Analog Behavioral Modelling

SC Basics

http://www-inst.eecs.berkeley.edu/
~ee247/fa08/files07/lectures/L10s_f08.pdf

Analog Behavioral Modelling

Discrete Time Example

- Switched Capacitor (SC) resonator used as band-pass

http://www-inst.eecs.berkeley.edu/
~ee247/fa08/files07/lectures/L10s_f08.pdf

Analog Behavioral Modelling

Switches are operated synchronously in two phases I and II. Define voltages for the following calculations.

Assume ideal operational amplifiers.
Calculate charge balances, when all switches change from position II to I:
C3 gets connected to V_{i} and to virtual ground:
$V_{3, I}=V_{i}$
$\Delta V_{3}=V_{3, I}-V_{3 . I I}=V_{i}-V_{3, I I}$
Through the virtual ground, charge is transferred from C3 to C4:
$\Delta V_{4}=-\frac{C 3}{C 4} \cdot \Delta V_{3}$
$V_{4, I}=V_{4, I I}+\Delta V_{4}$
C1 gets connected to V_{4} and to virtual ground:
$V_{1, I}=V_{4, I}$
$\Delta V_{1}=V_{1, I}-V_{1 . I I}=V_{4, I}-V_{1, I I}$
Charge from C1 and from CQ is transferred to C2:
$\Delta V_{2}=-\frac{C 1}{C 2} \cdot \Delta V_{1}-\frac{C Q}{C 2} \cdot \Delta V_{4}$
$V_{2, I}=V_{2, I I}+\Delta V_{2}$

SC works in two phases:
Calculate charge balances, when all switches change to position II:
The input at C4 is left open, no change at V_{4} :
$V_{4, I I}=V_{4, I}$
C1 is discharged, and all charge on C1 dissipates:
$V_{1, I I}=0$
C1 is disconnected from C2. No charge transfer through CQ because V_{4} does not change: Also V_{2} does not change.
$V_{2, I I}=V_{2, I}$
C3 gets connected to V_{2} and to ground, changes in charge dissipate:
$V_{3, I I}=V_{2, I I}$

Analog Behavioral Modelling

Source code: sc_bandpass/source/behavioral/sc_bandpass.vhd

In the model, associate $\mathbf{c l k}=\mathbf{\prime}^{\prime} \mathbf{1}^{\prime}$ with phase I and $\mathbf{c l k}=\mathbf{\prime}^{\prime} \mathbf{o}^{\prime}$ with phase II
In a real implementation, switches are operated in a non-overlapping scheme. Usually, the non-overlapping clock phases are derived from a single clock as above, so the simplifying assumption is reasonable.

Nyquist requires sampling frequency $f_{s}>2 \cdot f_{\text {max }}$. For practical applications $f_{s}>10 \cdot f_{\text {signal }}$ is very reasonable.

```
Test bench: sc_bandpass/source/tb/sc_bandpass_tb.vhd
```

Generate the clock and a sinus input signal with a frequency sweep. Run for 1 ms to see the full sweep.

