
Elektrotechnik und Informationstechnik, Stiftungsprofessur hochparallele VLSI Systeme und Neuromikroelektronik

Oberseminar Informationstechnik

Folie Nr. 2

Reminder: Project Work

Project Work

▪ ONE system ACCOUNT for ALL lab courses
(e.g. Schaltkreis- und Systementwurf, Prozessorentwurf, this
seminar)

▪ Please REGISTER yourself for EACH LAB COURSE

Website (Home)
https://tu-dresden.de/ing/elektrotechnik/iee/hpsn

Website (Information, Links, Anmeldung)
https://

tu-dresden.de/ing/elektrotechnik/iee/hpsn/studium/materialien

Login via IDM (ZIH-Login) required. Typical Login ID: e.g. s1234567

Register for `OSM´

Room: TOE 201

Folie Nr. 3

Reminder: Project Work

Single-Person projects. One student – one project work.

Topics

▪ Choice of topics presented in the lecture

▪ You can also make your own project proposal

Structure

▪ Self-study your topic

▪ Give a presentation to the course: Elaborate the problem and
present approaches to the solution.

▪ Develop and implement the solution in VHDL, simulate it.

▪ Hand in a report.

Presentation and Report are evaluated to yield your credits.

Folie Nr. 4

Project Work – Typical Structure of VHDL Work

Digital Part
e.g. FSM
or digital filter

Behavioral Model
Analog, Mixed-Signal
or Physical

Test Bench
Simulation Control

Stimulus

Digital Control
e.g. clock, reset, enable

data to be processed

Control Parameters
e.g. temperature, voltage,
simulated real-word input

Digital Interface:
Control lines operating real stuff represented by the model.
Feedback lines providing digital information on the model state

Folie Nr. 5

Project Work – Typical Structure of VHDL Work

Digital Part
e.g. FSM
or digital filter

Behavioral Model
Analog, Mixed-Signal
or Physical

Test Bench
Simulation Control

Stimulus

abstract simplified model
explicitly calculates states of
analog and physical quantities

synchronuous digital logic
combinational + sequential
synthesizable RTL description

Folie Nr. 6

Project Work Topics

Project Work Digital Controller Mixed Signal Behavioural Model

Analog PLL PFD, Divider, Binary Search Loop Filter, Oscillator

Digital PLL PID controller Oscillator with temperature and voltage dependencies

Digital DLL PID controller Digitally adjustable Delay Line, extenal Delay

SAR ADC SAR register / FSM SC charge redistribution network

SD-ADC Decimation filter implementation SD-modulator

Class D PA Digital FIR design + implementation analog RLC network

Step-Down DCDC voltage mode regulation PID controller + digital PWM analog RLC network, simple ADC

Step-Down DCDC current mode regulation PID controller + digital PWM analog RLC network, simple ADC

Step-Down DCDC discontinuous mode pwm control PID controller + digital PWM analog RLC network, simple ADC

DCDC Current Mode / controlled LED supply digital controller, PWM, interface analog RLC network, simple ADC

Polychronuous Spinking Neural Network AER busses and arbiters Neurons, Synapses, Axons

Leaky IAF neurons configuration registers, spike decoders Neurons, Synapses

Time Division Multiplexed Perceptron Multiplexers, Counters, FSM Current mode MDAC, simple non-linear neuron core

Brushless DC Motor Sequencer, controller Electro-mechanical motor model

Your Own Idea ? ?

ADC/DAC

PLL

Power

Neuro

Other

Folie Nr. 7

Parallel Statements

Hierachical Design

top_level

subsystem another subsystem

building block A

subblock

block B block C block C

block D block E block F

Folie Nr. 8

Parallel Statements

RTL Example

-- signal declarations go here

S <= A B Ci;

(A, B)

AB <= A B;

;

OR3_i : OR3

(I1 => AB, I2 => AC, I3 => BC, O => Co);

RTL;

Hierarchy corresponds to the Instatiation

Parallel Statement Inside the Architecture:

instantiation

Folie Nr. 9

VHDL Hierarchy

STRUCTURE FOO

FULL_ADDER

(A : std_logic;

B : std_logic;

Ci: std_logic;

S : std_logic;

Co: std_logic);

FULL_ADDER;

ADD_BIT1_i : FULL_ADDER

(A => OP_A(1),

B => OP_B(1),

Ci => CARRY(0),

S => RES(1),

Co => CARRY(1)

);

STRUCTURE;

FULL_ADDER

(A : std_logic;

B : std_logic;

Ci: std_logic;

S : std_logic;

Co: std_logic);

FULL_ADDER;

subblock

instance of subblock

port of is connected to
bit 1 of signal in block

Folie Nr. 10

configuration – optionally select particular architectures

VHDL Hierarchy: Configurations

STRUCTURE_CFG FOO

STRUCTURE

ADD_BIT1_i : FULL_ADDER

work.FULL_ADDER(NET);

STRUCTURE_CFG;

configuration name entity

select architecture for FOO

Folie Nr. 11

configuration – optionally select particular architectures

VHDL Hierarchy: Configurations

STRUCTURE_CFG FOO

STRUCTURE

ADD_BIT1_i : FULL_ADDER

work.FULL_ADDER(NET);

