
Elektrotechnik und Informationstechnik, Stiftungsprofessur hochparallele VLSI Systeme und Neuromikroelektronik

Oberseminar Informationstechnik

Introduction

Folie Nr. 2

Relation to Other Courses of Our Chair

Schaltkreis- und Systementwurf

• Design of digital systems
• Introduction to EDA software
• Simulation of digital circuits

Prozessorentwurf

• Complex digital design
• Synthesis of digital circuits
• Introduction to design flow

Neuromorphe VLSI-Systeme

• Analog CMOS circuits
• Neuromorphic systems
• EDA for analog circuits

Oberseminar Informationstechnik

• VHDL Introduction
• Digital RTL Design
• Real-Valued Modelling

Folie Nr. 3

Overview: Structure and Contens of the Seminar

Three Main Parts of the Seminar

▪ Lectures

• Introduction to VHDL

• Real-Valued Modelling

• Current Research Projects

• Introduction to the Project Work

▪ Student Presentations

• Topics Derived from Research

• General Topics
(e.g. Fuzzy Logic, Sensors, Actuators, Data Converters, etc.)

▪ Project Work

• Digital Design + Analog Modelling

• Functional Check through Simulation

• Written Report

Folie Nr. 4

Project Work

Project Work

▪ ONE ACCOUNT for ALL lab courses
(e.g. Schaltkreis- und Systementwurf, Prozessorentwurf,
Neuromorphic VLSI, this seminar)

▪ Please REGISTER yourself for EACH LAB COURSE

Website (Home)
https://tu-dresden.de/ing/elektrotechnik/iee/hpsn

Website (Information, Links, Anmeldung)
https://

tu-dresden.de/ing/elektrotechnik/iee/hpsn/studium/materialien

Login via IDM (ZIH-Login) required. Typical Login ID: e.g. s1234567

Register for `OSM´

Room: TOE 201

Folie Nr. 5

Introduction to VHDL

Folie Nr. 6

Introduction to VHDL

▪ Motivation

• History of VHDL

• Fields of Application

• Contrast to Verilog

▪ Laguage Basics

• Entity, Architecture, Configuration

• Data Types for Signals

• Concurrent Processes

• Sequential Statements

• Hierarchical Structures

Folie Nr. 7

▪ 1980s: US government programme “VHSIC”
Very High Speed Integrated Circuits

▪ 1983: VHDL defined by the VHSIC Initiative
VHSIC Hardware Description Language

• Intended as a standardized language for specification and
documentation of integrated circuits and other electronics

▪ 1987: VHDL becomes IEEE Standard 1076

▪ 1988: US DoD requires all electronic equipment to be
documented in VHDL

▪ 1993: Revised IEEE standard 1076

• Base of current VHDL

• Newer revisions of 2002 and 2008

VHDL History

Folie Nr. 8

Implementation
of digital circuits

VHDL Fields of Applications

Verification
of digital and mixed-
signal circuits

Modeling
of circuits and systems

Idea

LV Prozessorentwurf

UVM

DUT
Specification

Implementation

RTL2GDS

Simuation

Folie Nr. 9

Compared to Verilog, VHDL …

▪ provides freedom to define types
+ good readability
+ high reusability
– don’t over-use it

▪ has strong type checking
+ can help to avoid misinterpretation of data
– you need lots of type conversions

▪ has declaration overhead
+ very precise
– many lines of code

▪ has a set of very handy language features
we will come to a few of them

▪ IS casE inSENsitiVE

▪ has different pitfalls

Contrast to Verilog

Folie Nr. 10

Introduction to VHDL

Folie Nr. 11

VHDL Basics

Laguage Basics

Folie Nr. 12

VHDL Design Units

▪ entity
port declaration

▪ architecture
internal functionality of a design unit

▪ configuration
select one of several architectures

▪ package
commonly used declarations, such as data types or functions

▪ package body
implementation of a package

VHDL Basics

Folie Nr. 13

entity – defines the input and output ports of a design unit

FULL_ADDER

(A : std_logic;

B : std_logic;

Ci: std_logic;

S : std_logic;

Co: std_logic);

