

Continuous Time Example

• 2-stage RC low-pass, equal R and C

Node equations (sum of outgoing currents):

①
$$0 = -\frac{1}{R}V_i + \frac{2}{R}V_1 + C\dot{V}_1 - \frac{1}{R}V_2$$

Euler forward:

```
Solve \textcircled{1} for \dot{\textit{V}}_1 and \textcircled{2} for \dot{\textit{V}}_2
```

Introduce constant time steps Δt , sufficiently short. At every time step calculate

 $V_{1,2} (t + \Delta t) = V_{1,2} (t) + \Delta t \cdot \dot{V}_{1,2} (t)$

with $\dot{V}_{1,2}(t)$ as above.

Source code: rc_lowpass/source/behavioral/euler_forward.vhd

Euler **back**ward:

Solve ① for \dot{V}_1 and ② for \dot{V}_2 and introduce constant time steps Δt Use this to solve the equation system of Euler backward formulae

$$V_1(t + \Delta t) = V_1(t) + \Delta t \cdot \dot{V}_1(t + \Delta t)$$

$$V_2(t + \Delta t) = V_2(t) + \Delta t \cdot \dot{V}_2(t + \Delta t)$$

for $V_1(t + \Delta t)$ and $V_2(t + \Delta t)$.

Source code: rc_lowpass/source/behavioral/euler_backward.vhd

Explicit: Known Waveform for piecewise constant input $V_i(t)$

Start with node equations (sum of outgoing currents): ① $0 = -\frac{1}{R}V_i + \frac{2}{R}V_1 + C\dot{V}_1 - \frac{1}{R}V_2$

Solve the differential equation system for $V_1(t)$ and $V_2(t)$ assuming $V_i = \text{const}$

with

Explicit: Known Waveform for piecewise constant input $V_i(t)$

Use $\tau = \frac{1}{\omega} = RC$ to write the solution:

 $V_2(t) = V_i + V_A \cdot e^{z_1 t} + V_B \cdot e^{z_2 t}$

 $V_1(t) = V_i + V_A \cdot e^{z_1 t} + V_B \cdot e^{z_2 t} + V_A \cdot \tau z_1 e^{z_1 t} + V_B \cdot \tau z_2 e^{z_2 t}$

$$z_{1,2} = \frac{\omega}{2} \cdot \left(3 \pm \sqrt{5}\right)$$

 V_A and V_B are constant voltage values

determined by the initial conditions for V_1 and V_2 .

Explicit: Known Waveform for piecewise constant input $V_i(t)$

The input voltage V_i changes only at points in time t_1 , t_2 , t_3 , etc.

Use known values of $V_1(t_1)$ and $V_2(t_1)$ to determine values of V_A and V_B for $t \in [t_1, t_2]$. Calculate $V_1(t_2)$ and $V_2(t_2)$. Final values at t_2 are the initial values for the next interval $t \in [t_2, t_3]$. Proceed to t_3, t_4 etc.

Source code: rc_lowpass/source/behavioral/explicit.vhd

Test Bench: PWM input $V_i(t)$

