

Poster link

An ErMnO₃ memristive spiking neuristor

Richard Schroedter¹, Ahmet Samil Demirkol¹, Rong Wu^{2,3}, Catherine Dubourdieu^{2,3}, and Ronald Tetzlaff¹

¹Chair of Fundamentals of Electrical Engineering, Technische Universität Dresden, GERMANY

²Helmholtz Zentrum Berlin für Materialien und Energie, GERMANY

³Freie Universität Berlin, Physical and Theoretical Chemistry, GERMANY

$$C_{\text{th}} \dot{T} = v_{\text{m}} \cdot i_{\text{m}}(T, v_{\text{m}}) - \Gamma_{\text{th}}(T - T_{\text{amb}})$$
$$C \dot{v}_{\text{m}} = \frac{v_{\text{b}} - v_{\text{m}}}{R_{\text{b}}} - i_{\text{m}}(T, v_{\text{m}})$$

 \rightarrow Memristor current modeled combining Poole-Frenkel emission for $G_{\rm PF}$ with T – independent bipolar diode i_d :

$$i_{\rm m}(T, v_{\rm m}) = G_{\rm PF}(T, v_{\rm m}) \cdot v_{\rm m} + i_{\rm d}(v_{\rm m})$$
$$G_{\rm PF}(T, v_{\rm m}) = g_0 \exp\left(\frac{-g_1 + g_2 \sqrt{|v_{\rm m}|} - g_3 |v_{\rm m}|}{T}\right)$$
$$i_{\rm d}(v_{\rm m}) = I_{\rm d} \exp(k_{\rm d}|v_{\rm m}|)$$

Model constants: g_0 , g_1 , g_2 , g_3 , I_d , k_d , Γ_{th} , C_{th}

Neuristor results

 $50\,\mathrm{nm}$

 \mathbf{Pt}

 $ErMnO_3$

 \mathbf{Pt}

Stable neuristor oscillations

• Neuristor circuit with C = 10.7 nF, $R_{b} = 100 \Omega$

A 400

350

300

Г

BE

– – model PDR **–** – model NDR

 $v_{\rm m}$ (V)

- chains can be designed

Spike-time-dependent-plasticity

- Spike-time-dependent-plasticity (STDP) rule is implemented by coupling two neuristor cells via a non-volatile synaptic memristor in a SPICE simulation
- Model of non-volatile synaptic memristor from Aguirre et al., Micromachines, 13, 330, 2022
- Post- and pre-synaptic neuristors are stimulated with current pulses I1-I4
- Long current pulses (I3, I1) result in full SET/RESET of *synaptic* memristor within 3 spikes : for $V_{\text{post}} - V_{\text{pre}} < 0$ (I3) SET RESET for $V_{\text{post}} - V_{\text{pre}} > 0$ (I1)
- Short current pulses (I4, I2) result in gradual update of synaptic memristor depending on the neuristor's pulse timing

Summary

- Emerging memristive devices hosting an NDR region, such as the presented
- ErMnO₃ device, can be employed in neuristor circuits to emulate spiking neural networks and pave the way towards energy-efficient in-memory computing systems.
- We present a static and dynamic model for the ErMnO₃ device and derive the equivalent circuit parameters, e.g. a negative resistance R_1 in the NDR.
- The neuristor model employs the internal temperature as state variable which is a critical parameter for long term operations.
- We show the application of the neuristor model employed in a chain structure as well as for STDP learning through a non-volatile memristor.
- By emulating leaky-integrate-and-fire neurons, the presented neuristor is a promising device realizing spiking neural networks in in-memory hardware.

Literature:

[1] Demirkol, A.S., Ascoli, A., Messaris, I., Tetzlaff, R., 2021. Analytical Investigation of Pattern Formation in an M-CNN with Locally Active NbOx Memristors, in: 2021 IEEE International Symposium on Circuits and Systems (ISCAS). pp. 1–5. https://doi.org/10.1109/ISCAS51556.2021.9401280 [2] Wang, Z., Kumar, S., Nishi, Y., Wong, H.-S.P., 2018. Transient dynamics of NbOx threshold switches explained by Poole-Frenkel based thermal feedback mechanism. Applied Physics Letters 112, 193503. https://doi.org/10.1063/1.5027152 [3] Wu, R., "Resistive switching in mixed orthorhombic/hexagonal RMnO3 (R = Y, Er) polycrystalline thin films", Disseration, FU Berlin, 2024. http://dx.doi.org/10.17169/refubium-44694

Contact corresponding author:

Dr.-Ing. Richard Schroedter Chair of Fundamentals of Electrical Engineering, Technische Universität Dresden Email: richard.schroedter@tu-dresden.de

Funded by German Research Foundation (DFG) in SPP 2262 **MemrisTec** under the Project NeuroMCross No. 441898364