FULL_ADDER;

VHDL Basics

A

B

Ci

S

Co

Folie Nr. 14

architecture – describes functionality and internal structure
of a design unit

RTL FULL_ADDER

AB, AC, BC: std_logic;

S <= A B Ci;

AB <= A B;

AC <= A Ci;

BC <= B Ci;

Co <= AB AC BC;

RTL;

VHDL Basics

A
B

Ci
Co

S

AB

AC

BC

Folie Nr. 15

another architecture of the same entity

NET FULL_ADDER

-- component declaration – we come to it later

XOR3_i : XOR3 (I1 => A, I2 => B, I3 => Ci, O => S);

AND2_i1: AND2 (I1 => A, I2 => B, O => AB);

AND2_i2: AND2 (I1 => A, I2 => C, O => AC);

AND2_i3: AND2 (I1 => B, I2 => C, O => BC);

OR3_i : OR3 (I1 => AB, I2 => AC, I3 => BC,

O => Co);

NET;

VHDL Basics

Folie Nr. 16

configuration – optionally select particular architectures

NET_CFG FULL_ADDER

NET

-- select instance configurations – we come to it later

NET_CFG;

VHDL Basics

FULL_ADDER

RTL NET

configuration NET_CFGanother configuration

Folie Nr. 17

Use Model for entity / architecture / configuration

• very often only one architecture

➢ entity and architecture in one file and no configuration

• use configuration, when default binding is not sufficient

VHDL Basics

FULL_ADDER
(...);

FULL_ADDER;

RTL FULL_ADDER

...

RTL;

Folie Nr. 18

VHDL entity

FULL_ADDER

(A : std_logic;

B : std_logic;

Ci: std_logic;

S : std_logic;

Co: std_logic);

FULL_ADDER;

name of the design unit

port name

port direction: in | out | inout

port data type

closing parenthesis of
the port statement

no semicolon
after last element

Folie Nr. 19

VHDL architecture

RTL FULL_ADDER

AB, AC, BC: std_logic;

S <= A B Ci;

AB <= A B;

AC <= A Ci;

BC <= B Ci;

Co <= AB AC BC;

RTL;

name of the design unit

internal signals
correspond to
physical connections
in the real world

actual data processing
in parallel statements

name of the architecture
use telling names: RTL, BEH, NET

Folie Nr. 20

Some Types of Parallel Statements

S <= A B Ci;

(A, B) is

AB <= A B;

;

OR3_i : OR3

(I1 => AB, I2 => AC, I3 => BC, O => Co);

signal assignment

process statement

instantiation statement

Folie Nr. 21

Parallel Statements

S <= A B Ci;

(A, B)

AB <= A B;

;

OR3_i : OR3

(I1 => AB, I2 => AC, I3 => BC, O =>

Co);

before we can explain statements and expressions,
we need some Data Types

Folie Nr. 22

VHDL Data Types
▪ Pre-defined Data Types

integer arbitrary range, defaults to 32bit

natural non-negative integers

e.g. indices into arrays and vectors

real digital models of analog behaviour

time advance time in test benches

model timing behavior

boolean truth values

e.g. results of comparisons

bit, bit_vector built-in logic type, don’t use them

VHDL Data Types

Folie Nr. 23

VHDL Data Types
▪ User-defined types

enumerations
Just a list of names. Very good for FSMs, commands, etc.

records
Aggregate of arbitrary types.
Good for behavioral models and test benches.

▪ IEEE 1164 logic is the most prominent enumeration type

std_logic single-bit digital signals

std_logic_vector multi-bit digital busses

signed, unsigned std_logic_vector in numerics

=> preferred type to design digital circuits

VHDL Data Types

Folie Nr. 24

9 Values of std_logic

‘U’ – uninitialized before anything is assigned to a signal

‘X’ – unknown unresolved or conflicting condition

‘0’ – logic 0

‘1’ – logic 1

‘Z’ – high impedance tri-state signal, undriven

‘W’ – weak conflicting condition or otherwise unknown state,
can be over-written by ‘1’ and ‘0’

