig. 4: SPICE code of three-terminal neurotransistor with input (IN),
drain (D) and source (S) and additionally the internal ’membrane’
gate voltage vg (G) and state variable x (SV) for verification purposes.

15 µs result in more frequent neuron firing at each two and
single successive pulses, respectively. After the last incoming
pulse burst, it is visible that the previously switched ON
memristor maintains its resistance state until a subsequent
incoming spike, i.e. at 4 ms, resets the neuron.

In order to achieve the described neurotransistor function-
ality the parameter are designed as follows:

• The gate-source capacitance Cgs must be much larger,
e.g. by a factor of 5, than the parallel capacitor Cm,
i.e. Cgs = 45 pF and Cm = 5 pF, to allow integration
of multiple incoming voltage spikes and charge the gate
’membrane’ successively.

• The current ratio ion/ioff , determined by the memristance
ratio Roff/Ron > 10 (cf. [11]), enables the implementa-
tion of different charging times with τoff and τon.

• Considerable high memristor switching speeds, i.e. ηs =
250 and ηr = 100, with respect to the ’membrane’ in-
tegration time allow an abrupt-switching behavior before
the ’membrane’ gate potential is charged or discharged,
respectively. The internal white noise source features
the typical randomness in the abrupt switching behavior
and increases switching probability before the nominal
thresholds at ±0.5 V such that it switches for set around
0.35 V and for reset around −0.42 V as shown in Fig. 3.

• The transistor threshold, i.e. Vto = 0.45 V, is above
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Fig. 5: Simulation result of the proposed neurotransistor for uniform input spikes (10 µs-long pulses with 1.8 V amplitude) while varying
their intervals ∆t = {200, 100, 40, 15}µs at {0, 1.7, 3.0, 3.7}ms of the time: (a) input voltage vin, (b) memristor voltage vm = vg− vin, (c)
current im through memristor, (d) memristance Rm = vm/im, (d) memristor state variable x, (e) gate ’membrane’ voltage vg, (f) NMOS
transistor current through Rd for vdd = 3 V. The output spike events are marked with arrows above each plot.

enough the effective set voltage, which is around 0.35 V,
such that the variations in the ’membrane’ potential
occurring during the integration phase can be filtered out.

• The neuron can be reset if only the memristor is previ-
ously switched ON, and therefore, discharging the gate
node to a low enough level resulting in a negative voltage
drop with the arrival of the subsequent spike input, see
Fig. 5b.

IV. DISCUSSION

The neurotransistor results in Fig. 5 verify a functional
neuronal behavior of the proposed pseudo-memcapacitive neu-
rotransistor. The input spike times depend on the dynamics of
the memcapacitor, which determines the scales of the spike
network time of the neurons. In the demonstrated case, if the
ratio between the input spike interval and spike duration falls
below 10, the neuron leakage represented by the memristance
causes the neuron not to fire anymore. The memristor abrupt-
switching behavior defined by ηr and ηs and the noise n(t)
are essential to enable fast discharging of the ’membrane’
capacitance and thereby resetting the nonvolatile memristor

to the HRS. Fortunately, many filamentary switching devices
exhibit such an abrupt-switching dynamic. Finally, the pre-
sented neurotransistor shows leaky-integrate-and-fire dynamics
and could be fabricated in a compact design while making
use of intrinsic capacitance of memristive stacks and parasitic
gate-source capacitances of the transistor.

V. CONCLUSION

In conclusion, this paper proposes a pseudo-memcapacitive
neurotransistor setup constructed by considering a nonvolatile
memristor embedded at the gate of a NMOS transistor and
employing its gate-source capacitance. A SPICE circuit simu-
lation of a leaky integrate-and-fire neuron is provided receiving
uniform spike inputs with various intervals. In contrast to
previously used volatile memristors, our approach expands
the neurotransistor concept to the applicability of nonvolatile
memristors to operate as neurons. A hardware implementation
with real components is underway to experimentally prove the
predicted functionality, taking into account the parasitic prop-
erties of the real circuit elements and enabling a fully analog
implementation of energy-efficient spiking neural networks.
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