STRUCTURE_CFG;

in architecure of entity

… instance …

… is an instance of
entity
architecture

Folie Nr. 12

configuration – optionally select particular architectures

• for an entity: select the architecture

• for an instance:

o use particular architecture

o use specific configuration

o can replace the component with different entity

o can map ports, even interchange ports

• configuration specification also within architecture

• no config -> default binding, last architecture

VHDL Hierarchy: Configurations

Folie Nr. 13

configuration – optionally select particular architectures

➢ Very wide range of means to select between choices in
the hierarchy

➢ Most features not supported by synthesis tools

➢ Restrict yourself to one top-level configuration or
no configurations at all

VHDL Hierarchy: Configurations

Folie Nr. 14

Arithmetic

Binary Arithmetic

▪ IEEE 1164 logic is the most prominent enumeration type

std_logic single-bit digital signals

std_logic_vector multi-bit digital busses

signed, unsigned std_logic_vector in numerics

Folie Nr. 15

Arithmetic

Binary Arithmetic

▪ IEEE 1164 logic is the most prominent enumeration type

std_logic single-bit digital signals

std_logic_vector multi-bit digital busses

signed, unsigned std_logic_vector in numerics

no numerical interpretation

2´s complement numerics

IEEE;

IEEE.std_logic_1164. ;

IEEE.numeric_std. ;

BAR

FOO BAR

Folie Nr. 16

Binary Arithmetic

IEEE;

IEEE.std_logic_1164. ;

IEEE.numeric_std. ;

BAR

FOO BAR

std_logic_vector 0)

unsigned(15 0)

signed(15 0)

U <= unsigned(L);

S <= signed(L);

L <= U X=´1´ S;

U <= to_unsigned(173, 16);

S <= to_signed(-212, 16);

X <= A(to_integer(U(3 downto 0)));

library and use statements

assignment to subtype with cast

direct assignment to base type

conversion functions

Folie Nr. 17

Parallel Statements

RTL Example

-- signal declarations go here

S <= A B Ci;

(A, B)

AB <= A B;

;

OR3_i : OR3

(I1 => AB, I2 => AC, I3 => BC, O => Co);

RTL;

… back to
Parallel Statements Inside Architectures

Parallel Statements work
concurrently.
They correspond to separate
pieces of hardware.

Parallel Statements work
concurrently.
They correspond to separate
pieces of hardware.

Parallel Statements work
concurrently.
They correspond to separate
pieces of hardware.

Folie Nr. 18

Signal Assignments

RTL Example

-- signal declarations go here

S1 <= A B;

S2 <= B A=’1’ C;

RTL;

Signal Assignment Statements

assignment with an expression

conditional assignment

… the left-hand side receives a new value

whenever the right-hand side changes…

Folie Nr. 19

Operators

Operators in Signal Assignments

• bit-wise logic and Boolean logic
result type = argument type

AND, OR, NAND, NOR, XOR, XNOR, NOT

• comparisons, result type: Boolean
= /= < > <= / >=

equal not equal less than greater than less/greater or equal

• numeric, result type: numeric
+, - addition, subtraction, unary sign
*, / multiplication, division
mod,rem modulo division, sign of right (mod) or left (rem) operand
** exponentiation
abs absolute value

Folie Nr. 20

Parallel Statements

RTL Example

-- signal declarations go here

S <= A B Ci;

(A, B)

AB <= A B;

;

OR3_i : OR3

(I1 => AB, I2 => AC, I3 => BC, O => Co);

RTL;

other Parallel Statements Inside Architectures

process
statement

Folie Nr. 21

Process Statement

A, B, C)

A ”010”

S1 <= B;

S1 <= C;

;

;

label: (A)

S2 <= A(1) A(0);

label;

Process Statement

sensitivity list

inside the process:
sequential statements

all processes run in
parallel
all processes run in
parallel

a process can be
named with a label

Folie Nr. 22

Process Statement

A, B, C)

S1 <= B;

A ’1’

S1 <= C;

;

;

Sequential Signal Assignments in Process

default assignment
one good practice for
combinational logic

the last executed
sequential assignment
supercedes all others

Folie Nr. 23

Sequential Statements

condition

sequential_statements;

condition

sequential_statements;

sequential_statements;

Sequential Statement: if-then-else

expression yielding a Boolean value

optional ELSIF branch.

optional ELSE branch.

required END IF;

Folie Nr. 24

Sequential Statements

expression

choice equential_statements;

choice equential_statements;

choice equential_statements;

Sequential Statement: case

expression of arbitrary type

choice value of same type as expression

Folie Nr. 25

Sequential Statements

SEL

"01" Z A

"10" Z B

Z 'X'

Sequential Statement: case

As of the VHDL standard,
all possible choices must be included, …

… unless the others clause is used as the last choice

Folie Nr. 26

Sequential Statements

SEL

"01" Z A

"10" Z B

Sequential Statement: case

null statement – explicitly do
nothing in this branch

Folie Nr. 27

Sequential Statements

INT

0 Z A

1 to 3 Z B

4|6|8 Z A

Sequential Statement: case

range

selection: List of values

Folie Nr. 28

Sequential Statements

INT

Z B

|4|6 Z A

others Z ’X’

VEC

”000” Z A

Z B

others Z ’X’

Not allowed in case statement:

ranges and selections must not overlap

ranges are not allowed for vectors / arrays

Folie Nr. 29

Sequential Statements

Z "0000";

I 0 3

A I Z(I) '1'

Sequential Statement: for loop

Loop Variable takes type of loop range

Z <= "0000"; for I in o to 3 loop if (A = I) then Z(I) <= '1'; end if; end loop;

Loop variable implicitly declared with type of loop range

Example for combinational 1-hot decoder

Folie Nr. 30

Sequential Statements

Z "0000";

I 0 3

A I

Z(I) ‘1’

Sequential Statement: for loop

Z <= "0000"; for I in o to 3 loop if (A = I) then Z(I) <= '1'; end if; end loop;

End the loop with exit