‘L’ – weak 0 weakly driven ‘0’, e.g. pull-down

‘H’ – weak 1 weakly driven ‘1’, e.g. pull-up

‘–’ – don’t care useful in selectors

VHDL Data Types

Folie Nr. 25

9 Values of std_logic

‘U’ – uninitialized before anything is assigned to a signal

‘X’ – unknown unresolvable or conflicting condition

‘0’ – logic 0

‘1’ – logic 1

‘Z’ – high impedance tri-state signal, undriven

‘W’ – weak conflicting condition or otherwise unknown state,
can be over-written by ‘1’ and ‘0’

‘L’ – weak 0 weakly driven ‘0’, e.g. pull-down

‘H’ – weak 1 weakly driven ‘1’, e.g. pull-up

‘–’ – don’t care useful in selectors

VHDL Data Types

use these for digital design

Folie Nr. 26

9 Values of std_logic

‘U’ – uninitialized before anything is assigned to a signal

‘X’ – unknown unresolvable or conflicting condition

‘0’ – logic 0

‘1’ – logic 1

‘Z’ – high impedance tri-state signal, undriven

‘W’ – weak conflicting condition or otherwise unknown state,
can be over-written by ‘1’ and ‘0’

‘L’ – weak 0 weakly driven ‘0’, e.g. pull-down

‘H’ – weak 1 weakly driven ‘1’, e.g. pull-up

‘–’ – don’t care useful in selectors

VHDL Data Types

add those for modellingadd those for modellingadd those for modelling

Folie Nr. 27

Vectors

signal A : std_logic;

signal B : std_logic_vector(9 downto 0);

VHDL Data Types

single bit signal

multi-bit bus

array data type

single bit data type

index range
0 to 9 -- increasing
9 downto 0 -- decreasing

Folie Nr. 28

architecture RTL of EXAMPLE is

signal A : std_logic;

signal B : std_logic_vector(9 downto 0);

signal C : std_logic_vector(3 downto 0);

signal D : std_logic_vector(5 downto 0);

begin

A <= B(9);

C <= B(8 downto 5);

D(2 downto 0) <= B(4 downto 2);

end

Access to Vector Elements

single bit access

slice of 4 bits

slice assigned to

Folie Nr. 29

Define a New Array Type

something_vector

(<>) something;

my4things : something_vector(3 downto 0);

Vector Type Definition

name of the new array type

index definition:
a range of non-negative numbers

index definition:
a range of non-negative numbers

single-item base type

empty range:
to be filled in, when declaring
objects of the new type

empty range:
to be filled in, when declaring
objects of the new type

Folie Nr. 30

array type used for the
single item type

Arrays of Arrays

ram_type (0 to 255)

std_logic_vector(7 downto 0);

ram : ram_type;

Arrays of Arrays

data object of the new type

Folie Nr. 31

Access to elements of arrays of arrays

ram_type

(0 511) std_logic_vector(7 0);

ram : ram_type;

read_data : std_logic_vector(7 0);

address : std_logic_vector(9 0);

some_bit : std_logic;

bit_select : std_logic_vector(2 0);

read_data <= ram(to_integer(unsigned(address)));

some_bit <=

read_data(to_integer(unsigned(bit_select)));

Arrays of Arrays

Folie Nr. 32

Access to elements of arrays of arrays

ram_type

(0 511) std_logic_vector(7 0);

ram : ram_type;

read_data : std_logic_vector(7 0);

address : std_logic_vector(9 0);

some_bit : std_logic;

bit_select : std_logic_vector(2 0);

read_data <= ram(to_integer(unsigned(address)));

some_bit <=

read_data(to_integer(unsigned(bit_select)));

use a signal of the single-element type

Arrays of Arrays

use a signal of the single-element type

Folie Nr. 33

Caveat: Longest Static Prefix

… regardless of the actual values of i.

Arrays of Arrays

This defines drivers for ALL bits of sig ...

Therefore, sig(3) is reassigned to `U´

Folie Nr. 34

Caveat: Longest Static Prefix

Arrays of Arrays

If you want or need a variable
array index on the left hand side,
do it in one single process.

If you want or need a variable
array index on the left hand side,
do it in one single process.

